

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» $(ДВ\Phi Y)$

ФИЛИАЛ ДВФУ В Г.АРСЕНЬЕВЕ

«УТВЕРЖДАЮ»

Директор филиала ДВФУ

в г. Арсеньеве

С. В. Дубовицкий

2019 г

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫМАТЕМАТИЧЕСКИЙ АНАЛИЗ

A COLOR OF CO.

Специальность 24.05.07 «Самолето- и вертолетостроение»

специализация/ Вертолетостроение

Форма подготовки очная/заочная/заочная (ускоренное обучение на базе СПО)

курс 1, 2/1, 2/1, 2 семестр 1, 2, 3/-/лекции 108/24/24 час.
практические занятия — 108/30/24 час.
лабораторные работы час.
с использованием МАО — 66/16/16 час.
в электронной форме лек. -/ пр./ лаб.-.
всего часов контактной работы 216/54/48 час.
в том числе с использованием МАО час, в электронной форме - час.
самостоятельная работа 216/378/384 час.
в том числе на подготовку к экзамену — 90/18/18 час.
курсовая работа / курсовой проект не предусмотрены
зачет не предусмотрен
экзамен — 1,2,3/-/- семестр, 1, 2/1,2/1,2 курс

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ от 12 сентября 2016 г. № 1165

Рабочая программа обсуждена на заседании кафедры СВС, протокол № 13 от 03.09.2019 г.

Составитель (ли): ст. преподаватель С.В. Примакова

Оборотная сторона титульного листа РПУД

I. Рабочая прогр	рамма пере	есмотрена на заседании к	:афедры:
Протокол от «	»	20 г. №	
Заведующий каф	едрой		
		(подпись)	(И.О. Фамилия)
II. Рабочая прог	рамма пер	есмотрена на заседании	кафедры:
Протокол от «		20 г. N	<u> </u>
Заведующий каф	едрой		
_		(подпись)	

АННОТАЦИЯ

Программа учебного курса «Математический анализ» составлена в соответствии с требованиями к обязательному минимуму содержания и уровню подготовки специалистов по направлению 24.05.07 «Самолёто- и вертолётостроение» согласно ФГОС ВПО третьего поколения.

«Математический является базовой дисциплиной анализ» Федерального государственного математического цикла дисциплин образовательного стандарта высшего профессионального образования (ФГОС ВПО) по направлению «Самолёто- и вертолётостроение» (программа подготовки специалистов). дисциплина является необходимой для освоения остальных дисциплин математического и естественнонаучного дисциплин профессионального цикла.

«Математический анализ» является базовой частью не только для предметов математического цикла: «Аналитическая геометрия и алгебра», «Теори вероятности и статистика», но также для таких курсов как «Информатика», «Физика», «Аэродинамика», «Теоретическая механика», «Экономика», «Метрология и стандартизация».

При построении курса реализуется принцип преемственности обучения, он опирается на математические знания, умения и навыки студентов, приобретенные ими в общеобразовательной школе и средних специальных учебных заведениях.

Цель: познакомить студентов с основами аппарата высшей математики теоретических И ДЛЯ решения практических задач конструкторскотехнологического направления, на примерах математических объектов и продемонстрировать студентам сущность научного специфику математики, научить студентов приемам исследования и решения математически формализованных задач, привить навыки самостоятельной работы с математической литературой.

Задачи:

- воспитать абстрактное мышление, не привязанное к конкретным условиям и обстоятельствам;
- развить логическое мышление, научить строить логические цепочки рассуждений, в начале которых стоят не вызывающие сомнения факты и положения, а в конце – правильные выводы;
- привить высокие стандарты строгости в доказательстве или обосновании результатов конструкторских исследований;
- выработать навыки к математическому исследованию конструкторских проблем;
 - формирование научного мировоззрения у студентов;
- формирование математических знаний, умений и навыков,
 необходимых для изучения других общенаучных и специальных дисциплин;
- формирование личности студента, развитие его интеллекта и умения логически и алгоритмически мыслить;
- формирование умений и навыков, необходимых при практическом применении математических идей и методов для анализа и моделирования сложных систем, процессов, явлений, для поиска оптимальных решений и выбора наилучших способов их реализации.

Для успешного изучения дисциплины «Математический анализ» у обучающихся должны быть сформированы следующие предварительные компетенции:

- способность представить современную картину мира на основе целостной системы естественно-научных и математических знаний, ориентироваться в ценностях бытия, жизни, культуры (ОК-1);
- владение культурой мышления, способность к обобщению, анализу, критическому осмыслению, систематизации, прогнозированию, постановке целей и выбору путей их достижения, умением анализировать логику (ОК-7);
- способность самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и

умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности (ОПК-2).

В результате изучения данной дисциплины у обучающихся формируются следующие общекультурные и общепрофессиональные компетенции (элементы компетенций):

Для формирования вышеуказанных компетенций в рамках дисциплины «Математический анализ» применяются следующие методы активного/ интерактивного обучения: лекция-беседа, лекция-визуализация, проблемная лекция, проектирование, мастер класс, интеллект карта; обучающий сценарий; творческие задания с использованием интернет-ресурсов.

	1 1 11		
Код и формулировка компетенции	Этапы формирования компетенции		
ОК-1: способность представить современную картину мира на основе	Знает	что фундаментальное знание материала курса математического анализа является основой для изучения всех математических дисциплин функционального направления.	
целостной системы естественно-научных и	Умеет	понимать поставленную задачу.	
математических знаний, ориентироваться в ценностях бытия, жизни, культуры.	Владеет	навыками самостоятельной работы с академическими и публицистическими статьями по дифференциальному и интегральному исчислениям.	
ОК-7: владение культурой мышления, способность к обобщению, анализу, критическому	Знает	Определения, утверждения и методы математического анализа. Схемы исследования функций; понятие частной производной; понятия неопределённого и определённого интегралов; понятие дифференциального уравнения; основные типы дифференциальных уравнений первого и второго порядка; понятия числового ряда; понятие степенного ряда. Знать формулы и методы решения типовых задач математического анализа.	
осмыслению, систематизации, прогнозированию, постановке целей и выбору путей их достижения.	Умеет	На основе анализа видеть и корректно формулировать результаты. Исследовать функции; находить частные производные; находить экстремумы функций двух переменных; находить неопределенные интегралы; вычислять определенные интегралы; решать обыкновенные дифференциальные уравнения 1-го порядка; решать линейные однородные и неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами;	

		устанавливать сходимость числовых и степенных рядов; раскладывать функции в ряд Маклорена.
	Владеет	Основными понятиями математического анализа, инструментарием математического анализа. Навыками работы с учебной и учебнометодической литературой; навыками употребления математической символики для выражения количественных и качественных отношений объектов; навыками применения методов и приемов постановки и решения задач по основным разделам математики и навыками разработки математических моделей.
ПК-1: готовность к решению сложных инженерных задач с использованием базы знаний математических и естественнонаучных дисциплин.	Знает	Методы дифференциального и интегрального исчислений. Понятие предела функции в точке; понятие непрерывности функции; понятия производной и дифференциала функции; схемы исследования функций; понятие частной производной; понятия неопределённого и определённого интегралов; понятиедифференциального уравнения; основные типы дифференциальных уравнений первого и второго порядка; понятия числового ряда; понятие степенного ряда. Знать формулы и методы решения типовых задач математического анализа.
	Умеет	Применять методы математического анализа необходимые для решения инженерных задач. Находить пределы функций; находить производные элементарных функций; исследовать функции; находить частные производные; находить экстремумы функций двух переменных; находить неопределенные интегралы; вычислять определенные интегралы; решать обыкновенные дифференциальные уравнения 1-го порядка; решать линейные однородные и неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами; устанавливать сходимость числовых и степенных рядов; раскладывать функции в ряд Маклорена.
	Владеет	Навыками анализа реальных ситуаций и решения задач методами математического анализа. Навыками работы с учебной и учебнометодической литературой; навыками употребления математической символики для выражения количественных и качественных отношений объектов; навыками применения методов и приемов постановки и решения задач по основным разделам математики и навыками разработки математических моделей. Получить опыт решения типовых математических задач и опыт разработки простейших математических моделей.

I. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА 1 семестр

Раздел I. Функция. Теория пределов и непрерывность функции. (6/2 час.)

Тема 1. Множества. Функция. (1/0 час.)

Понятие множества. Операции над множествами. Числовые промежутки. Окрестность точки. Понятие предела последовательности. Понятие функции и способы ее задания. Применение функций в инженерных задачах. Арифметические действия над функциями. Сложная и обратная функции. Основные элементарные функции и их графики.

Тема 2. Предел функции. (3/2 час.)

Понятие предела функции в бесконечности и в точке. Основные теоремы о пределах функций. Замечательные пределы. Бесконечно малые функции и их свойства. Бесконечно большие функции. Односторонние пределы. Неопределённости и методы их раскрытия. Эквивалентные бесконечно малые функции.

Тема 3. Непрерывность функции. (2/0 час.)

Понятие непрерывности функции. Арифметические операции над непрерывными функциями. Свойства функций, непрерывных на отрезке.

Раздел ІІ. Дифференциальное исчисление. (8/2 час.)

Тема 1. Производная функции. (3/2 час.)

Понятие производной. Геометрическая и механическая интерпретация производной. Касательная к графику функции. Дифференцирование суммы, разности, произведения и частного функций. Дифференцирование сложной и обратной функций. Таблица производных. Логарифмическое дифференцирование. Дифференцирование функций заданных параметрически и неявно. Производные высших порядков. Механический смысл производной второго порядка.

Тема 2. Дифференциал (2/0 час.)

Понятие дифференциала функции. Дифференциал суммы, разности, произведения и частного функций. Таблица дифференциалов. Дифференциалы высших порядков.

Тема 3. Исследование функций при помощи производных (3/0 час.)

Теоремы Ролля, Коши и Лагранжа. Формула Тейлора. Раскрытие неопределенностей. Правило Лопиталя. Условия возрастания и убывания функций. Экстремумы функций. Наибольшее и наименьшее значения функции на отрезке. Направление выпуклости графика функции. Точки перегиба графика функции. Асимптоты графика функции. Общая схема исследования функций и построение графиков.

Раздел III. Интегральное исчисление функций одной переменной. (14/4 час.)

Тема 1. Неопределённый интеграл. (2/0 час.)

Понятия первообразной функции и неопределенного интеграла. Основные свойства неопределенного интеграла. Таблица основных неопределенных интегралов.

Тема 2. Основные методы интегрирования. (2/2 час.)

Метод непосредственного интегрирования. Замена переменной в неопределенном интеграле. Метод интегрирования по частям.

Тема 3. Интегрирование рациональных функций. (2/0 час.)

Алгебраические многочлены. Рациональные функции Разложение на простейшие дроби. Интегрирование рациональных дробей.

Тема 4. Интегрирование тригонометрических функций. (2/0 час.)

Универсальная тригонометрическая подстановка, использование тригонометрических преобразований.

Тема 5. Интегрирование иррациональных функций. (2/0 час.)

Квадратичные иррациональности. Дробно-линейная подстановка. Тригонометрическая подстановка. Интегрирование дифференциального бинома.

Тема 6. Определённый интеграл. (2/2 час.)

Понятие определенного интеграла. Основные свойства определенного интеграла. Формула Ньютона—Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям в определенном интеграле. Приложение определенного интеграла.

Тема 7. Несобственные интегралы. (2/0 час.)

Несобственные интегралы 1-го и 2-го рода, их вычисление. Сходимость несобственного интеграла.

Раздел IV. Комплексные числа. (2/1 час.)

Понятие комплексного числа Действия с комплексными числами. Алгебраическая форма записи комплексного числа. Тригонометрическая форма комплексного числа. Показательная форма комплексного числа. Извлечение корней из комплексных чисел.

2 семестр

Раздел V. Функция нескольких переменных. (6/2 час.)

Тема 1. Функция двух переменных. (2/1 час.)

Понятие функции двух переменных. Предел и непрерывность функции двух переменных.

Тема 2. Производные и дифференциалы функции нескольких переменных. (2/1 час.)

Частные производные. Частные производные высших порядков Теорема о равенстве смешанных производных. Дифференцируемые функции. Дифференциал функции. Правила дифференцирования.

Тема 3. Экстремум функции двух переменных. (2/0 час.)

Экстремумы функции многих переменных. Необходимые и достаточные условия экстремума. Наибольшее и наименьшее значения функции в замкнутой области. Метод наименьших квадратов. Касательная плоскость и нормаль к поверхности.

Раздел VI Дифференциальные уравнения. (14/6 час.)

Тема 1. Дифференциальные уравнения первого порядка. (4/2 час.)

Дифференциальные уравнения. Общие понятия. Дифференциальное

уравнение первого порядка. Задача Коши. Дифференциальные уравнения с разделяющимися переменными.

Однородные дифференциальные уравнения. Дифференциальные уравнения в полных дифференциалах. Линейные дифференциальные уравнения первого порядка. Уравнение Бернулли. Уравнение в полных дифференциалах.

Тема 2. Дифференциальные уравнения допускающие понижения порядка. (2/1 час.)

Дифференциальные уравнения, допускающие понижение порядка и их решение.

Тема 3. Линейные дифференциальные уравнения высших порядков. (8/2 час.)

Линейные дифференциальные уравнения высших порядков. Линейная зависимость и линейная независимость системы функций. Метод вариации произвольных постоянных. Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Применение дифференциальных уравнений.

Тема 4. Системы дифференциальных уравнений. (2/1 час.)

Основные понятия, интегрирование нормальных систем, Системы линейных дифференциальных уравнений с постоянными коэффициентами.

Раздел VII Ряды. (8/2 час.)

Тема 1. Числовые ряды. (3/1 час.)

Понятие числового ряда. Сходящиеся и расходящиеся ряды. Действия с рядами. Основные свойства. Необходимое условие сходимости ряда. Положительные ряды. Теоремы сравнения рядов. Признак Даламбера. Признак Коши. Интегральный признак Коши. Знакочередующиеся ряды. Теорема Лейбница. Абсолютно и условно сходящиеся ряды.

Тема 2. Функциональные ряды. (5/1 час.)

Степенные ряды. Теорема Абеля. Радиус сходимости.

Дифференцирование и интегрирование степенных рядов. Разложение функций в степенные ряды. Ряд Тейлора. Разложение некоторых элементарных функций в ряд Маклорена. Разложение функции в ряд Фурье.

3 семестр

Раздел VIII Кратные интегралы. (12/2 час.)

Тема 1. Двойной интеграл. (6/1 час.)

Задачи, приводящие к понятию двойного интеграла. Определение двойного интеграла, геометрический и физический смысл. Теорема существования, свойства. Сведение двойного интеграла от непрерывной функции к повторному интегралу. Теорема о замене переменных в двойном интеграле.

Тема 2. Тройной интеграл. (6/1 час.)

Задачи, приводящие к понятию тройного интеграла. Тройной интеграл, определение, свойства, вычисление в декартовой системе координат. Формулировка теоремы о замене переменных в тройном интеграле.

Раздел IX. Криволинейные и поверхностные интегралы.(12/1 часа) Тема 1. Криволинейные интегралы по длине дуги. (6/0 час.)

Определение, свойства, физический смысл, вычисление. Задача о вычислении работы силового поля. Определение, свойства и вычисление криволинейного интеграла по координатам. Теорема Грина. Условия независимости криволинейного интеграла от пути интегрирования. Отыскание функции по ее полному дифференциалу.

Тема 2. Поверхностный интеграл по площади поверхности. (6/1 час.)

Поверхностный интеграл по площади поверхности. Определение, формула для вычисления. Геометрический и физический смысл. Задача о вычислении потока векторного поля через поверхность. Определение, физический смысл, свойства и вычисление поверхностного интеграла по координатам. Теорема и формула Остроградского-Гаусса. Ориентация

поверхности и направление обхода замкнутого контура. Теорема и формула Стокса.

Раздел Х. Элементы теории поля. (12/2 часа)

Тема 1. Векторное поле. (6/1 час.)

Векторное поле. Векторные Оператор Гамильтона. линии. Дифференциальные операции первого порядка в скалярном и векторных Потенциальные И безвихревые Теорема полях. поля. Гельмгольца. Дифференциальные операции второго порядка. Дивергенция векторного поля, ее физический смысл. Теорема о существовании и вычислении дивергенции. Свойства запись дивергенции, векторная формулы Остроградского-Гаусса. Соленоидальное поле.

Тема 2. Векторная трубка. (6/1 час.)

Векторная трубка. Основное свойство соленоидального векторного поля. Циркуляция и ротор векторного поля. Механический смысл ротора, его свойства. Векторная запись формулы Стокса. Интегро-дифференциальная форма уравнений электромагнитного поля.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

1 семестр

Занятие 1. Понятие множества. Операции над множествами. Понятие функции. Элементарные функции и их графики (2/0 час.)

Занятие 2. Предел функции. Первый, второй замечательные пределы. Бесконечно малые функции (2/1 час.)

Занятие 3. Непрерывность функции. Точки разрыва (2/1 час.)

Занятие 4. Вычисление производной (2/1 час.)

Занятие 5. Исследование функции и построение графика (2/1 час.)

Занятие 6. Дифференциал функции (2/1 час.)

Занятие 7. Контрольная работа №1: «Производная и её приложение» (2 час.)

Занятие 8. Первообразная и неопределенный интеграл. Метод непосредственного интегрирования (2/1 часа.)

Занятие 9. Метод подстановки и интегрирования по частям (2/1 час.)

Занятие 10. Интегрирование рациональных дробей (2/1 час.)

Занятие 11. Интегрирование тригонометрических функций (2/1 час)

Занятие 12. Интегрирование иррациональностей (2/0 час.)

Занятие 13. Контрольная работа№2: «Вычисление неопределённого интеграла» (2 час)

Занятие 14. Определенный интеграл (2/1 час.)

Занятие 15. Несобственные интегралы (2/1 час.)

Занятие 16. Геометрические приложения определенного интеграла (4/1 часа.)

Занятие 17. Действия над комплексными числами (2/1 час.)

2 семестр

Занятие 18. Функции нескольких переменных (4/1 часа)

Занятие 19. Дифференциальные уравнения первого порядка. (4/1 часа)

Занятие 20. Дифференциальные уравнения допускающие понижения порядка. (4/1 час.)

Занятие 21. Вариация произвольных постоянных (4/1 час.)

Занятие 22. Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами (2/1 час.)

Занятие 23. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. (4/1 ч.)

Занятие 24. Системы дифференциальных уравнений.(2/1 ч.)

Занятие 25. Контрольная работа №3: «Дифференциальные уравнения» (2/0 час.)

Занятие 26. Числовые ряды. (4/1 час.)

Занятие 27. Степенные ряды. (4/1 часа.)

Занятие 28. Контрольная работа №4: «Ряды» (2/0 час.)

3 семестр

Занятие 1. Двойные интегралы и их вычисление. (4/1 часа)

Занятие 2. Приложение двойного интеграла. (4/1 часа)

Занятие 3. Тройной интеграл и его вычисление. (4/1 часа)

Занятие 4. Приложение тройных интегралов. (4/0 часа)

Занятие 5. Криволинейные интегралы и их вычисление. (4/1 часа)

Занятие 6. Приложения криволинейных интегралов. (2/0 часа)

Занятие 7. Поверхностные интегралы. (4/1 часа)

Занятие 8. Векторная функция скалярного аргумента. Производная по направлению и градиент. (2/1 часа)

Занятие 9. Скалярные и векторные поля. Поток векторного поля через поверхность. (4/1 часа)

Занятие 10. Дивергенция векторного поля. (2/0 часа)

Занятие 11. Циркуляция векторного поля. Ротор векторного поля. (2/1 часа)

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Математический анализ» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы студентов и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

No	Контролируемые	Коды и этапы		Оценочные средства	
п/п	разделы/ темы	формирования		текущий	промежуточная
11/11	дисциплины	компетенций		контроль	аттестация
	Функция. Теория		знает	ОУ-1	1-8
1	пределов и	ОК-1	умеет	ПР-12	
1	непрерывность функции	OK-1	владеет	ПР-7	
	П	ОК-7, ПК-1	знает	УО-2	9-22
2	Дифференциальное		умеет	ПР-2	
	исчисление		владеет	ПР-12	
	Интегральное	ОК-7, ПК-1	знает	УО-2	26-35
3	исчисление функций		умеет	ПР-2	
	одной переменной		владеет	ПР-12	
		ОК-7, ПК-1	знает	УО-1	23-25
4	Комплексные числа		умеет	ПР-12	
			владеет	ПР-7	
	_	х ОК-7, ПК-1	знает	ОУ-1	36-43
5	Функция нескольких		умеет	ПР-12	
	переменных		владеет	ПР-7	
	т 11	ОК-7, ПК-1	знает	УО-2	52-63
6	Дифференциальные		умеет	ПР-2	
	уравнения		владеет	ПР-12	
		ОК-7, ПК-1	знает	УО-2	44-51
7	Ряды		умеет	ПР-12	
			владеет	ПР-12	
		ОК-7, ПК-1	знает	ОУ-1	64-72
8 Кратные и	Кратные интегралы		умеет	ПР-12	
	•		владеет	ПР-7	
	Криволинейные и	ОК-7, ПК-1	знает	ОУ-1	73-80
9	Криволинейные и поверхностные		умеет	ПР-12	
	интегралы		владеет	ПР-7	
		ОК-7, ПК-1	знает	ОУ-1	81-91
10	Элементы теории поля	,	умеет	ПР-12	
	1		владеет	ПР-7	

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

(электронные и печатные издания)

- 1. Высшая математика в упражнениях и задачах. В 2 ч. Ч.1 : учеб. пособие для вузов / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова и др. 7-е изд., испр. М. : ОНИКС, 2009. 368 с.
- 2. Индивидуальные задания по высшей математике. Ч. 1. Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной [Электронный ресурс]: В 4 ч.: учеб. пособие / А. П. Рябушко [и др.]; под общ. ред. А. П. Рябушко. 7-е изд. Минск: Выш. шк., 2013. 304 с.: ил. ISBN 978-985-06-2221-1. http://znanium.com/bookread2.php?book=509664
- 3. Индивидуальные задания по высшей математике. Ч. 2. Комплексные числа. Неопределенные и определенные интегралы. Функции нескольких переменных. Обыкновенные дифференциальные уравнения [Электронный ресурс]: В 4 ч.: учеб. пособие / А. П. Рябушко [и др.]; под общ. ред. А. П. Рябушко. 6-е изд. Минск: Вышэйшая школа, 2014. 396 с.: ил. ISBN 978-985-06-2466-6. http://znanium.com/bookread2.php?book=509664
- 4. Индивидуальные задания по высшей математике. Ч. 3. Ряды. Кратные и криволинейные интегралы. Элементы теории поля [Электронный ресурс]: В 4 ч.: учеб. пособие / А.П. Рябушко [и др.]; под общ. ред. А.П. Рябушко. 6-е изд. Минск: Выш. шк., 2013. 367 с.: ил. ISBN 978-985-06-2222-8. http://znanium.com/bookread2.php?book=508884
- 5. Карташев, А.П. Математический анализ: учеб. пособие / А.П. Карташев, Б.Л. Рождественский. 2-е изд., стер. СПб. : Изд-во «Лань», 2007. 448 с. : ил.

- 6. Математика: Учебное пособие / Данилов Ю. М., Никонова Н. В., Нуриева С. Н., Под ред. Журбенко Л. Н., Никоновой Г. А. М.: НИЦ ИНФРА-М, 2016. 496 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Переплёт) ISBN 978-5-16-010118-7 http://znanium.com/bookread2.php?book=539549
- 7. Лукша В.В. Математика [Электронный ресурс]: учебное пособие/ Лукша В.В.— Электрон. текстовые данные.— Волгоград: Волгоградский институт бизнеса, Вузовское образование, 2009.— 58 с.— Режим доступа: http://www.iprbookshop.ru/11333.— ЭБС «IPRbooks», по паролю
- 8. Письменный, Д.Т. Конспект лекций по высшей математике: полный курс / Д.Т. Письменный. -9-е изд. М.: Айрис-пресс, 2009.-608 с.: ил.
- 9. http://padaread.com/?book=21498 Письменный Д.Т.Конспект лекций по высшей математике. Полный курс.2009.

Дополнительная литература

(печатные и электронные издания)

- 1. Архипов, Г.И. Лекции по математическому анализу: учебник / Г.И. Архипов, В.Н. Садовничий, В.Н. Чубариков; под ред. В.Н. Садовничего. М.: Высшая школа, 1999. 695 с.
- 2. Гурова, З.И. Математический анализ. Начальный курс с примерами и задачами / З.И. Гурова, С.Н. Каролинская, А.П. Осипова; под ред. А.И. Кибзуна. 2-е изд., перераб. и доп. М.: ФИЗМАТЛИТ, 2006. 352 с.
- 3. Злобина, С.В. Математический анализ в задачах и упражнениях : учеб. пособие / С.В. Злобина, Л.Н. Посицельская. М. : Физматлит, 2009. 360 с. http://www.iprbookshop.ru/12887.html
- 4. Луппова, Е.П. Математический анализ. Ч.1: учеб.-метод. комплекс / Е.П. Луппова, Н.Ю. Василенко, Д.А. Тряпкин. Владивосток: Изд-во ДВГТУ, 2008. 160 с.
 - 5. Карташев, А.П. Математический анализ : учеб.пособие / А.П.

- Карташев, Б.Л. Рождественский. 2-е изд., стер. СПб. : Изд-во «Лань», 2007. 448 с. : ил. http://e.lanbook.com/view/book/178/
- 6. Туганбаев, А. А. Математический анализ: Пределы [Электронный ресурс] / А. А. Туганбаев. 2-е изд., стереот. М.: Флинта, 2011. 54 с. http://znanium.com/bookread.php?book=409466

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Студентами в процессе изучения дисциплины могут использоваться Интернет-технологии для поиска необходимой информации.

Перечень поисковых систем:

- https://www.yandex.ru
- https://www.rambler.ru/
- https://www.google.ru
- https://mail.ru/

Перечень энциклопедических сайтов:

- http://ru.wikipedia.org Википедия;
- <u>www.edu.ru</u> федеральный портал российского образования;
- http://www.mathnet.ru/ общероссийский математический портал;
- http://znanium.com/ электронно-библиотечная система.

Перечень программного обеспечения:

- прикладной пакет MS Office;
- операционные системы семейства Windows.

Перечень информационных справочных систем:

1. «КнигаФонд». Обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий.

2. «Университетская библиотека онлайн». Обеспечивает доступ к наиболее востребованным материалам учебной и научной литературы по всем отраслям знаний от ведущих российских издательств

Каталог электронных ресурсов размещен на сайте ДВФУ. http://www.dvfu.ru/web/library res.

Перечень информационных технологий и программного обеспечения

Студентами в процессе изучения дисциплины могут использоваться Интернет-технологии для поиска необходимой информации.

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Организация занятий по дисциплине «Математический анализ» проводится по видам учебной работы - лекции, практические занятия, текущий контроль. В соответствии с требованиями ФГОС ВПО по направлению подготовки бакалавра реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм проведения лекционных и практических занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Часть лекционных занятий проводится в аудитории с применением мультимедийного проектора в виде интерактивной формы. Основные моменты лекционных занятий конспектируются. Отдельные темы предлагаются для самостоятельного изучения с обязательным составлением конспекта.

Практические занятия проводятся в аудитории с интерактивной доской и методическим материалом для практических занятий.

Самостоятельная работа по дисциплине включает: самоподготовку к практическим занятиям по конспектам, учебной литературе и с помощью электронных ресурсов; подготовка к текущему тестированию по разделам дисциплины; выполнение индивидуальных занятий и подготовка к их защите.

Образовательные технологии в обучении включают в себя:

- 1. Работу студентов непосредственным воздействием под преподавателя, который в опосредованной интерактивной форме проводит: изложение нового материала в форме лекции, в форме проблемной беседы, на основе демонстрационного объяснения с применением мультимедийных или интерактивной доски; методическое сопровождение средств объяснение технологии решения задач; повторение и закрепления учебного материала в форме диалога; сопровождение доклада, подготовленного студентом.
- 2. Индивидуальная работа студентов на аудиторных занятиях при методической поддержке преподавателя: изучение нового материала с использованием обучающего сценария; решение интерактивных задач в рамках группового или индивидуального характера; составление интеллект карт.
- 3. Индивидуальная работа студентов на аудиторных занятиях без поддержки преподавателя: выполнение проверочных и контрольных работ; тестирование.
- 4. Самостоятельная индивидуальная или групповая работа учащихся дома или в аудитории.

На основе одного и того же виртуального учебного объекта могут быть организованы различные по форме учебные занятия. Например, обучающий сценарий может быть использован для проведения лекции, проблемной беседы, группового или индивидуального изучения нового материала в аудитории или дома.

Программное средство учебного назначения не заменяет учебник, задачник, практикум по решению задач, а позволяет дополнить возможности традиционных средств учения богатым визуальным рядом, индивидуализированным тренажем и контролем.

Таким образом, имеются следующие варианты использования преподавателем разрабатываемой среды в режиме интерактивной системы:

- 1) представление фрагментов демонстрационных блоков при объяснении нового материала с использованием интерактивной доски или мультимедийного проектора;
 - 2) объяснение приемов решения задач в том же режиме;
 - 3) индивидуальный практикум по выполнению практических заданий;
 - 4) текущий и семестровый контроль знаний;
 - 5) повторение и выполнение части домашних заданий.

Если у студентов возникают затруднения при изучении дисциплины, которые нельзя преодолеть на лекционных и практических занятиях, то студенты могут получить помощь преподавателя на консультации, время и место проведения, которой устанавливаются в начале учебного семестра.

Для подготовки к лекционным и практическим занятиям, решения заданий самостоятельной работы студенты пользуются основной и дополнительной литературой. Список основной и дополнительной литературы даётся преподавателем на первом занятии по дисциплине.

Завершается изучение дисциплины «Математический анализ» промежуточной аттестацией в форме экзамена в 1, 2 и 3 семестрах для очной формы обучения и 1, 2 курс для заочной формы обучения.

Также для заочной формы обучения учебным планом предусмотрено выполнение 2 контрольных работ на 1 курсе и 1 контрольнойй работы на 2 курсе. Вариант для контрольного задания студента определяется последней цифрой шифра студента. При выполнении контрольной работы надо строго придерживаться указанных ниже правил. Работы, выполненные без

соблюдения этих правил, не зачитываются и возвращаются студентам для переработки.

- 1. Контрольная работа выполняется в тетради пастой или чернилами любого цвета, кроме красного, оставляя поля для замечаний рецензента.
- 2. На обложке тетради должны быть ясно написаны фамилия студента, его инициалы, № варианта, название дисциплины; здесь же следует указать дату отсылки работы в институт и почтовый адрес студента.
- 3. В работу должны быть включены все задачи, указанные в задании, строго по своему варианту. Контрольные работы, содержащие не все задания, а также содержащие задачи не своего варианта, не зачитываются.
- 4. Решение задач надо располагать в порядке, указанном в заданиях, сохраняя номера задач.
- 5. Перед решением каждой задачи надо выписать полностью ее условие. Если несколько задач имеют общую формулировку, следует, переписывая условие задачи, заменить общие данные конкретными из соответствующего номера.
- 6. После получения прорецензированной работы (как зачтенной, так и незачтенной) студент должен исправить в ней все отмеченные рецензентом ошибки и недочеты. В связи с этим следует оставлять в конце тетради чистые листы для работы над ошибками. Вносить исправления в сам текст работы после ее рецензирования запрещается.
- 7. Выполнив работу над ошибками, необходимо выслать работу в наиболее короткий срок.
- 8. В конце работы следует указать литературу, которую изучал студент, выполняя данную работу.
 - 9. Студент должен подписать работу и поставить дату.
- 10. Зачтенные контрольные работы вместе с рецензиями обязательно предъявляются на зачете и экзамене.
- 11. Перед сдачей зачета или экзамена студент обязан защитить контрольную работу.

Вопросы к экзамену преподаватель даёт студентам на первом занятии по дисциплине. Для допуска к экзамену студенты должны будут выполнить задания для текущего контроля из фонда оценочных средств. Студент допускается к промежуточной аттестации, если по результатам текущего контроля среднее количество баллов составит не менее 61 балла. Студент не допускается к экзамену, если он не предоставит выполненных заданий самостоятельной работы.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для осуществления образовательного процесса по дисциплине «Математический анализ» необходимо следующее материально-техническое обеспечение:

- аудитория, оборудованная проектором для проведения лекционных занятий;
- компьютерный класс с ПК с операционной системой Windows 7.0 и выходом в Интернет для проведения практических занятий.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Дальневосточный федеральный университет» (ДВФУ)

ФИЛИАЛ ДВФУ В г. АРСЕНЬЕВЕ

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Математический анализ

Специальность 24.05.07 "Самолёто- и вертолётостроение " специализация «Вертолётостроение» Форма подготовки очная/заочная

Арсеньев 2017

План-график выполнения самостоятельной работы по дисциплине

1 семестр

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	30.09.20г.	Индивидуальное задание по теме «Предел и непрерывность функции»	10	Оценка решения задач и теории по данной теме
2	20.10.20г.	Индивидуальное задание по теме «Производная и её приложение»	10	Оценка решения задач и теории по данной теме
3	10.12.20г.	Индивидуальное задание по теме «Определённый интеграл и его приложение»	10	Оценка решения задач и теории по данной теме
4	25.12.20г.	Индивидуальное задание по теме «Комплексные числа»	6	Оценка решения задач и теории по данной теме

2 семестр

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
5	30.02.20г.	Индивидуальное задание по теме «Функция нескольких переменных»	10	Оценка решения задач и теории по данной теме
6	20.04.20г.	Индивидуальное задание по теме «Дифференциальные уравнения»	20	Оценка решения задач и теории по данной теме
7	25.05.20г.	Индивидуальное задание по теме «Числовые, степенные ряды»	15	Оценка решения задач и теории по данной теме

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
8	30.02.20г.	Индивидуальное задание по теме «Кратные интегралы»	15	Оценка решения задач и теории по данной теме
9	20.04.20г.	Индивидуальное задание по теме «Криволинейные и поверхностные интегралы»	15	Оценка решения задач и теории по данной теме
10	25.05.20г.	Индивидуальное задание по теме «Элементы теории поля»	15	Оценка решения задач и теории по данной теме

Комплект для выполнения индивидуальных заданий

по дисциплине математический анализ

- 1. Тема: Предел и непрерывность функции. ИДЗ-5.1. [2]
- 2. Тема: Производная и её приложение. ИДЗ-6.2, 6.3, 6.4. [2]
- 3. Тема: Определённый интеграл и его приложение. ИДЗ-9.1, 9.2, 9.3. [3]
- 4. Тема: Комплексные числа. АЗ-7.1. [3]
- 5. Тема: Функция нескольких переменных. ИДЗ-10.1, 10.2. [3]
- 6. Тема: Числовые, степенные ряды. ИДЗ-12.1,12.2. [4]
- 7. Тема: Дифференциальные уравнения. ИДЗ-11.1, 11.2, 11.3, 11.4. [3]
- 8. Тема: Кратные интегралы. ИДЗ-13.1, 13.2 [4]
- 9. Тема: Криволинейные ии поверхностные интегралы. ИДЗ-14.1, 14.2 [4]
- 10. Тема: Элементы теории поля. ИДЗ-15.1, 15.2 [4]
 - [2], [3], [4] из списка основной литературы.

Вариант определяется по списку.

Выполненная самостоятельная работа представляется в тетради для индивидуальных заданий которая включает:

- титульный лист;
- задание в соответствии с выбранным вариантом;
- решение задачи;
- используемые формулы и теоремы при решении;

- ответ к каждому заданию.

Самостоятельная работа оценивается по 5-ти бальной шкале. Студенту может выставляться следующая оценка:

- «отлично» если студент демонстрирует свободное владение теоретическим материалом; правильно применяет необходимые формулы и теоремы, нет ошибок в вычислении; правильно оформлен отчет по проделанной работе;
- «хорошо» если студент сумел решить задачи, оформил работу в соответствии с установленными требованиями, но допустил не более 2 ошибок в расчетах и трех ошибок в оформлении;
- «удовлетворительно» если студент, решил не менее 40 % задач, допустил одну ошибку в вычислениях и не более двух ошибок в оформлении отчета;
- «неудовлетворительно» если студент решил менее 40% задач, допустил ошибки в вычислениях, оформление работы небрежно, не соответствует установленным требованиям.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Дальневосточный федеральный университет» (ДВФУ)

ФИЛИАЛ ДВФУ В г. АРСЕНЬЕВЕ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Математический анализ

Специальность 24.05.07 "Самолёто- и вертолётостроение " специализация «Вертолётостроение» Форма подготовки очная/заочная

Арсеньев 2017

Вопросы к экзамену.

1 семестр

- 1. Понятие множества. Операции над множествами. Числовые промежутки. Окрестность точки.
- 2. Понятие функции и способы ее задания. Арифметические действия над функциями.
- 3. Сложная и обратная функции. Основные элементарные функции и их графики.
- 4. Понятие предела функции. Основные теоремы о пределах функций.
- 5. Замечательные пределы.
- 6. Бесконечно малые функции. Основные свойства.
- 7. Понятие непрерывности функции. Арифметические операции над непрерывными функциями.
- 8. Свойства функций, непрерывных на отрезке.
- 9. Понятие производной. Геометрическая и механическая интерпретация производной.
- 10. Касательная к графику функции.
- 11. Дифференцирование суммы, разности, произведения и частного функций.
- 12. Дифференцирование сложной и обратной функций.
- 13. Дифференциал функции. Понятие дифференциала функции. Дифференциал суммы, разности, произведения и частного функций.
- 14. Производные и дифференциалы высших порядков. Механический смысл производной второго порядка.
- 15. Теоремы Ролля, Коши и Лагранжа.
- 16. Формула Тейлора.
- 17. Правило Лопиталя.
- 18. Производные и дифференциалы высших порядков.
- 19. Условия возрастания и убывания функций. Экстремумы функций. Наибольшее и наименьшее значения функции на отрезке.

- 20. Направление выпуклости графика функции. Точки перегиба графика функции.
- 21. Асимптоты графика функции.
- 22. Общая схема исследования функций и построение графиков.
- 23. Понятие комплексного числа Действия с комплексными числами.
- 24. Алгебраическая форма записи комплексного числа.
 Тригонометрическая форма комплексного числа. Показательная форма комплексного числа.
- 25. Извлечение корней из комплексных чисел.
- 26. Понятия первообразной функции и неопределенного интеграла.
- 27. Основные свойства неопределенного интеграла.
- 28. Замена переменной в неопределенном интеграле.
- 29. Метод интегрирования по частям.
- 30. Алгебраические многочлены. Рациональные функции Разложение на простейшие дроби. Интегрирование рациональных дробей.
- 31. Интегрирование квадратичных иррациональностей.
- 32. Понятие определенного интеграла.
- 33. Основные свойства определенного интеграла.
- 34. Формула Ньютона—Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям в определенном интеграле.
- 35. Несобственные интегралы.

2 семестр

- 36.Понятие функции многих переменных
- 37. Предел и непрерывность функции двух переменных.
- 38. Частные производные. Частные производные высших порядков
- 39. Теорема о равенстве смешанных производных. Дифференцируемые функции. Дифференциал функции. Правила дифференцирования.
- 40. Экстремумы функции многих переменных. Необходимые и достаточные условия экстремума.

- 41. Наибольшее и наименьшее значения функции в замкнутой области.
- 42. Метод наименьших квадратов.
- 43. Касательная плоскость и нормаль к поверхности.
- 44. Понятие числового ряда. Сходящиеся и расходящиеся ряды.
- 45. Действия с рядами. Основные свойства. Необходимое условие сходимости ряда. Положительные ряды. Теоремы сравнения рядов.
- 46. Признак Даламбера. Признак Коши. Интегральный признак Коши.
- 47. Знакочередующиеся ряды. Теорема Лейбница. Абсолютно и условно сходящиеся ряды.
- 48. Теоремы Дирихле и Римана.
- 49. Степенные ряды. Теорема Абеля. Радиус сходимости.
- 50. Дифференцирование и интегрирование степенных рядов.
- 51. Разложение функций в степенные ряды. Ряд Тейлора. Разложение некоторых элементарных функций в ряд Маклорена.
- 52. Дифференциальные уравнения. Общие понятия.
- 53. Дифференциальное уравнение первого порядка. Задача Коши.
- 54. Дифференциальные уравнения с разделяющимися переменными.
- 55. Однородные дифференциальные уравнения.
- 56. Дифференциальные уравнения в полных дифференциалах.
- 57. Линейные дифференциальные уравнения первого порядка. Уравнение Бернулли.
- 58. Дифференциальные уравнения, допускающие понижение порядка.
- 59. Линейные дифференциальные уравнения высших порядков.
- 60. Линейная зависимость и линейная независимость системы функций.
- 61. Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами.
- 62. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Применение дифференциальных уравнений.

- 63. Системы дифференциальных уравнений.
- 64. Задачи, приводящие к понятию двойного интеграла.
- 65. Определение двойного интеграла, геометрический и физический смысл.
- 66. Теорема существования, свойства.
- 67. Сведение двойного интеграла от непрерывной функции к повторному интегралу.
- 68. Теорема о замене переменных в двойном интеграле. Задачи, приводящие к понятию тройного интеграла.
- 69. Тройной интеграл, определение, свойства, вычисление в декартовой системе координат.
- 70. Формулировка теоремы о замене переменных в тройном интеграле.
- 71. Цилиндрические и сферические координаты.
- 72. Приложение кратных интегралов: вычисление объемов тел и площадей фигур.
- 73. Криволинейный интеграл по длине дуги. Определение, свойства, физический смысл, вычисление.
- 74. Задача о вычислении работы силового поля. Определение, свойства и вычисление криволинейного интеграла по координатам.
- 75. Теорема Грина. Условия независимости криволинейного интеграла от пути интегрирования. Отыскание функции по ее полному дифференциалу.
- 76. Поверхностный интеграл по площади поверхности. Определение, формула для вычисления. Геометрический и физический смысл.
- 77. Задача о вычислении потока векторного поля через поверхность.
- 78. Определение, физический смысл, свойства и вычисление поверхностного интеграла по координатам.
- 79. Теорема и формула Остроградского-Гаусса.
- 80. Ориентация поверхности и направление обхода замкнутого контура. Теорема и формула Стокса.

- 81. Векторное поле. Векторные линии. Оператор Гамильтона.
- 82. Дифференциальные операции первого порядка в скалярном и векторных полях.
- 83. Потенциальные и безвихревые поля.
- 84. Теорема Гельмгольца.
- 85. Дифференциальные операции второго порядка.
- 86. Дивергенция векторного поля, ее физический смысл. Теорема о существовании и вычислении дивергенции. Свойства дивергенции, векторная запись формулы Остроградского-Гаусса.
- 87. Соленоидальное поле.
- 88. Векторная трубка.
- 89. Основное свойство соленоидального векторного поля.
- 90. Циркуляция и ротор векторного поля. Механический смысл ротора, его свойства.
- 91. Векторная запись формулы Стокса. Интегро-дифференциальная форма уравнений электромагнитного поля.

Критерии выставления оценки студенту экзамене

по дисциплине «Математический анализ»:

Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется \mathbf{c} ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.

Оценка «хорошо» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.

Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Комплект заданий для контрольной работы

по дисциплине Математический анализ

Контрольная работа №1. Тема: Производная и её приложение.

- 1 вариант.
- 1. Найти производные функций.

a)
$$y = \frac{2(3x^3 + 4x^2 - x - 2)}{15\sqrt{1+x}}$$
. 6) $y = \sin\sqrt{3} + \frac{1}{3}\frac{\sin^2 3x}{\cos 6x}$. B) $y = \arctan\frac{tgx - ctgx}{\sqrt{2}}$. Γ)
$$\begin{cases} x = \frac{3t^2 + 1}{3t^3}, \\ y = \sin\left(\frac{t^3}{3} + t\right). \end{cases}$$

A)
$$y = (2x^2 - 7)\ln(x - 1), \quad y^V = ?$$

- 2. Исследовать функцию и построить её график $y = (x^3 + 4)/x^2$.
- 2 вариант.
- 1. Найти производные функций.

a)
$$y = \frac{(2x^2 - 1)\sqrt{1 + x^2}}{3x^3}$$
. 6) $y = \cos \ln 2 - \frac{1}{3} \frac{\cos^2 3x}{\sin 6x}$. B) $y = \arcsin \frac{\sqrt{x} - 2}{\sqrt{5x}}$. r $\begin{cases} x = \sqrt{1 - t^2}, & \exists x \in \mathbb{Z} \\ y = tg\sqrt{1 + t}. \end{cases}$

$$y = (3 - x^2) \ln^2 x$$
, $y^{III} = ?$

- 2. Исследовать функцию и построить её график $y = (x^2 x + 1)/(x 1)$.
- 3 вариант.
- 1. Найти производные функций.

a)
$$y = \frac{x^4 - 8x^2}{2(x^2 - 4)}$$
. 6) $y = \text{tglg} \frac{1}{3} + \frac{1}{4} \frac{\sin^2 4x}{\cos 8x}$. B) $y = \frac{2x - 1}{4} \sqrt{2 + x - x^2} + \frac{9}{8} \arcsin \frac{2x - 1}{3}$. Γ)

$$\begin{cases} x = \sqrt{2t - t^2}, \\ y = \frac{1}{\sqrt[3]{(1 - t)^2}}. \end{cases} \quad \pi y = x \cos x^2, \quad y^{III} = ?$$

- 2. Исследовать функцию и построить её график $y = 2/(x^2 + 2x)$.
- 4 вариант.
- 1. Найти производные функций.

a)
$$y = \frac{2x^2 - x - 1}{3\sqrt{2 + 4x}}$$
. $y = \cot 3\sqrt{5} - \frac{1}{8} \frac{\cos^2 4x}{\sin 8x}$. B) $y = \arctan \frac{\sqrt{1 + x^2} - 1}{x}$. $y = \arctan \frac{\sqrt{1 + x^2} - 1}{x}$.

$$\begin{cases} x = \arcsin(\sin t), \\ y = \arccos(\cos t). \end{cases} \exists y = \frac{\ln(x-1)}{\sqrt{x-1}}, \quad y^{III} = ?$$

2. Исследовать функцию и построить её график $y = 4x^2/(3+x^2)$.

5 вариант.

1. Найти производные функций.

a)
$$y = \frac{(1+x^8)\sqrt{1+x^8}}{12x^{12}}$$
.6) $y = \frac{\cos\sin 5 \cdot \sin^2 2x}{2\cos 4x}$.B) $y = \arccos \frac{x^2 - 4}{\sqrt{x^4 + 16}}$.r)

$$\begin{cases} x = \ln(t + \sqrt{t^2 + 1}), & \text{if } y = \frac{\log_2 x}{x^3}, & y^{III} = ? \\ y = t\sqrt{t^2 + 1}. & \text{if } y = t\sqrt{t^2 + 1}. \end{cases}$$

2. Исследовать функцию и построить её график $y = 12x/(9+x^2)$.

6 вариант.

1. Найти производные функций.

a)
$$y = \frac{x^2}{2\sqrt{1-3x^4}}$$
. 6) $y = \frac{\sin\cos 3 \cdot \cos^2 2x}{4\sin 4x}$. B) $y = \sqrt{\frac{2}{3}} \arctan \frac{3x-1}{\sqrt{6x}}$. F) $\begin{cases} x = \sqrt{2t-t^2}, & \text{if } x = \sqrt{2t-t^2}, & \text$

$$y = (4x^3 + 5)e^{2x+1}, \quad y^V = ?$$

2. Исследовать функцию и построить её график $y = (x^2 - 3x + 3)/(x - 1)$.

7 вариант.

1. Найти производные функций.

a)
$$y = \frac{(x^2 - 6)\sqrt{(4 + x^2)^3}}{120x^5}$$
. 6) $y = \frac{\cosh 7 \cdot \sin^2 7x}{7\cos 14x}$. B) $y = \frac{1}{4}\ln \frac{x - 1}{x + 1} - \frac{1}{2}\arctan x$.

$$\begin{cases} x = \operatorname{ctg}(2e^{t}), & \text{if } y = x^{2} \sin(5x - 3), & y^{III} = ? \\ y = \ln(\operatorname{tge}^{t}). & & \end{cases}$$

2. Исследовать функцию и построить её график $y = (4-x^3)/x^2$.

8 вариант.

1. Найти производные функций.

a)
$$y = \frac{(x^2 - 8)\sqrt{x^2 - 8}}{6x^3}$$
. 6) $y = \cos(\operatorname{ctg} 2) - \frac{1}{16} \frac{\cos^2 8x}{\sin 16x}$. B)

$$y = \frac{1}{2}(x-4)\sqrt{8x-x^2-7} - 9\arccos\sqrt{\frac{x-1}{6}}.\Gamma$$

$$\begin{cases} x = \ln(\operatorname{ctg} t), & \text{if } y = \frac{\ln x}{x^2}, & \text{if } y = \frac{1}{\cos^2 t}. \end{cases}$$

2. Исследовать функцию и построить её график $y = (x^2 - 4x + 1)/(x - 4)$.

9 вариант.

1. Найти производные функций.

a)
$$y = \frac{4+3x^3}{x\sqrt[3]{(2+x^3)^2}}$$
. 6) $y = \text{ctg}(\cos 2) + \frac{1}{6} \frac{\sin^2 6x}{\cos 12x}$. B) $y = \frac{(1+x) \arctan \sqrt{x}}{x^2} + \frac{1}{3x\sqrt{x}}$.

$$\begin{cases} x = \arctan e^{t/2}, & \text{If } y = (2x+3) \ln^2 x, & y^{III} = ? \\ y = \sqrt{e^t + 1}. & \text{If } y = \sqrt{e^t + 1}. \end{cases}$$

2. Исследовать функцию и построить её график $y = (2x^3 + 1)/x^2$.

10 вариант.

1. Найти производные функций.

a)
$$y = \sqrt[3]{\frac{\left(1 + x^{3/4}\right)^2}{x^{3/2}}}$$
. 6) $y = \sqrt[3]{\cot 2} - \frac{1}{20} \frac{\cos^2 10x}{\sin 20x}$. B) $y = \frac{x^3}{3} \arccos x - \frac{2 + x^2}{9} \sqrt{1 - x^2}$. Γ)

$$\begin{cases} x = \ln \sqrt{\frac{1-t}{1+t}}, \pi, y & y = (1+x^2) \arctan x, y^{III} = ? \\ y = \sqrt{1-t^2}. & \end{cases}$$

2. Исследовать функцию и построить её график $y = (x-1)^2/x^2$.

Контрольная работа №2. Тема: Неопределённый интеграл.

1 вариант. 1.
$$\int (e^x + e^{-x})^2 dx$$
, 2. $\int \frac{\cos x}{\sin^4 x} dx$, 3. $\int \frac{\ln x}{x^2} dx$, 4. $\int \frac{3x - 4}{x^2 - 4} dx$, 5. $\int \frac{\sqrt{2 - x^2} + \sqrt{2 + x^2}}{\sqrt{4 - x^4}} dx$.

2 вариант. 1.
$$\int \frac{1-2\sin x}{\cos^2 x} dx$$
, 2. $\int \frac{dx}{x(1+\ln x)}$, 3. $\int x^2 e^{-x/3} dx$, 4. $\int \frac{2x+3}{(x-3)(x+5)} dx$, 5. $\int \frac{(\sqrt{x}-1)(\sqrt[6]{x}+1)}{\sqrt[3]{x^2}} dx$.

3 вариант. 1.
$$\int \frac{x^2 dx}{1-x^3}$$
, 2. $\int \sin x \cos x dx$, 3. $\int x^2 e^{-4x} dx$, 4. $\int \frac{2x-2}{x^2-2x+2} dx$, 5. $\int \frac{1-2x}{\sqrt{1-4x^2}} dx$.

4 вариант. 1. $\int \frac{1+\sin 2x}{\sin^2 x} dx$, 2. $\int \frac{dx}{x\sqrt{4-\ln^2 x}}$, 3. $\int x^2 \sin 7x dx$, 4. $\int \frac{2x+1}{x^2-2x+1} dx$. 5. $\int \frac{81^x-3^x}{9^x} dx$.

Контрольная работа №3. Тема: Дифференциальные уравнения.

1 вариант. а)
$$y$$
"+25 y = 0 , б) y "+2 y '= e^{-2x} , в) $(2x+5)dy+ydx$ = 0 , $y(0)$ = 1 , г) $y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$, д) $y'' + 4y' + 4y = \frac{e^{-2x}}{x^3}$

2 вариант. а) y''+4y'=0, б) $y''+7y'+20y=e^x$, в) $y'\sqrt{1+x^2}-y=0$, y(0)=4, г), д) $y''+3y'+2y=\frac{1}{e^x}+1$.

3 вариант. а)
$$y''+4y'+10y=0$$
, б) $y''+3y'+2y=5e^{5x}$, в) $(1+y^2)xdx+(1+x^2)ydy=0$, г) $y'-\frac{y}{x}=-\frac{12}{x^3}$, $y(1)=4$, д) $y''+4y=\frac{1}{x^3\sin 2x}$.

4 вариант. а)
$$y''+7y'+6y=0$$
, б) $y''+y'=x^2-1$, в) $(x-y)dx+xdy=0$, г) $y'-\frac{y}{x}=-\frac{\ln x}{x}$, $y(1)=1$, д) $y''+y=\frac{1}{\sqrt{\cos 2x}}$.

Контрольная работа №4. Тема: Ряды.

1 вариант.

- 1. Найти радиус и интервал сходимости степенного ряда. Исследовать сходимость ряда на концах интервала сходимости. $\sum_{n=0}^{\infty} \frac{n^2+3}{3^n} (x+3)^n$
- 2. Вычислить приближённо определённый интеграл, используя разложение подынтегральной функции в степенной ряд и почленное интегрирование полученного

ряда. Результат должен быть получен с точностью до 0,001. $\int_{-0,4}^{0} \sin \frac{5x^2}{2} dx$

3. Разложить данную функцию f(x) в ряд Фурье в интервале (a;b). $f(x) = x + 1 \cdots (-\pi, \pi)$;

2 вариант.

1. Найти радиус и интервал сходимости степенного ряда. Исследовать сходимость ряда на концах интервала сходимости. $\sum_{n=0}^{\infty} \frac{n^2-6}{6^n} (x-6)^n$

2. Вычислить приближённо определённый интеграл, используя разложение подынтегральной функции в степенной ряд и почленное интегрирование полученного

ряда. Результат должен быть получен с точностью до 0,001. $\int_{-0,25}^{0} \frac{\sin 2x}{x} dx$

3. Разложить данную функцию f(x) в ряд Фурье в интервале (a;b). $f(x) = x^2 + 1, ... (-2;2)$;

3 вариант.

Найти радиус и интервал сходимости степенного ряда. Исследовать сходимость ряда на концах интервала сходимости. $\sum_{n=0}^{\infty} \frac{n^2-4}{4^n} (x-4)^n \, .$

1. Вычислить приближённо определённый интеграл, используя разложение подынтегральной функции в степенной ряд и почленное интегрирование полученного

ряда. Результат должен быть получен с точностью до 0,001. $\int\limits_{-\frac{1}{3}}^{0} \frac{1-\cos 3x}{x^2}\,dx$

2. Разложить данную функцию f(x) в ряд Фурье в интервале (a;b). $f(x) = \frac{\pi - x}{2}; \cdot \cdot \cdot (-\pi; \pi);$

4 вариант.

- 1. Найти радиус и интервал сходимости степенного ряда. Исследовать сходимость ряда на концах интервала сходимости. $\sum_{n=0}^{\infty} \frac{n^2+2}{2^n} (x+2)^n$
- 2. Вычислить приближённо определённый интеграл, используя разложение подынтегральной функции в степенной ряд и почленное интегрирование полученного

ряда. Результат должен быть получен с точностью до 0,001. $\int\limits_{-0,75}^{0}\cos\frac{4x^2}{3}\,dx$

3. Разложить данную функцию f(x) в ряд Фурье в интервале (a;b). $f(x) = 1 + \cos x; ...(0; \pi);$

Критерии оценки:

100 — 80 баллов (отлично)выставляется студенту, если решение контрольной работы показывает глубокое и систематическое знание всего программного материала по рассматриваемым темам. Студент может проводить необходимые расчеты, правильно выполяет более 90 % заданий.

81 -60 баллов (хорошо) выставляется студенту, если студент знает узловые знания программы. Студент может проводить необходимые расчеты, правильно выполняет более 70% заданий.

75 — 61 баллов (удовлетворительно), если студент демонстрирует фрагментарные, поверхностные знания программного материала. Умеет проводить расчеты, правильно выполняет более 40 % заданий.

60 - 50 баллов (неудовлетворительно), выставляется студенту, если он демонстрирует не знание материала. Не может проводить расчеты.

Контрольные работы для студентов заочной формы обучения.

Контрольная работа №1.

Задание 1.

а) выполнить действия:

1. a)
$$\left(\frac{1}{1+i}\right)^2 + \frac{2}{i} + i =$$
,

2. a)
$$i^4 \frac{1}{1-i} + \left(\frac{1}{2i}\right)^2 =$$
,

3. a)
$$(i-1)^2 + \frac{2}{1+i} - 3i =$$
,

4. a)
$$(i-1)^2 + \frac{1}{2i+1} - i^3 =$$

5. a)
$$\left(\frac{1}{3i}\right)^3 - (2+i)^2 + \frac{1}{i} =$$

6. a)
$$\frac{1}{2i} + (1+i)^2 - \frac{2}{1-i} =$$
,

7. a)
$$\frac{1+i}{1-i} + \left(\frac{2}{i}\right)^3 i =$$
,

8. a)
$$\left(\frac{1+i}{2}\right)^2 + \frac{1}{i} + \frac{4}{1-i} =$$

9. a)
$$\frac{1+2i}{1-i}+2i-\frac{1}{1+3i}=$$
,

б) найти корни уравнения:

$$6)Z^3 = 1 - i,$$

$$6) Z^3 = 1 + i,$$

$$6)Z^3 = i,,$$

$$6) Z^3 = \frac{1}{i},$$

6)
$$Z^3 = \sqrt{3} - i$$
,

6)
$$Z^3 = \sqrt{3} + i$$
,

$$6) Z^3 = 1 - \sqrt{3} \cdot i,$$

6)
$$Z^3 = 1 + \sqrt{3} \cdot i$$
,

6)
$$Z^3 = \frac{1-i}{1+i}$$
,

10. a)
$$\frac{2-i}{1+i} + \left(\frac{1}{1+2i}\right)^2 + \frac{2}{i} = 0$$
, 6) $Z^3 = \frac{1+i}{1-i}$,

Задание 2.

Найти пределы функций, не пользуясь правилом Лопиталя:

1. a)
$$\lim_{x \to \infty} \frac{x \cdot \sqrt{x} + 3\sqrt[3]{x - 1}}{5\sqrt{x^3} + 2}$$
, b) $\lim_{x \to 1} \frac{x^4 - x}{1 - \sqrt{x}}$, b) $\lim_{x \to 0} \frac{1 - \cos x}{3x^2}$, c) $\lim_{x \to \infty} \left(\frac{x}{x + 1}\right)^{3x}$.

2. a)
$$\lim_{x \to \infty} \frac{\sqrt{3x^5} - x + 4}{2x^2(\sqrt{x} + 1)}$$
, 6) $\lim_{x \to 1} \frac{x^2 - 3x + 2}{\sqrt{x} - x}$, 6) $\lim_{x \to 0} \frac{\arcsin 3x}{\sin 5x}$, 2) $\lim_{x \to \infty} \left(\frac{x + 1}{x - 1}\right)^{2x}$.

3. a)
$$\lim_{x \to \infty} \frac{x^3 \sqrt{2x} + 3x - 4}{5x(\sqrt[3]{x} + 1)}$$
, b) $\lim_{x \to 1} \frac{x^3 - x}{x^2 - 6x} + 5$, b) $\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{\sin 3x}$, c) $\lim_{x \to \infty} \left(\frac{3x + 1}{3x + 4}\right)^{x + 2}$.

4. a)
$$\lim_{x \to \infty} \frac{x^2 \sqrt{5x} - 2x + 1}{x^2 \left(\sqrt{x} + 2\right)}$$
, b) $\lim_{x \to 1} \frac{x^2 - 7x + 6}{x - \sqrt{x}}$, b) $\lim_{x \to 0} \frac{\sin^2 5x}{1 - \cos 3x}$, c) $\lim_{x \to \infty} \left(\frac{2x + 5}{2x}\right)^{x - 1}$.

5. a)
$$\lim_{x\to\infty} \frac{3+2x+\sqrt{x^5}}{x^2(\sqrt{2x}+\sqrt{3})}$$
, b) $\lim_{x\to 1} \frac{x^3-x}{x^2-5x}+4$, b) $\lim_{x\to 0} \frac{\sin^2 3x}{1-\cos 2x}$, c) $\lim_{x\to\infty} \left(\frac{3x+2}{3x+4}\right)^{x-2}$.

6. a)
$$\lim_{x \to \infty} \frac{x(1+x\sqrt{2x})}{\sqrt{5x^3}+3}$$
, b) $\lim_{x \to 1} \frac{x^4-x}{\sqrt{x}-1}$, e) $\lim_{x \to 0} \frac{1-\cos 3x}{x \cdot tg \, 2x}$, e) $\lim_{x \to \infty} \left(\frac{x+4}{x+1}\right)^{2x-1}$.

7. a)
$$\lim_{x \to \infty} \frac{x(x\sqrt{x} + 3x + 1)}{4 + 6\sqrt{x^5}}$$
, b) $\lim_{x \to 1} \frac{x^2 - 7x + 6}{x - x^4}$, b) $\lim_{x \to 0} \frac{\sin^2 5x}{1 - \cos 3x}$, c) $\lim_{x \to \infty} \left(\frac{5x + 4}{5x + 5}\right)^{4x + 1}$.

8. a)
$$\lim_{x \to \infty} \frac{x^2(\sqrt{x}+3)}{\sqrt{x^5}+\sqrt{x^3}+\sqrt{x}+1}$$
, b) $\lim_{x \to 1} \frac{x^2-x^4}{\sqrt{x}-1}$, b) $\lim_{x \to 0} \frac{1-\cos 7x}{\sin 2x \cdot \sin 3x}$, c) $\lim_{x \to \infty} \left(\frac{x+1}{x+1}\right)^{2x-1}$.

9. a)
$$\lim_{x \to \infty} \frac{\sqrt{x}(3\sqrt{x}+4)}{5x+\sqrt{x}+2}$$
, 6) $\lim_{x \to 1} \frac{x-\sqrt{x}}{x^3-1}$, 6) $\lim_{x \to 0} \frac{\sin x \cdot \sin 3x}{1-\cos 5x}$, 2) $\lim_{x \to \infty} \left(\frac{5x-7}{5x+1}\right)^{3x+1}$.

10. a)
$$\lim_{x\to\infty} \frac{\sqrt{x}(5x-\sqrt{x}+1)}{3+\sqrt{x^3}+3}$$
, b) $\lim_{x\to 1} \frac{x^2-4x+3}{x^3-3x^2+2x}$, c) $\lim_{x\to 0} \frac{tg\,2x\cdot\sin3x}{1-\cos6x}$, c) $\lim_{x\to\infty} \left(\frac{x-3}{x+3}\right)^{3x}$.

Задание 3.

Найти производные данных функций, в п.(∂) найти полный дифференциал функции Z = f(x,y):

1. a)
$$y = \frac{\sqrt[3]{x^2 + 4\sqrt{x} - 2x}}{5\sqrt{x^2}}$$
, 6) $y = \ln^2 \cos 7x$, 6) $y = \sqrt[3]{x^2 \cos^2 7x}$, 2) $y = \frac{\sqrt[3]{\ln^2 x}}{2^x}$,

a)
$$f(x,y) = 5y^6 - 3x^7y + x$$

2. a)
$$y = \frac{\sqrt[6]{x^5} - 3\sqrt[3]{x} + 2}{\sqrt[4]{x^3}}$$
, 6) $y = \cos^2 \sin 2x$, e) $y = \sqrt[5]{x^4} \sin^3 \frac{x}{2}$, e) $y = \frac{\sqrt{tg^3 x}}{5^x}$,

$$\partial f(x,y) = 2x^7y^2 + \frac{x^2}{v^5} + 4x + 5y^2.$$

3. a)
$$y = \frac{\sqrt[7]{x^4} - 4\sqrt[3]{x^2} + \frac{1}{2}}{\sqrt[5]{x^3}}$$
 6) $y = \sin^3 \ln \frac{x}{4}$, b) $y = \sqrt[4]{x^3} \cos^3 3x$, c) $y = \frac{\sqrt[3]{5^x}}{\ln^3 \frac{x}{3}}$,

$$\partial f(x,y) = x^3 y + \frac{4x}{y^2} + 2x - 7y.$$

4. a)
$$y = \frac{\sqrt[3]{x^3} - 2\sqrt[4]{x} + 3}{\sqrt[6]{x^5}} 6$$
) $y = tg^2 \cos 4x$, b) $y = 5^x \sqrt[5]{x}$, c) $y = \frac{\sqrt[3]{\cos^8 5x}}{\sqrt[6]{x^4}}$,
b) $f(x, y) = 5x^3y^2 - \frac{x}{y} + 6x - 7y$.

5. a) $y = \frac{\sqrt[6]{x^5} - 4\sqrt[6]{x^2} + 4}{\sqrt[6]{x^4}} 6$) $y = \ln^4 \sin 8x$, b) $y = e^x \left(\sqrt{x} + x^2\right)$, c) $y = \frac{\sqrt[6]{x^2 + 1}}{\cos^4 3x}$,
b) $f(x, y) = 7x^2y + \frac{y^2}{x} - 4x + 11y$.

6. a) $y = \frac{\sqrt[3]{x^2} + 3\sqrt[4]{x^3} - 4}{\sqrt[4]{x^3}}$, b) $y = \arcsin^2 \cos 4x$, e) $y = \sqrt[5]{x^2 + 3x}tg^2 + 2x$, c) $y = \frac{\sqrt{\sin^5 x}}{e^{2x}}$,
b) $f(x, y) = -\frac{3x^4}{y} + xy^3 - 2y^5 + 3x$.

7. a) $y = \frac{\sqrt[4]{x^3} + 5\sqrt[6]{x} - 4}{\sqrt[4]{x^5}}$, b) $y = \arctan(g^2 \left(\sqrt{x^2 + x}\right))$ e) $y = \cos^6 4x \cdot \sqrt[4]{5x^2 + 1}$, c) $y = \frac{\sqrt[3]{2^x}}{\sin^2 3x}$,
d) $f(x, y) = 8x^5 - x^3y - 4y^3 + 1$.

8. a) $y = \frac{\sqrt[4]{x^3} - 6\sqrt[4]{x} + 2}{\sqrt[4]{x}}$, b) $y = \sin^4 tg + 5x$, e) $y = \sin^5 2x \cdot \sqrt[4]{4x^3 + 2}$, e) $y = \frac{\sqrt[3]{\sin^2 2x}}{10^x}$,
d) $f(x, y) = -3x^2y + \frac{x^3}{2y} + 4y^2 + 2x$.

9. a) $y = \frac{\sqrt[4]{x^4} + 3\sqrt[4]{x^2} + 1}{\sqrt[4]{x^3}}$, b) $y = tg^6 (2\cos 4x)$. e) $y = \cos^4 3x \cdot \sqrt[3]{1 + 2x^2}$, e) $y = \frac{\sqrt[4]{\ln^3 2x}}{5^x}$,
d) $f(x, y) = 7x - y + 10x^3y^5$.

10. a)
$$y = \frac{\sqrt[6]{x^5 - 3\sqrt[3]{x^2 + 2}}}{\sqrt[7]{x^4}}$$
, b) $y = \sin^4(tg6x)$. b) $y = tg^2 7x \cdot \sqrt{x^2 + x}$, c) $y = \frac{\sqrt[5]{6^x}}{arctg^2 2x}$, d) $f(x, y) = x^3 y^5 - \frac{x}{4v^2} - x^3 + 3y^2$.

Задание 4.

Исследовать методами дифференциального исчисления функции и по результатам исследования построить графики этих функций:

1.
$$y = \frac{x}{1 - x^2}$$
.
2. $y = 2x + \frac{1}{x^2}$.
3. $y = \frac{x}{x^2 - 4}$.
4. $y = \frac{1}{x} + 4x^2$.
5. $y = \frac{x^2}{x^2 - 1}$.
6. $y = \frac{x^3}{1 - x^2}$.
7. $y = \frac{(x - 1)^2}{x^2 + 1}$.
8. $y = \frac{x^3}{1 + x^2}$.
9. $y = \frac{2x - 1}{(x - 1)^2}$.
10. $y = \frac{(x - 2)^2}{2(x - 1)}$.

Контрольная работа №2.

Задание 1.

Найти неопределённые интегралы. Определённый интеграл вычислить по формуле Ньютона-Лейбница.

1.
$$a)\int \left(\frac{(2\sqrt{x}+1)^2}{x^2} - \frac{2}{1+x^2}\right) dx; \delta) \int \frac{\arcsin^2 2x}{\sqrt{1-4x^2}} dx; \delta) \int x^2 \ln 3x dx; \epsilon) \int_1^5 \frac{x dx}{\sqrt{4x+5}}.$$

2.
$$a)\int \left(\frac{(2\sqrt[3]{x}+1)^2}{\sqrt[3]{x^4}}+ctgx\right)dx; \delta)\int (1+e^{3x})^2 \cdot e^{3x}dx; \delta)\int \ln(1-x)dx; \delta\int_0^{\frac{\pi}{6}}\cos^3 x dx.$$

3. a)
$$\int \left(\frac{\left(\sqrt{x}-1\right)^3}{x} - 4\sin\frac{x}{2} \right) dx; \delta) \int \frac{x^3 dx}{x^8 - 2}; \delta) \int x \cdot \operatorname{arcctgx} dx; \epsilon) \int_{1}^{3} \frac{4x + 3}{(x - 2)^3} dx.$$

4.
$$a)\int \left(6\sqrt[3]{x} + \frac{2}{x^3} + \sin\frac{x}{3}\right) dx; \delta)\int \frac{(5+3\ln x)^4}{x} dx; \delta)\int \frac{xdx}{\sin^2 x}; \epsilon)\int_0^{\sqrt{3}} x \cdot \sqrt{1+x^2} dx.$$

5. a)
$$\int e^{x} \left(1 - \frac{e^{-x}}{x^{2}}\right) dx$$
; δ) $\int \left(20x^{4} - 14x\right) \cdot \sqrt[3]{4x^{5} - 7x^{2} + 12} dx$; ϵ) $\int \arccos 3x dx$;

$$z) \int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{2}} dx.$$

6.
$$a)\int \left(\frac{2}{\sqrt{x}} + 3x^2 + \frac{x}{x^2 + 1}\right) dx; \delta) \int \frac{\cos x dx}{\sqrt[3]{\sin^2 x}}; \epsilon) \int x \cdot 2^{-x} dx; \epsilon) \int_{e}^{e^2} \frac{2 \ln x + 1}{x} dx$$

7.
$$a)\int \left(\frac{(1-x)^2}{x\sqrt{x}} + \frac{2x}{x^2+4}\right) dx; \delta)\int \sqrt{\frac{\arccos 3x}{1-9x^2}} dx; \delta)\int (1-2x)\ln x dx; \epsilon)\int_{-2}^{1} x^2 \sqrt{1-x^3} dx.$$

8.
$$a)\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx; \delta)\int \frac{arctg\sqrt{x}dx}{(1+x)\sqrt{x}}; \epsilon)\int x \cdot e^{-3x+2} dx; \epsilon)\int_{1}^{e} \frac{\cos(\ln x)}{x} dx.$$

9.
$$a)\int \left(3x\sqrt[3]{x} - \frac{7}{x^3} + \frac{2x+1}{x^2+x+3}\right) dx; \delta)\int 2^{\cos 2x} \sin 2x dx; \delta)\int \frac{x \sin x}{\cos^3 x}; \epsilon)\int \frac{x^2}{\sqrt{x^3+1}} dx.$$

10.
$$a)\int \left(\frac{\sqrt[5]{x}}{2} + 2x^3 + \frac{1}{4+x^2}\right) dx; \delta)\int \frac{\cos x}{\sqrt{3-2\sin x}} dx; \delta)\int 4^x (x+2) dx; \delta\int \frac{1}{0} \frac{x^2 dx}{1+x^6}.$$

Задание 2.

Вычислить площадь фигуры, ограниченной указанными линиями. Сделать чертеж.

1.
$$y = x^3$$
; $y = 8$; $x = 0$.

2.
$$y = x^2$$
; $y = \sqrt{x}$.

3.
$$y = x^2 + 6x + 3$$
; $y = x + 3$.

4.
$$y = x^2 + 1$$
; $y = -\frac{1}{9}x^2 + 1$; $x = 1$.

5.
$$y = \frac{1}{2}x^2$$
; $y = 2 - \frac{3}{2}x$.

6.
$$y = \frac{4}{x}$$
; $y = 5 - x$.

7.
$$y = x^2 + 4x - 2$$
; $y = 2x - 2$.

8.
$$y = 2x - x^2$$
; $y = x$.

9.
$$y = x^2 + 4x$$
; $y = x + 4$.

10.
$$y = x^3$$
; $y = 2x$.

Задание 3.

Вычислить объём тела, образованного вращением вокруг оси Ох кривой L.

1.
$$x^2 - y = 0$$
, $x = -1$, $y = 0$.

2.
$$x^2 + y = 0$$
, $x = 0$, $y = -1$.

3.
$$x^2 + 2 = 0$$
, $x = 1$, $y = 0$.

4.
$$x^2 - y = 0$$
, $x = 0$, $y = 1$.

5.
$$x^2 - y = 0$$
, $x = 1$, $y = 0$

6.
$$x - y^2 = 0$$
, $x = 1$, $y = 0$.

7.
$$x - y^2 = 0$$
, $x = 0$, $y = -1$

1.
$$x - y = 0$$
, $x = -1$, $y = 0$.
2. $x + y = 0$, $x = 0$, $y = -1$
3. $x^2 + 2 = 0$, $x = 1$, $y = 0$.
4. $x^2 - y = 0$, $x = 0$, $y = 0$.
5. $x^2 - y = 0$, $x = 1$, $y = 0$.
6. $x - y^2 = 0$, $x = 1$, $y = 0$.
7. $x - y^2 = 0$, $x = 0$, $y = -1$.
8. $x + y^2 = 0$, $x = -1$, $y = 0$.
9. $x - y^2 = 0$, $x = 0$, $y = 1$.
10. $x + y^2 = 0$, $x = 0$, $y = 1$

9.
$$x - y^2 = 0$$
, $x = 0$, $y = 1$

10.
$$x + y^2 = 0$$
, $x = 0$, $y = 1$.

10. a)
$$y''+9y'-10y=0$$

10. a)
$$y''+9y'-10y=0$$
; 6) $y''-2y'-3y=x^2$.

Задание 4.

Найти радиус и интервал сходимости степенного ряда. Исследовать сходимость ряда на концах интервала сходимости.

1.
$$\sum_{n=0}^{\infty} \frac{n^2 + 3}{3^n} (x+3)^n$$

2.
$$\sum_{n=0}^{\infty} \frac{n^2 - 6}{6^n} (x - 6)^n$$

3.
$$\sum_{n=0}^{\infty} \frac{n^2 - 4}{4^n} (x - 4)^n$$

4.
$$\sum_{n=0}^{\infty} \frac{n^2 + 2}{2^n} (x+2)^n$$

5.
$$\sum_{n=0}^{\infty} \frac{n^2 + 6}{6^n} (x+6)^n$$

6.
$$\sum_{n=0}^{\infty} \frac{n^2 - 5}{5^n} (x - 5)^n$$

7.
$$\sum_{n=0}^{\infty} \frac{n^2 - 2}{2^n} (x - 2)^n$$

8.
$$\sum_{n=0}^{\infty} \frac{n^2 + 4}{4^n} (x+4)^n$$

9.
$$\sum_{n=0}^{\infty} \frac{n^2 + 5}{5^n} (x+5)^n$$

10.
$$\sum_{n=0}^{\infty} \frac{n^2 - 3}{3^n} (x - 3)^n$$

Разложить данную функцию f(x) в ряд Фурье в интервале (a;b).

1.
$$f(x) = x + 1 \cdots (-\pi; \pi)$$
;

2.
$$f(x) = x^2 + 1,...(-2;2)$$
;

3.
$$f(x) = \frac{\pi - x}{2}$$
; $\cdot \cdot (-\pi; \pi)$;

4.
$$f(x) = 1 + \cos x; ...(0; \pi);$$

5.
$$f(x) = \begin{cases} 0, \dots - \pi < x < 0 \\ x, \dots 0 \le x < \pi \end{cases}$$
;

6.
$$f(x) = \begin{cases} 0, \dots 0 < x \le \frac{\pi}{2} \\ -\sin x, \dots \frac{\pi}{2} < x < \pi \end{cases}$$
7.
$$f(x) = \begin{cases} -4, \dots 0 < x \le 2 \\ 2x - 8, \dots 2 < x < 4 \end{cases}$$
8.
$$f(x) = \begin{cases} 3x, \dots 0 < x \le 1 \\ 3, \dots 1 < x < 2 \end{cases}$$

7.
$$f(x) = \begin{cases} -4, \dots 0 < x \le 2 \\ 2x - 8, \dots 2 < x < 4 \end{cases}$$

8.
$$f(x) = \begin{cases} 3x, \dots 0 < x \le 1 \\ 3, \dots 1 < x < 2 \end{cases}$$

9.
$$f(x) = x^2, ...(0,2\pi)$$

10.
$$f(x) = \begin{cases} 0, \dots 0 < x \le \frac{\pi}{2} \\ -\cos x, \dots \frac{\pi}{2} < x < \pi \end{cases}$$
;

Контрольная работа №3.

Вариант 1.

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области

- $\int\limits_{D} \int\limits_{D} y y^2 dx dy, \quad D: y = x^2, \ y = 2x$ 2. Вычислить двойной интеграл по области D
- 3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

к полярным:
$$\int\limits_{0}^{1}\!dx\int\limits_{0}^{\sqrt{1-x^{2}}}\sqrt{\frac{1-x^{2}-y^{2}}{1+x^{2}+y^{2}}}dy$$

Вычислить площадь плоских фигур, ограниченных данными линиями $x = 0; y = e^x; y = e$

5.	Вычислить	криволинейный	интеграл	1-го	рода
$\int (x^2 + y)$	(r^2) dl, где \mathbb{Z} - окру	ужность $x^2 + y^2 = 4$			

- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее. $x^2+z^2=1$, 2x+y=2, y-2, z=0 x>0, y>0, z>0
- 7. Найти координаты центра тяжести плоских однородных пластин, ограниченных заданными линиями $x^2 + y^2 = 4$, x = 0, y = 0 x > 0, y > 0
- 8. Найти угол между градиентами скалярных полей U(x,y,z) \hat{e} V(x,y,z) в точке M(x,y,z) $U=\frac{yz^2}{x^2}$, $V=\frac{x^2}{2}+6y^3+3\sqrt{6}z^3$, $M[\sqrt{2},\frac{1}{\sqrt{2}},\frac{1}{\sqrt{3}}]$

Вариант 2.

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области

$$\int\limits_{1}^{3}\!\!dx\int\limits_{0}^{\sqrt{4x-x^{2}}}f(x,y)dy$$
 интегрирования

- $\int \sqrt{y^3} dx dy,\, D:y=x^3,\, y\ge 0,\, y=4x$ 2. Вычислить двойной интеграл по области D
- 3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

$$\int\limits_{-2}^{2}\!\!dx\int\limits_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}\sin\sqrt{x^{2}+y^{2}}dy$$
 к полярным:

- 4. Вычислить площадь плоских фигур, ограниченных данными линиями $x+1=0; y=arc\sin x; y=\frac{\pi}{2}$

- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее. $y^2+z^2=4$, $x^2+y^2=4$, x=0, y=0, x>0, y>0, z>0
- 7. Найти координаты центра тяжести плоских однородных пластин, ограниченных $\frac{x^2}{9} + \frac{y^2}{4} = 1, \quad x = 3, \quad y = 2$ заданными линиями
- 8. Найти угол между градиентами скалярных полей U(x,y,z) è V(x,y,z) в точке M(x,y,z) $U=\frac{x}{yz^2}$, $V=x^2-y^2-3z^2$, $M=\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{3}}$

Вариант 3.

- 1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области $\int\limits_{0}^{1}\!\!dy \int\limits_{-4y-4}^{-8y^3}\!\!f(x,y)dx$ интегрирования
- $\int\limits_{D} (\oint \!\!\! x + y) dx dy, \quad D: y^2 = x, \ \ y = x$ 2. Вычислить двойной интеграл по области D
- 3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

к полярным:
$$\int_{-\sqrt{3}}^{0} dx \int_{0}^{\sqrt{3-x^2}} \frac{dy}{\sqrt{1+x^2+y^2}}$$

- 4. Вычислить площадь плоских фигур, ограниченных данными линиями $x=1; \quad y=arc\,tgx; \quad y+\frac{\pi}{4}=0$
- 5. Вычислить криволинейный интеграл 1-го рода $\int_{\mathbf{Z}} (4\sqrt[3]{x} 3\sqrt{y}) dl$, где **Z** отрезок прямой, соединяющий точки A(0,4) и B(4,0)
- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее. $x^2+y^2-z^2$, x+y-1, x-0, y-0, x>0, y>0, z>0

- 7. Найти координаты центра тяжести плоских однородных пластин, ограниченных $\frac{x}{2} + \frac{y}{3} = 1, \quad x = 2, \quad y = 3$ заданными линиями
- 8. Найти угол между градиентами скалярных полей $U^{(x,y,z)}$ è $V^{(x,y,z)}$ в точке $M^{(x,y,z)}$ $U=\frac{1}{xyz}$, $V=x^2+9y^2+6z^2$, $M^{(x,y,z)}$

Вариант 4.

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области

$$\int\limits_{0}^{1}dx\int\limits_{8x^{3}}^{4x+4}f(x,y)dy$$
 интегрирования

- $\int\limits_{D} (\mathbf{\hat{k}}^3 2y) dx dy, \quad D: y = x^2 1, \ y = 0$ 2. Вычислить двойной интеграл по области D
- 3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

к полярным:
$$\int\limits_0^1\!\!dx\int\limits_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\frac{tg\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}\,dy$$

- 4. Вычислить площадь плоских фигур, ограниченных данными линиями $y = \ln x$; x + 2y 2 = e; y = 0
- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее.

$$y^2+z^2=y$$
, $y^2+z^2=x^2$, $x=y$, $x>0$, $y>0$, $z>0$

7. Найти координаты центра тяжести плоских однородных пластин, ограниченных $y^2 = 2x$, x = 1

8. Найти угол между градиентами скалярных полей $U^{(x,y,z)}$ è $V^{(x,y,z)}$ в точке $M^{(x,y,z)}$ $U=x^2yz^2$, $V=\frac{3}{2}x^2+3y^2-2z^2$, $M^{(z)}$, $\sqrt{\frac{3}{2}}$

Вариант 5.

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области

$$\int\limits_{-8x^{2}}^{0}\!\!\!dx\int\limits_{-8x^{2}}^{-2x+6}\!\!f(x,y)dy$$
 интегрирования

- $\int\limits_{D} \sqrt{y^2} dx dy, \quad D: y = x^2, \ y = 2x$ 2. Вычислить двойной интеграл по области D
- 3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

к полярным:
$$\int\limits_0^1\!\!dx\int\limits_0^{\sqrt{1-\,x^2}}\sqrt{\frac{1-\,x^2\,-\,y^2}{1+x^2\,+y^2}}dy$$

- 4. Вычислить площадь плоских фигур, ограниченных данными линиями $x = 0; y = e^x; y = e$
- 5. Вычислить криволинейный интеграл 1-го рода $\int_{Z}^{(x^2+y^2)} dl$, где Z- окружность $x^2+y^2=4$
- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее. $x^2+z^2=1$, 2x+y=2, y-2, z=0 x>0, y>0, z>0
- 7. Найти координаты центра тяжести плоских однородных пластин, ограниченных заданными линиями $x^2 + y^2 = 4$, x = 0, y = 0 x > 0, y > 0
- 8. Найти угол между градиентами скалярных полей U(x,y,z) è V(x,y,z) в точке M(x,y,z) $U=\frac{yz^2}{x^2}$, $V=\frac{x^2}{2}+6y^3+3\sqrt{6}z^3$, $M[\sqrt{2},\frac{1}{\sqrt{2}},\frac{1}{\sqrt{3}}]$

Вариант 6.

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области

$$\int\limits_{1}^{3}\!\!dx\int\limits_{0}^{\sqrt{4x-x^2}}f(x,y)dy$$
 интегрирования

- $\int \sqrt{y^3} dx dy,\, D: y=x^3,\, y\ge 0,\, y=4x$ 2. Вычислить двойной интеграл по области D
- 3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

$$\int\limits_{-2}^{2}\!\!dx\int\limits_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}\!\sin\sqrt{x^{2}+y^{2}}\,dy$$
 к полярным:

- 4. Вычислить площадь плоских фигур, ограниченных данными линиями $x+1=0; \quad y=arc\sin x; \quad y=\frac{\pi}{2}$
- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее. $y^2+z^2=4$, $x^2+y^2=4$, x=0, y=0, x>0, y>0, z>0
- 7. Найти координаты центра тяжести плоских однородных пластин, ограниченных $\frac{x^2}{9} + \frac{y^2}{4} = 1, \quad x = 3, \quad y = 2$ заданными линиями
- 8. Найти угол между градиентами скалярных полей U(x,y,z) è V(x,y,z) в точке M(x,y,z) $U=\frac{x}{yz^2}$, $V=x^2-y^2-3z^2$, $M=\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{3}}$

Вариант 7.

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области

$$\int_{0}^{1} dy \int_{-4y-4}^{-8y^{3}} f(x, y) dx$$
 интегрирования

$$\int\limits_{D} (\oint x + y) dx dy, \quad D: y^2 = x, \ \ y = x$$
 2. Вычислить двойной интеграл по области D

3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

к полярным:
$$\int_{-\sqrt{3}}^{0} dx \int_{0}^{\sqrt{3-x^2}} \frac{dy}{\sqrt{1+x^2+y^2}}$$

4. Вычислить площадь плоских фигур, ограниченных данными линиями $x=1; \quad y=arc\,tgx; \quad y+\frac{\pi}{4}=0$

5. Вычислить криволинейный интеграл 1-го рода
$$\int (4\sqrt[3]{x} - 3\sqrt{y}) dl$$
, где **Z** - отрезок прямой, соединяющий точки $A(0,4)$ и $B(4,0)$

- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее. $x^2+y^2=z^2$, x+y=1, x=0, y=0, x>0, y>0, z>0
- 7. Найти координаты центра тяжести плоских однородных пластин, ограниченных $\frac{x}{2} + \frac{y}{3} = 1, \quad x = 2, \quad y = 3$ заданными линиями
- 8. Найти угол между градиентами скалярных полей $U^{(x,y,z)}$ è $V^{(x,y,z)}$ в точке $M^{(x,y,z)}$ $U=\frac{1}{xyz}$, $V=x^2+9y^2+6z^2$, M^{\square} , $\frac{1}{3}$, $\frac{1}{\sqrt{6}}$

Вариант 8.

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области $\int\limits_0^1 dx \int\limits_{8x^3}^{4x+4} f(x,y) dy$ интегрирования

$$\int\limits_{D} (\hat{k}^3 - 2y) dx dy, \quad D: y = x^2 - 1, y = 0$$
 2. Вычислить двойной интеграл по области D

3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

к полярным:
$$\int\limits_{0}^{1}\!\!dx\int\limits_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\frac{tg\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}\,dy$$

- 4. Вычислить площадь плоских фигур, ограниченных данными линиями $y = \ln x$; x + 2y 2 = e; y = 0
- 5. Вычислить криволинейный интеграл 1-го рода $\int y dl$, где \angle дуга астроиды $x = \cos^3 t$, $y = \sin^3 t$, заключенная между точками A(1,0) и B(0,0)
- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее.

$$y^2+z^2=y$$
, $y^2+z^2=x^2$, $x=y$, $x>0$, $y>0$, $z>0$

- 7. Найти координаты центра тяжести плоских однородных пластин, ограниченных заданными линиями $y^2 = 2x$, x = 1
- 8. Найти угол между градиентами скалярных полей $U^{(x,y,z)}$ è $V^{(x,y,z)}$ в точке $M^{(x,y,z)}$ $U=x^2yz^2$, $V=\frac{3}{2}x^2+3y^2-2z^2$, $M^{(z)}$, $\frac{1}{3}$, $\sqrt{\frac{3}{2}}$

Вариант 9.

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области

- $\int\limits_{D}\sqrt{y}y^{2}dxdy,\quad D:y=x^{2},\;y=2x$ 2. Вычислить двойной интеграл по области D
- 3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

$$\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} dy$$
 к полярным:

4. Вычислить площадь плоских фигур, ограниченных данными линиями $x=0; y=e^x; y=e$

5.	Вычислить	криволинейный	интеграл	1-го	рода
$\int_{-\infty}^{\infty} (x^2 + y)^2$	^{,2})dl, где ∠ - окру	y жность $x^2 + y^2 = 4$			

- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее. $x^2+z^2=1$, 2x+y=2, y-2, z=0 x>0, y>0, z>0
- 7. Найти координаты центра тяжести плоских однородных пластин, ограниченных заданными линиями $x^2 + y^2 = 4$, x = 0, y = 0 x > 0, y > 0
- 8. Найти угол между градиентами скалярных полей $U^{(x,y,z)}$ è $V^{(x,y,z)}$ в точке $M^{(x,y,z)}$ $U = \frac{yz^2}{x^2}$, $V = \frac{x^2}{2} + 6y^3 + 3\sqrt{6}z^3$, $M = \sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$

Вариант 10.

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области

$$\int\limits_{1}^{3}\!\! dx \int\limits_{0}^{\sqrt{4x-x^{2}}} f(x,y) dy$$
 интегрирования

- $\int \sqrt{y}^3 dx dy,\, D: y=x^3,\, y\ge 0,\, y=4x$ 2. Вычислить двойной интеграл по области D
- 3. Вычислить интеграл, перейдя от прямоугольных декартовых координат

$$\int\limits_{-2}^{2}\!\!dx\int\limits_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}\sin\sqrt{x^{2}+y^{2}}dy$$
 к полярным:

- 4. Вычислить площадь плоских фигур, ограниченных данными линиями $x+1=0; y=arc\sin x; y=\frac{\pi}{2}$

- 6. Вычислить площадь части поверхности, уравнение которой задано в условии задач первым, вырезанной другими заданными поверхностями из нее $y^2+z^2=4$, $x^2+y^2=4$, x=0, y=0, x>0, y>0, z>0
- 7. Найти координаты центра тяжести плоских однородных пластин, ограниченных $\frac{x^2}{9} + \frac{y^2}{4} = 1, \quad x = 3, \quad y = 2$ заданными линиями $\frac{x^2}{9} + \frac{y^2}{4} = 1$
- 8. Найти угол между градиентами скалярных полей U(x,y,z) \hat{e} V(x,y,z) в точке M(x,y,z) $U=\frac{x}{yz^2}$, $V=x^2-y^2-3z^2$, $M\left[\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},\frac{1}{\sqrt{3}}\right]$

Составитель		С. В. Примакова
« »	20 г.	