

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

«УТВЕРЖДАЮ»

Директор отделения

горного и нефтегазового дела

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ШКОЛА)

«СОГЛАСОВАНО»

Руководитель ОП

В.М. Каморный подпись) (Ф.И.О. рук. ОП) «28»января2021_г.	(название кафедры) Иму Н.В. Шестаков (подпись) (Ф.И.О. зав. каф.) «28»января 2021_г.
РАБОЧАЯ ПРОГРАММА ДИСІ «Математическое моделирование геопрост Специальность 21.05.01 «Прикладн Специализация «Инженерная Форма подготовки очна	гранственных данных» ная геодезия, и геодезия»
курс 4 семестр 7 лекции 18 час. практические занятия 36 час. лабораторные работы - час. в том числе с использованием МАО лек / пр. 18 / ла всего часов аудиторной нагрузки 54 час. в том числе с использованием МАО 18 час. самостоятельная работа 90 час. в том числе на подготовку к экзамену - час. контрольные работы (количество) - 1 курсовая работа / курсовой проект - семестр зачет 7 семестр экзамен - семестр	юб. <u>-</u> час.
Рабочая программа составлена в соответствии с требоват образовательного стандарта высшего образования - специалите утвержденного приказом Министерства науки и высшего 11.08.2020 № 944.	т по специальности Прикладная геодезия,
Рабочая программа обсуждена на заседании кафедры го № от « » января 2021 г.	еодезии, землеустройства и кадастра,
Директор отделения к.т.н., доцент Н.В. Шестаков Составитель (ли): к.фм.н., доцент кафедры. С.М.Краснопеев	3

Оборотная сторона титульного листа РПУД

І. Рабочая программа	а пересмотрена на заседа	нии кафедры:
Протокол от «	»	202 г. №
Директор отделения	(подпись)	
	(подпись)	(И.О. Фамилия)
II. Рабочая программ	а пересмотрена на заседа	ании кафедры:
Протокол от «»	20	г. №
Директор отделения		
(подпись)	(И.О. Фамилия)	

Аннотация дисциплины

«Математическое моделирование геопространственных данных»

Общая трудоемкость дисциплины составляет 4 зачетные единицы / 144 академических часа. Учебным планом предусмотрено лекции — 18 часов, практики — 36 часов (в том числе в интерактивной форме — 18 часов), самостоятельная работа — 90 часов. Дисциплина реализуется в 7 семестре. Форма контроля — зачет.

Язык реализации – русский.

Цели и задачи освоения дисциплины:

Цель: формирование компетенций, способствующих осуществлению самостоятельного проектирования и реализации прикладных ГИС-проектов; проведению геопространственного анализа информации при выполнении комплекса топографо-геодезических работ.

Задачи:

- формирование знаний о способах цифрового представления географических данных и их свойств, моделях пространственных данных; категориях пространственных проблем и основных методах их решения с помощью географических информационных систем (ГИС);
- формирование навыков составления моделей местности и других геопространственных объектов с доведением решения до практически приемлемого результата;
- формирование готовности к освоению программного обеспечения географических информационных систем, моделирования и анализа пространственных данных;
- формирование общих представлений о роли геоинформатики в ускорении инновационного развития разных отраслей хозяйства.

Планируемые результаты обучения по данной дисциплине, соотнесенные с планируемыми результатами освоения образовательной

программы, характеризуют этапы формирования следующих компетенций:

Наименование	Код и	
категории	наименование	
(группы)	универсальной	Код и наименование индикатора
универсальных	компетенции	достижения компетенции
компетенций	(результат	
	освоения)	
Самоорганизация и		УК-6.1 Знает нормативно-правовые и
саморазвитие (в	УК-6. Способен	нормативно-технические акты в области
том числе здоровье	определять и	создания и использования данных
сбережение	реализовывать	дистанционного зондирования Земли (ДЗЗ);
	приоритеты	программы и программные компоненты в
	собственной	области геоинформационных систем, систем
	деятельности и	управления базами данных
	способы ее	УК-6.4 Формирует техническую
	совершенствования	документацию по результатам работ по
	на основе	созданию элементов инфраструктуры
	самооценки и	использования РКД
	образования в	УК-6.5. Демонстрирует интерес к учебе и
	течение всей жизни	использует предоставляемые возможности
		для приобретения новых знаний и навыков

Код и наименование индикатора достижения компетенции	Наименование показателя оценивания (результата обучения по дисциплине)	
УК-6.1 Знает нормативно-	Знает нормативно-правовые и нормативно-технические	
правовые и нормативно-	акты в области создания и использования данных	
технические акты в области	дистанционного зондирования Земли (ДЗЗ); программы и	
создания и использования	программные компоненты в области геоинформационных	
данных дистанционного	систем, систем управления базами данных	
зондирования Земли (ДЗЗ);	Умеет использовать нормативно-правовые и нормативно-	
программы и программные	технические акты в области создания и использования	
компоненты в области	данных дистанционного зондирования Земли (ДЗЗ);	
геоинформационных систем,	программы и программные компоненты в области	
систем управления базами	геоинформационных систем, систем управления базами	
данных	данных	
	Владеет способностью использовать нормативно-	
	правовые и нормативно-технические акты в области	
	создания и использования данных дистанционного	
	зондирования Земли (ДЗЗ); программы и программные	
	компоненты в области геоинформационных систем,	
	систем управления базами данных	
УК-6.4 Формирует	Знает общие требования к технической документаций,	
техническую документацию	формируемой по результатам работ по созданию	
по результатам работ по	элементов инфраструктуры использования РКД	
созданию элементов	Умеет формировать техническую документацию по	
инфраструктуры	результатам работ по созданию элементов	
использования РКД	инфраструктуры использования РКД	
	Владеет способностью формировать техническую	
	документацию по результатам работ по созданию	

Код и наименование индикатора достижения компетенции	Наименование показателя оценивания (результата обучения по дисциплине)	
	элементов инфраструктуры использования РКД	
УК-6.5 Демонстрирует	Знает значение геопространственного анализа	
интерес к учебе и использует	информации при выполнении комплекса топографо-	
предоставляемые	геодезических работ	
возможности для	Умеет использовать возможности для приобретения	
приобретения новых знаний	новых знаний в области геопространственного анализа	
и навыков	информации при выполнении комплекса топографо-	
	геодезических работ	
	Владеет способностью самостоятельного проектирования	
	и реализации прикладных ГИС-проектов, навыками	
	творческого решения задач в области топографо-	
	геодезических работ	

Профессиональные компетенции выпускников и индикаторы их достижения:

Тип задач	Код и	
	наименование	
	профессиональной	Код и наименование индикатора
	компетенции	достижения компетенции
	(результат	
	освоения)	
Проектно-	ПК-1 Способен	ПК -1.1. Знает нормативно-правовые и
изыскательская	планировать	нормативно-технические акты в области
деятельность	инженерно-	геодезической и градостроительной деятельности;
	геодезические	трудовое законодательство Российской
	изыскания	Федерации; локальные нормативные акты
		организации по инженерно-геодезическим
		изысканиям
		ПК-1.2. Способен использовать нормативно-
		техническую документацию для планирования и
		выполнения инженерно-геодезических
		изысканий, собирать, систематизировать и
		анализировать информацию для составления
		технических проектов топографо-геодезических
		работ

Код и наименование индикатора достижения компетенции	Наименование показателя оценивания (результата обучения по дисциплине)	
ПК -1.1. Знает нормативно-	Знает нормативно-правовые и нормативно-технические	
правовые и нормативно-	акты в области геодезической и градостроительной	
технические акты в области	деятельности; локальные нормативные акты организации	
геодезической и	по инженерно-геодезическим изысканиям	
градостроительной	Умеет применять знания нормативно-правовых и	
деятельности; трудовое	нормативно-технических актов в области геодезической и	
законодательство Российской	градостроительной деятельности; локальных	

Код и наименование индикатора достижения компетенции	Наименование показателя оценивания (результата обучения по дисциплине)
Федерации; локальные	нормативных актов организации по инженерно-
нормативные акты	геодезическим изысканиям
организации по инженерно-	Владеет способностью использовать на практике
геодезическим изысканиям	положения нормативно-правовых и нормативно-
	технических актов в области геодезической и
	градостроительной деятельности; локальных
	нормативных актов организации по инженерно-
	геодезическим изысканиям
ПК-1.2. Способен	Знает правила использования нормативно-технической
использовать нормативно-	документации для планирования и выполнения
техническую документацию	инженерно-геодезических изысканий, подбора,
для планирования и	систематизации и анализа информации для составления
выполнения инженерно-	технических проектов топографо-геодезических работ
геодезических изысканий,	Умеет использовать нормативно-техническую
собирать, систематизировать	документацию для планирования и выполнения
и анализировать информацию	инженерно-геодезических изысканий, собирать,
для составления технических	систематизировать и анализировать информацию для
проектов топографо-	составления технических проектов топографо-
геодезических работ	геодезических работ
	Владеет способностью использовать нормативно-
	техническую документацию для планирования и
	выполнения инженерно-геодезических изысканий,
	собирать, систематизировать и анализировать
	информацию для составления технических проектов
	топографо-геодезических работ

Для формирования указанных выше компетенций в рамках дисциплины «Математическое моделирование геопространственных данных» применяются следующие методы активного / интерактивного обучения: практическое занятие в виде семинара, экспресс-опрос.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА (18 ЧАСОВ)

Раздел I. Общее представление о специфике географических (пространственных) данных (6 часов)

Тема 1. Концепция географических (пространственных) данных. Категории пространственных проблем (2 часа).

- Понятие географических данных; формы абстрагирования географических объектов; пространственные взаимосвязи.
- Способы цифрового представления пространственных данных.
- Организация физического хранения пространственных данных.
- Основные топологические концепции, используемые в ГИС; организация физического хранения топологической информации.
- Определения ГИС. Компоненты ГИС. Родственные типа программного обеспечения.
- Задача размещения (locationproblem).
- Задача размещения-распределения (location-allocationproblem)
- Задача распределения (allocationproblem)
- Задача выбора оптимального маршрута при наличии предопределённой транспортной сети (routefindingproblem)
- Задача выбора оптимального маршрута по бездорожью (cross-countrymovementproblem)
- Задача районирования (zoningproblem)

Тема 2. Понятие географической системы координат. Картографические проекции (4 часа).

- Представление учёных о фигуре Земли. Поверхности эллипсоида, геоида, квазигеоида.
- Понятие геодезической даты (Datum).

- Преобразования между геодезическими датами. Геоцентрический сдвиг, метод Бурса Вольфа, метод Молоденски.
- Геодезическая (географическая) система координат. Пространственная прямоугольная (картезианская) система координат. Закрепление прямоугольной СК на местности.
- Системы высот.
- Проективные системы координат: виды вспомогательных проекций; ориентировка вспомогательной поверхности относительно полярной оси или экватора эллипсоида; способ получения; характер искажений.

Раздел II. Источники и модели пространственных данных (4 часа) Тема 1. Источники пространственных данных (2 часа).

- Бумажные носители. Технология координатной привязки.
- Векторная графика из графических редакторов. Конвертация форматов данных, координатная привязка данных.
- Данные в табличной форме.
- Данные прямых инструментальных измерений. Системы глобального позиционирования. Принцип работы систем глобального позиционирования. Дифференциальные измерения.
- Данные дистанционного зондирования Земли. Оптические системы, микроволновые (радарные) системы, системы лазерного сканирования.
- Готовые цифровые пространственные данные. Общедоступные пространственные данные.

Тема 2. Модели пространственных данных (2 часа).

- Геореляционная модель данных.
- Интегрированная модель данных.
- Объектно-реляционная модель данных.
- Объектная модель данных.

• Методы организации хранения и управления пространственными данными в РСУБД.

Раздел III. Методы пространственного анализа (6 часов)

Тема 1. Методы анализа географических данных (2 часа).

- Выборка объектов по атрибутивному или пространственному критерию
- Буферизация объектов
- Операции топологического перекрытия слоёв (оверлейные операции):
 - ✓ Слияние слоёв
 - ✓ Обрезка слоёв
 - ✓ Пересечение слоёв
 - ✓ Объединение (топологическое) слоёв
- Агрегирование данных
 - ✓ Разрушение границ однородных (по общему признаку) областей
 - ✓ Выпуклые оболочки
 - ✓ Кластеризация
- Сетевой анализ
 - ✓ Поиск ближайшего пункта обслуживания
 - ✓ Разработка кратчайшего маршрута
 - ✓ Подготовка маршрутного листа передвижения
- Определение зон обслуживания

Тема 2. Анализ поверхностей и полей (4 часа).

- Источники данных для цифровой модели рельефа (ЦМР)
 - ✓ Топографические карты и планы
 - ✓ Стереопары радарных и оптических систем
- Типы ЦМР
 - ✓ Растровые модели
 - ✓ Векторные модели (TIN Triangulated Irregular Network)
- Математические алгоритмы, используемые для построения ЦМР
- Использование ЦМР

- ✓ Расчёт морфометрических характеристик
- ✓ Гидрологическое моделирование
- ✓ Отмывка рельефа
- ✓ Ортотрансформирование аэро- и космических снимков
- ✓ Оценка зон видимости с заданной точки (точек) обзора
- 3-х мерная визуализация, виртуальная реальность

Раздел IV. Инфраструктуры пространственных данных (2 часа) Тема 1. Инфраструктуры пространственных данных (ИПД) (2 часа).

- Концепция ИПД
- Интероперабельность (способность к взаимодействию), технологические основы решения проблемы интероперабельности.
- Система международных стандартов, регламентирующих разработку и развёртывание компонентов ИПД.
- Служба каталогов метаданных
- Служба доступа к пространственным объектам (векторные данные)
- Служба доступа к растровым наборам данным
- Служба доступа к цветокодированной информации (картографические композиции)
- Служба доступа к алгоритмам обработки данных.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА (36 ЧАСОВ)

Занятие 1. Создание полигональных и линейных объектов; методы редактирования пространственных объектов (4 час.)

1. Начало сеанса редактирования; создание объектов стандартным способом, с использованием ограничения по расстоянию и/или углу, приращением координат, указанием абсолютных координат; копирование и вставка пространственных объектов; поворот, перемещение, масштабирование объектов; растяжение и сокращение линейных объектов.

2. Навыки выбора оптимальной проекции, создания пользовательских проекций: Сформировать и подготовить для печати макет контурной карты на северную часть акватории Тихого океана.

Занятие 2. Согласование геодезических дат (2 час.)

1. Согласовать отображение материалов, использующих различные системы координат и геодезические даты (Датумы). Оценить погрешности совмещения пространственных данных (ПД), вызванные отсутствием согласования систем координат.

Исходные данные:

- Фрагмент многозонального космического снимка радиометра ASTER (пространственное разрешение 15 м). Географическая СК, Датум WGS1984
- Фрагмент топографической карты масштаба 1 : 100 000. СК Гаусса-Крюгера (поперечная Меркатора), зона 23 (центральный меридиан 135Е), Датум Пулково 1942 г.
- 2. Оценить погрешности совмещения пространственных данных (ПД), вызванные
- отсутствием согласования систем координат;
- погрешностью пространственно привязки (например, для космических снимков, трансформированных в картографическую проекцию по данным бортовой автоматической системы навигации) и неучётом влияния рельефа местности.

Измерить степень рассогласования государственной топографической карты масштаба 1 : 25 000 (система координат – Пулково 1995) и

- А) снимка с КА «Канопус-В №1» (СК UTM, пространственное разрешение
 2,1 м, привязка по орбитальным параметрам) без согласования систем координат;
- Б) того же снимка после согласования систем координат;
- В) того же снимка после ортокоррекции и согласования систем координат.

Занятие 3. Координатная привязка растровых наборов данных (3 час.)

Условия корректной географической привязки растровых наборов данных.

- 1. Выполнить координатную привязку в Государственную систему координат 1942 г., зона 23, фрагмента отсканированной топографической карты двумя способами:
- Для формирования реперных точек использовать координатно привязанный векторный слой объектов транспортной инфраструктуры.
- В качестве реперных точек взяты пересечения километровых линий топографической карты, ближайшие к углам растра. Их координаты в системе координат Гаусса-Крюгера, зона 23, приведены в файле *GCP's.txt*
- 2. Выполнить привязку растровой копии номенклатурного листа топографической с отсутствующими на ней координатными линиями (система координат и проекция известны). Для координатной привязки в качестве координатной основы использовать:
- Знание правила разграфки номенклатурных листов топографических карт;
- Координатно привязанный слой автомобильных дорог.
- 3. Выполнить привязку растровых копий карт, информация о системе координат и проекции которых не известна.

Занятие 4. Отображение табличных данных (4 час.)

- 1. Отобразить положение объектов в пространстве, если информация о координатах объектов размещена в таблицах (*.dbf, *.mdb, *.xls) или файлах текстового формата (*.csv).
- 2. Создать слой разграфки листов топографических карт (индексной сетки) масштаба 1:1 000 000 на территорию Приморского края. Обеспечить возможность изгиба линий широты при отображении её в проективных системах координат, например Пулково 1942, зона 23.
- 3. Результаты береговых наблюдений морских млекопитающих представлены в таблице. Построить карту визуально обнаруженных

млекопитающих с дифференциацией по видам, возрасту и количеству согласно легенде.

4. Построить карту маршрута движения судна по результатам GPSтрекинга с указанием участков, скорость движения на которых превышала 10 км/час.

Занятие 5. Пространственный анализ (4 час.)

- 1. Определить площадь (в км кв.) и долю территории, имеющей статус «особо охраняемой природной территории», для каждого административного образования Приморского края.
- 2. Подготовить карту земель, доступных для хозяйственного использования. Из хозяйственного использования исключить земли вокруг населённых пунктов в радиусе:
 - 10 км, если численность населения не превышает 10 000 чел.;
 - 18 км, если численность населения не превышает 40 000 чел.;
 - 25 км, если численность населения не превышает 100 000чел.;
 - 40 км, если численность населения превышает 500 000 чел.
- 3. Определить районы Приморского края, наиболее привлекательные с точки зрения охоты на водоплавающую дичь. Критерий привлекательности площадь (в км кв.) лучших угодий для охоты на водоплавающую дичь.
- 4. Подготовить карту земель, доступных для хозяйственного использования. Из хозяйственного использования исключить земли вокруг автодорог в радиусе:
 - 10 км, для дорог краевого значения;
 - 25 км, для дорог федерального значения.

Занятие 6. Соединение и связывание по атрибутам. Пространственное соединение (4 час.)

- 1. Создать таблицу-перечень встречающихся на выбранной территории типов леса и занимаемой ими площади.
- 2. Рассчитать общий запас древесины в некотором квартале, выбранном интерактивно на экране.

- 3. Рассчитать запас древесины по каждой породе в некотором квартале.
- 4. Определить ближайший к сельскому населённому пункту посёлок городского типа или город и расстояние между ними.

Занятие 7. Цифровые модели местности, способы их генерации и визуального представления (4 час.)

Способы цифрового представления поверхностей. Растровый способ представления — регулярная сеть точек (GRID). Векторный способ представления — нерегулярная сеть точек (TIN, TriangulatedIrregularNetwork). Алгоритмы интерполяции на регулярную сеть точек: метод обратно взвешенных расстояний; метод глобального полинома; сплайн-метод; Кригинг. Тиры данных используемых при построении TIN. Тип данных «Теггаin».

- 1. Построить цифровую модель рельефа (ЦМР) (исходные данные: изолинии, отметки высот и урезов воды) методами обратно взвешенных расстояний и «TopotoRaster» (ПО ArcGIS).
- 2. Сгенерировать TIN-поверхность, на основе массива точечных данных. Уточнить TIN-поверхность за счёт дополнительной информации о:
 - линиях, не нарушающих гладкость моделируемой поверхности (Soft breakline) железная дорога;
 - линиях, вдоль которых происходит негладкий перегиб поверхности (Hard breakline);
 - областях вне полигона, которые надо исключить из анализа (Soft clip polygon).
- 3. Сгенерировать перспективное отображение поверхности, добавив в качестве подложки фотографию местности и дорожную сеть.

Занятие 8. Морфометрические характеристики рельефа (2 час.)

Рассчитать:

- Профили высот.
- Карту значений крутизны
- Карту экспозиций склонов

- Поля изолиний высоты над уровнем моря
- Теневой рельеф
- Объёмы и площади участков

Занятие 9. Модель данных динамической сегментации; линейные метрики (2 час.)

- 1. Создать класс маршрутных объектов; откалибровать созданный класс маршрутов.
- 2. События. Поиск местоположения на маршруте. Отображение найденного местоположения на маршруте.

Занятие 10. Совместный анализ растровых и векторных данных. Поиск оптимальных мест для строительства новой школы (4 час.)

Классификация вещественных растровых наборов данных.
Переклассификация тематических (целочисленных) растровых наборов данных. Алгебра растровых наборов данных.

Определить участки территории, оптимальные для строительства новой школы. Факторы, определяющие выбор оптимального места: тип землепользования; рельеф местности; близость к местам отдыха; удалённость от действующих школ.

Занятие 11. Совместный анализ растровых и векторных данных. Прокладка оптимального маршрута от новой школы до указанного перекрёстка (4 час.)

Проложить оптимальный маршрут от выбранного участка строительства новой школы до указанной точки назначения. Факторы, учитываемые при расчёте «стоимостной» поверхности: тип землепользования; рельеф местности; точка назначения.

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

обучающихся по дисциплине «Математическое моделирование геопространственных данных» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№	Контролируемые разделы /	Оценочные средства - наименование		
п/п	темы дисциплины	Текущий контроль	Промежуточная аттестация	
1	Раздел I. Общее представление о специфике географических данных	Устный опрос	ос Контрольный опрос Вопросы №1-2	
2	Раздел II. Источники и модели пространственных данных	Устный опрос	Контрольный опрос Вопросы № 3-10	
3	Раздел III. Методы пространственного анализа	Устный опрос Контрольная работа Контрольный опрос Вопросы № 11-19		
4	Раздел IV.Инфраструктуры пространственных данных	Устный опрос	Итоговый опрос-зачет Кейс-задача Все вопросы к зачету.	

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

(электронные и печатные издания)

1. Инженерная геодезия и геоинформатика [Электронный ресурс] : учебник для вузов / М. Я. Брынь, Г. С. Бронштейн, В. Д. Власов [и др.]; под ред. С. И. Матвеев. — Электрон. текстовые данные. — М. : Академический Проект, 2012. — 496 с. — 978-5-8291-1356-8. — Режим доступа: http://www.iprbookshop.ru/36328.html

Дополнительная литература

(печатные и электронные издания)

- 1. Зейлер М. Моделирование нашего мира: руководство ESRI по проектированию базы геоданных/ М. Зейлер. Москва: Изд-во Московского университета, 1999 254 с.
- 2. Гитис В.Г., Ермаков Б.В. Основы пространственно-временного прогнозирования в геоинформатике / В.Г. Гитис, Б.В. Ермаков. —Москва: Физматлит, 2004. —256 с.

URL: http://lib.dvfu.ru:8080/lib/item?id=chamo:7329&theme=FEFU

- 3. Лурье И.К. Геоинформационное картографирование. Методы геоинформатики и цифровой обработки космических снимков: учебник для вузов / И.К. Лурье; Московский государственный университет, Географический факультет Москва: Университет, 2010.— 423 с.
- URL: http://lib.dvfu.ru:8080/lib/item?id=chamo:293744&theme=FEFU
- 4. Сборник задач и упражнений по геоинформатике: учебное пособие для вузов по экономическим специальностям / [В.С. Тикунов, Е.Г. Капралов,

А.В. Заварзин и др.]; под ред. В.С. Тикунова— Москва: Издательский центр «Академия», 2005. — 555 с.

URL: http://lib.dvfu.ru:8080/lib/item?id=chamo:245196&theme=FEFU

5. Серапинас Б.Б.Математическая картография: учебник для вузов / Б.Б. Серапинас. — М.: Издательский центр «Академия», 2005. — 336 с. URL: http://lib.dvfu.ru:8080/lib/item?id=chamo:245386&theme=FEFU

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. http://geomatica.ru/ Архив номеров журнала «Геоматика».
- 2. https://dataplusru/news/arcreview/ Архив номеров газеты «ArcReview» (Геоинформационные системы для бизнеса и общества).
 - 3. http://www.gisa.ru официальный сайт ГИС-Ассоциации.
- 4. http://www.opengeospatial.org— официальный сайт Открытого геопространственного консорциума.
- 5. http://earthexplorer.usgs.gov/–Каталог ресурсов пространственных данных Геологической службы США (USGS).

Перечень информационных технологий и программного обеспечения

При осуществлении образовательного процесса по дисциплине используется программное обеспечение, относящееся к категории программного обеспечения с открытым программным кодом:

- 1. ArcGIS for Desktop https://www.esri-cis.ru/
- 2. QGIS(Quantum GIS) –кроссплатформенная геоинформационная система с открытым программным кодом. URL: http://qgis.org/ru/site/

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Изучение дисциплины «Математическое моделирование

геопространственных данных» выполняется по следующему алгоритму.

Основная теоретическая база излагается на лекциях, но поскольку аудиторных часов лекций в соответствии с ОС ДВФУ составляет гораздо меньшую часть аудиторной нагрузки (18 час.), то для усвоения материала студентам предлагается самостоятельное более глубокое изучение теоретического материала.

Студент течении семестра должен самостоятельно проработать информацию, используя все лекции, предложенный преподавателем глоссарий, рекомендованную учебно-методическую литературу и информацию из интернет-источников для формирования собственных ответов по самоконтролю. Преподаватель контролирует результат устным опросом.

Практическая часть курса, которая формирует основные умения и навыки, представлена практическими занятиями, на которых студенты учатся использовать программное обеспечение, знакомятся с оборудованием, методикой его использования и обработкой результатов спутниковых наблюдений. В процессе усвоения теоретической и практической части проводятся устные опросы и проверяется решение контрольных заданий.

Во второй половине семестра студенту предлагается самостоятельно подготовиться зачету. Студент должен проработать информацию, используя все лекции, предложенный преподавателем глоссарий, рекомендованную учебно-методическую литературу и информацию из Интернет-источников для формирования собственных ответов.

Для самостоятельной работы в этой части студенту предлагается выполнение кейс-задачи в качестве домашнего задания и сдачи его преподавателю.

Зачет выставляется в общей совокупности с учетом зачтенных практических заданий, результатов контрольных опросов и результатов зачетного опроса-собеседования.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для учащихся предоставлены:

- Учебная аудитория на 15 мест с мультимедийным проектором для чтения лекций.
 - Компьютерный класс с доступом в Интернет на 15 компьютеров.
- Лицензионное программное обеспечение ArcGISforDesktophttps://www.esri-cis.ru/

Наименование оборудованных учебных кабинетов, объектов для проведения занятий с перечнем основного оборудования	Адрес (местоположение) учебных кабинетов, объектов для проведения практических занятий, объектов физической культуры и спорта
Компьютерный класс:	г. Владивосток,
Экран с электроприводом 236*147 см Trim Screen Line;	о. Русский, п. Аякс д.10,
Проектор DLP, 3000 ANSI Lm, WXGA 1280x800, 2000:1	корпус Е
EW330U Mitsubishi; Подсистема специализированных	
креплений оборудования CORSA-2007 Tuarex; Подсистема	
видеокоммутации: матричный коммутатор DVI DXP 44	
DVI Pro Extron; удлинитель DVI по витой паре DVI 201	
Tx/Rx Extron; Подсистема аудиокоммутации и	
звукоусиления; акустическая система для потолочного монтажа SI 3CT LP Extron; цифровой аудиопроцессор	
Монтажа SI 3CT LP Extron, цифровой аудиопроцессор DMP 44 LC Extron; расширение для контроллера	
управления IPL T CR48; беспроводные ЛВС для	
обучающихся обеспечены системой на базе точек доступа	
802.11a/b/g/n 2x2 MIMO(2SS).	
Моноблок Lenovo C360G-i34164G500UDK (16 шт.)	
Моноблок HP РгоОпе 400 All-in-One 19,5 (1600х900), Core	г. Владивосток, о.
i3-4150T, 4GB DDR3-1600 (1x4GB), 1TB HDD 7200 SATA,	Русский, п. Аякс д.10,
DVD+/-RW,GigEth,Wi-Fi,BT,usbkbd/mse,Win7Pro (64-	корпус А, уровень 10.
bit)+Win8.1 Pro (64-bit), 1-1-1 Wty.	Читальные залы Научной
Скорость доступа в Интернет 500 Мбит/сек. Рабочие места	библиотеки ДВФУ с
для людей с ограниченными возможностями здоровья	открытым доступом к
оснащены дисплеями и принтерами Брайля; оборудованы:	фонду
портативными устройствами для чтения плоскопечатных	
текстов, сканирующими и читающими машинами видео	
увеличителем с возможностью регуляции цветовых спектров; увеличивающими электронными лупами и	
ультразвуковыми маркировщиками.	
ультразьуковыши шаркировщикаши.	

В целях обеспечения специальных условий обучения инвалидов и лиц с

ограниченными возможностями здоровья в ДВФУ все здания оборудованы пандусами, лифтами, подъемниками, специализированными местами, оснащенными туалетными комнатами, табличками информационнонавигационной поддержки.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ШКОЛА)

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине

«Математическое моделирование геопространственных данных» Специальность 21.05.01 «Прикладная геодезия» специализация «Инженерная геодезия» Форма подготовки очная

Владивосток 2021

План-график выполнения самостоятельной работы по дисциплине

«Математическое моделирование геопространственных данных»

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	24.09-11.01	Изучение документации к прикладному программному обеспечению	12 час.	Проверка практических навыков работы с ПО ГИС
2	24.09-11.01	Подготовка к практическим занятиям	32 часов	Получение практических навыков работы с ПО ГИС
3	24.09-11.01	Получение общего представления об инфраструктурах пространственных данных (ИПД), знакомство с системой стандартов обмена ПД Открытого геопространственного консорциума (OpenGeospatialConsor tium, OGC)	12 часов	Дискуссия
4	24.09-11.01	Выполнение кейс- задачи	24 часов	Проверка выполнения задания
5	09.01-16.01	Подготовка к зачёту	10 час.	Устный опрос- собеседование на зачете

Самостоятельная работа состоит из освоения теоретического курса, подготовки практическим занятиям, тестированию.

Рекомендуется использовать разные источники: рекомендуемую учебную литературу, электронные копии лекционного курса, электронный дидактический материал по наиболее сложным теоретическим вопросам, Интернет-ресурсы. Основа подготовки — электронная копия лекционного курса, в которой отражены все основные определения, формулы, методики. Освоение теоретического курса осуществляется не только в результате

работы с традиционными печатными учебными изданиями, но и в ходе подготовки к практическим занятиям.

Тема практического задания объявляется преподавателям заранее, поэтому к занятию можно изучить теоретический материал с использованием уже перечисленных ресурсов.

Практическая часть курса «Математическое моделирование геопространственных данных» полностью согласована с теоретической частью курса. Темы практических занятий выбраны с таким расчетом, чтобы обеспечить приобретение студентами основных навыков выполнения пространственного анализа.

От студентов требуется посещение лекций и практических занятий. Особо ценится активное участие в самостоятельной работе, а также качество контрольных работ.

Для организации самостоятельной работы по дисциплине в качестве обязательного элемента студентам предлагается выполнение кейс-задачи, которое считается выполненной и зачтенной в случае правильного выполнения расчетной части и уверенных и корректных комментариев методики ее решения, наличия отчета о выполненной работе, требования к которому приводятся ниже.

Студентам предлагается самостоятельно подготовиться зачетному опросу. При этом студент должен самостоятельно изучить материалы лекционных и практических занятий, рекомендованную учебнометодическую литературу и информацию из Интернет-источников.

Содержание и методические указания к выполнению кейс-задачи

Пространственный анализ данных основан на использовании пространства в качестве общего ключа между различными наборами данных. Это позволяет выполнять такие трудоемкие операции как перекрытие слоев, так называемые оверлейные операции, являющиеся ключевым инструментом

геопространственного анализа.

<u>Цель работы:</u> ознакомиться с основными оверлейными операциями. Получить практические навыки использования данных инструментов для решения прикладных задач.

<u>Даны следующие наборы пространственных данных,</u> характеризующих территорию Приморского края: административнотерриториальное деление; населённые пункты с информацией о численности населения; автомобильные и железные дороги; особо охраняемые природные территории; лучшие местообитания промысловых животных; землепользование.

Задания:

- 1. Определить площадь (в км кв.) и долю территории, имеющей статус «особо охраняемой природной территории», для каждого административного образования Приморского края.
- 2. Определить районы Приморского края, наиболее привлекательные с точки зрения охоты на водоплавающую дичь. Критерий привлекательности площадь (в км кв.) лучших угодий для охоты на водоплавающую дичь.
- 3. . Определить площадь (в км кв.) и долю территории, занятой землями Гослесфонда, для каждого административного образования Приморского края.
- 4. Определить пару, город/п.г.т. сельский н.п., расстояние между которыми является наименьшим.

Алгоритм выполнения заданий.

В первую очередь необходимо выяснить, в каких системах координат представлены исходные данные. Если их географические системы координат различны, то необходимо выполнить согласование эллипсоидов, т.е. задать соответствующее преобразование.

Задания 1-3.

К слою административного деления приморского края и к

соответствующему конкретной задаче тематическому слою необходимо применить оверлейную операцию «Пересечение (INTERSECT)». Данная операция вычисляет геометрическое пересечение между входными объектами. Объекты или части объектов, общие для всех входных слоев, будут сохранены в выходной класс объектов вместе с атрибутами всех входных объектов.

«Пересечение» В результате операции результирующие объекты наследуют в качестве атрибутов геометрические характеристики входных объектов, Но геометрические характеристики результирующих объектов (в случае использования нетопологических форматов, таких как Shape-файлы) не вычисляются. Если для хранения результирующих объектов будет использоваться формат Shape-файлов, то необходимо самостоятельны вычислить площадь результирующих объектов. Для этого необходимо использовать функцию «CalculateGeometry...» (контекстное меню на заголовке соответствующего поля таблицы атрибутов).

Как было отмечено выше, в результирующем классе объектов будут сохранены атрибуты входных объектов, т.е. каждый результирующий объект будет иметь информацию о принадлежности к конкретному муниципальному образованию. Α поскольку оказаться, тэжом что конкретному образованию будет муниципальному принадлежать несколько объектов, то необходимо выполнить результирующих групповое (по принадлежности конкретному муниципальному образованию) К суммирование площадей результирующих объектов. Для этого используется операция «Summarise...»(контекстное меню на заголовке поля таблицы атрибутов, по которому выполняется группирование). Результатом будет итоговая таблица, содержащая следующие поля: уникальный перечень муниципальных образований; количество результирующих объектов, расположенных муниципального образования; В границах данного результирующая площадь объектов, расположенных в границах данного муниципального образования.

Для того, чтобы ответить на вопрос о наибольшей привлекательности, достаточно будет отсортировать итоговую таблицу по значению результирующей площади.

Задание 4.

необходимо В данном задании воспользоваться стандартным таблиц инструментов связывания ПО ключевому полю (JoinData), воспользовавшись режимом связывания по виртуальному полю (Shape), в котором хранится информация о геометрических характеристиках объекта. Этот режим применим только для точечных классов объектов. В этом случае виртуальное поле содержит информацию только о местоположении объекта в пространстве.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ШКОЛА)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине
«Математическое моделирование геопространственных данных»
Специальность 21.05.01 «Прикладная геодезия»
специализация «Инженерная геодезия»
Форма подготовки очная

Владивосток 2021

Вопросы к контрольным опросам

- 1. Что такое ГИС. Компоненты ГИС. Родственные типы программного обеспечения. Отличие ГИС от САПР. Основная концепция ГИС, отличающая её от компьютерных картографических систем.
- 2. Концепция географических данных (что такое географические данные; типы информации, которую содержат карты; отображение объектов на карте; пространственные взаимосвязи). Хранение географических данных в цифровой форме. Способы цифрового представления данных их сравнительная характеристика.
- 3. Источники данных для ГИС
- 4. Типы данных дистанционного зондирования Земли (ДДЗ), их характеристики.
- 5. Глобальные системы позиционирования. Принципы работы.
- 6. Типы информации, с которой работает ГИС (позиционная, топологическая, атрибутивная). Организация её физического хранения в геореляционной модели. Механизм связывания пространственной и атрибутивной информации.
- 7. Пространственные взаимосвязи, их отображение на карте, использование. Основные топологические концепции, используемые в ГИС. Различие между геометрической и топологической информацией.
- 8. Организация физического хранения топологической информации.
- 9. Модели данных, применяемые в ГИС. Реляционная, геореляционная, объектно-реляционная модели.
- 10. Подходы к использованию РСУБД для управления пространственными данными
- 11. Проектирование БД ГИС. Основные уровни.
- 12. Моделирование поверхностей. Цифровые модели рельефа (ЦМР), источники данных для ЦМР. Типы ЦМР. В решении каких задач используются цифровые модели рельефа?

- 13. Какие факторы контролируют качество ЦМР? Перечислите недостатки топографической карты как основного источника данных для создания ЦМР.
- 14. Основные операции пространственного анализа географической информации. Объясните различие между перекрытием слоёв при графической прорисовке и топологическим перекрытием этих слоёв ПД. Что происходит с атрибутами обоих слоёв в каждом случае?
- Пользуясь самыми общими представлениями о функциях ГИС, предложите путь решения следующей задачи:
 Оцените возможную зону затопления в случае наводнения и его прямых последствий.
- 16. Пользуясь самыми общими представлениями о функциях ГИС, предложите путь решения следующей задачи: Подтвердить или опровергнуть гипотезу о негативном влиянии на здоровье жителей жилого массива выбросов в атмосферу отходов крупного химического производства.
- Пользуясь самыми общими представлениями о функциях ГИС, предложите путь решения следующей задачи:
 Оценить число жителей, обеспеченных устойчивым приёмом телепрограмм, транслируемых вновь построенной телевышкой, в условиях горной залесённой местности.
- 18. Пользуясь самыми общими представлениями о функциях ГИС, предложите путь решения следующей задачи: Выбрать место строительства нового супермаркета с учётом конкурентного торгового окружения.
- 19. Проектирование ГИС. Основные этапы.
- 20. Территориально распределённые ГИС (системы обработки пространственных данных). Проблемы, связанные с развёртыванием подобных систем. Подходы к их решению.

- 21. Концепция «открытого» доступа к пространственным данным и и способы её реализации.
- 22. Концепция работы с ПД в распределенных системах с обеспечением совместимости их компонентов (эталонная модель Открытого геопространственного консорциума, ОGC).
- 23. Инфраструктуры пространственных данных (ИПД). Назначение, основные компоненты, примеры действующих ИПД.

Вопросы к экзамену.

- 1. История представления о форме поверхности Земли. Понятие геоида.
- 2. Способы математического описания поверхности геоида. Наиболее удобная математическая модель геоида.
- 3. Типы эллипсоидов, согласующиеся с поверхностью геоида в целом, и на ограниченной его части. Нужно ли учитывать положение конкретного эллипсоида по отношению к геоиду?
- 4. Методы преобразования координатных систем, в основе которых лежат различные типы эллипсоидов.
- 5. Понятие «геодезическая дата» (Datum). Что включает в себя понятие «географическая система координат»
- 6. В чём различие ортометрических, нормальных и геодезических высот?
- 7. Условия корректной координатной привязки растровых наборов данных.
- 8. Каково назначение операции построения буферных зон? Какими параметрами буферных зон позволяет управлять мастер построения буферных зон ArcGISDesktop?
- 9. Каковы основные источники данных для создания ЦМР суши и дна океана?
- 10. Является ли множество цифровых записей горизонталей полноценной цифровой моделью рельефа?
- 11. Какие математические алгоритмы применяют для создания ЦМР?
- 12. Каковы особенности моделей данных, используемых при создании и обработке ЦМР?

- 13. Какие факторы контролируют качество ЦМР?
- 14. Охарактеризуйте основные функции обработки ЦМР.
- 15. Как классифицируют проекции по виду вспомогательной поверхности (поверхности, на которую проецируется земной эллипсоид или шар при его отображении на плоскость).
- 16. Как классифицируют проекции по характеру искажений?
- 17. Как классифицируют проекции по ориентировке вспомогательной поверхности относительно полярной оси или экватора эллипсоида или шара?
- 18.В чём сходство и различие плоских прямоугольных координат Гаусса-Крюгера и координат UTM?
- 19. Правила разграфки и формирования номенклатур топографических карт.