

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ШКОЛА)

СОГЛАСОВАНО

УТВЕРЖДАЮ Директор департамента электроники,

телекоммуникации и приборостроения

Руководитель образовательной

программы

А.Ю. Родионов (нодпись)

(И.О. Фамилия)

Л.Г. Стаценко

(И.О. Фамилия)

«29» декабря 2022г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математическое и имитационное моделирование приборных систем Направление подготовки 12.04.01 Приборостроение «Цифровые технологии морского приборостроения» Форма подготовки: очная

Рабочая программа составлена соответствии требованиями Федерального государственного образовательного стандарта ПО Приборостроение, направлению подготовки 12.04.01 утвержденного приказом Минобрнауки России от 22.09.2017 г. №957.

Рабочая программа обсуждена на заседании департамента Электроники, телекоммуникации и приборостроения, протокол от «29» декабря 2022 г. **№**5.

Директор Департамента Электроники, телекоммуникации И приборостроения д.ф.-м.н., профессор Л.Г. Стаценко

Составители: доцент С.В. Горовой

Влаливосток 2022

Электрони	ки, телекоммуни Электроники,	кации и прибо _г телекоммуни	ростроения	нии Департамента и утверждена на приборостроения,
Электрони заседании	ки, телекоммуни	кации и прибо _г телекоммуни	ростроения	нии Департамента и утверждена на приборостроения,
Электрони заседании	ки, телекоммуни	кации и прибо _г телекоммуни	ростроения	нии Департамента и утверждена на приборостроения,
Электрони заседании	ки, телекоммуни	кации и прибо _г телекоммуни	ростроения	нии Департамента и утверждена на приборостроения,
Электрони заседании	ки, телекоммуни	кации и прибо _г телекоммуни	ростроения	нии Департамента и утверждена на приборостроения,

Аннотация дисциплины

Математическое и имитационное моделирование приборных систем

Общая трудоемкость дисциплины составляет <u>4</u> зачётные единицы/ <u>144</u> академических часа. Является дисциплиной части ОП, формируемой участниками образовательных отношений, изучается на 1 курсе и завершается экзаменом. Учебным планом предусмотрено проведение занятий: лабораторных — 18 часов, практических — 36 часов, практических интер — 12 часов, а также выделены часы на самостоятельную работу студента — на самостоятельную работу студента — 90 часов, из них на контроль — 45 часов.

Язык реализации: русский.

Целью освоения дисциплины «Математическое и имитационное моделирование приборных систем» является формирование компетенций и реальных навыков в области математического и имитационного моделирования приборных систем применительно к задачам, решаемым с использованием цифровых технологий морского приборостроения.

Задачи дисциплины:

научить выполнять моделирование систем средней сложности в среде Autodesk Inventor (Компас) на конкретных примерах применительно к задачам морского приборостроения;

научить выполнять математическое моделирование систем средней сложности в среде MatLab на конкретных примерах из области морского приборостроения;

научить выполнять имитационное моделирование систем средней сложности в среде LabView на конкретных примерах из области морского приборостроения.

Для успешного изучения дисциплины «Математическое и имитационное моделирование приборных систем » у обучающихся должны быть сформированы следующие предварительные компетенции:

способность использовать нормативную и правовую документацию, характерную для области приборостроения (нормативные правовые акты Российской Федерации, технические регламенты, международные и национальные стандарты); готовность содействовать внедрению перспективных технологий и стандартов; способность осуществлять моделирование работы реальных приборных систем; готовностью к организации работ по практическому использованию и внедрению результатов исследований.

Согласно Учебному плану, в результате изучения дисциплины у студентов должны быть сформированы универсальные и общепрофессиональные компетенции, указанные ниже.

Компетенции студентов, индикаторы их достижения и результаты обучения по дисциплине

Наименование категории Код и наименование компетенции Код и наименование наименование показателя	
•	
(группы) (результат индикатора оценивания	
компетенций освоения) достижения (результата обу	учения
компетенции по дисциплине)	
Системное и УК-1. Способен УК-1.2 Знает м	иетоды
критическое осуществлять Осуществляет генерирования	новых
мышление критический анализ поиск вариантов идей при рег	шении
проблемных решения исследовательск	их и
ситуаций на основе поставленной практических	задач
системного подхода, проблемной Умеет оцег	нивать
вырабатывать ситуации на потенциальные	
стратегию действий основе доступных выигрыши/произ	грыши
источников реализации	ЭТИХ
информации вариантов В.	ладеет
навыками в	выбора
методов и с	редств
решения	задач
исследования	
Разработка и УК-2. Способен УК-2.1 Знает	этапы
реализация управлять проектом Формулирует в жизненного	цикла
проектов на всех этапах его рамках проекта,	этапы
жизненного цикла обозначенной разработки	И
проблемы, цель, реализации прос	екта, а
задачи, также м	иетоды
актуальность, разработки	И
значимость управления прос	ектами
(научную, Умеет разрабат	
	учетом
методическую и анализа	

		T	
		иную в	альтернативных
		зависимости от 16	вариантов его
		типа проекта),	реализации,
		ожидаемые	определять целевые
		результаты и	этапы, основные
		возможные сферы	направления работ
		их применения	Владеет навыками
			восприятия и анализа
			текстов, имеющих
			философское
TC	XIIC A X	AUG 4.0	содержание
Коммуникация	УК-4. Формулирует	УК-4.3	Знает существующие
	в рамках	Демонстрирует	профессиональные
	обозначенной	интегративные	сообщества для
	проблемы, цель,	умения,	профессионального
	задачи,	необходимые для	взаимодействия,
	актуальность,	эффективного	стилистические
	значимость	участия в	особенности
	(научную,	академических и	представления
	практическую,	профессиональных	результатов научной
			деятельности в устной
		дискуссиях	=
	иную в зависимости		и письменной форме
	от 16 типа проекта),		Умеет
	ожидаемые		демонстрировать
	результаты и		успешное и
	возможные сферы		систематическое
	их применения		умение следовать
			основным нормам,
			принятым в научном
			общении Владеет
			навыками применения
			различных методов,
			_
			технологий и типов
			коммуникаций при
			осуществлении
			профессиональной
			деятельности
Научное	ОПК-1. Способен	ОПК-1.3	Знает новые научные
мышление	представлять	Формулирует	результаты по
	современную	задачи и	тематике научных
	научную картину	определяет пути	исследований,
	мира, выявлять	их решения на	необходимых для
	естественнонаучную	основе оценки	эффективного
	сущность проблемы,	эффективности	1 * *
	_		
	формулировать	выбора с учетом	<u> </u>
	задачи, определять	специфики	правильно ставить
	пути их решения и	научных	задачи по выбранной
	оценивать	исследований в	тематике, выбирать
	эффективность	сфере обработки,	для исследования
	выбора и методов	передачи и	необходимые методы,
	правовой защиты	измерения	оценивать значимость
	результатов	сигналов	результатов с точки
	1 1 2 3 7 1 2 1 2 1 2 2	1	i rogitation of to ikit

	интеллектуальной	различной	зрения их
	деятельности с	физической	результативности и
	учетом специфики	природы в	применимости
	научных	сложных	Владеет навыками
	исследований для	измерительных	анализа перспектив
	создания	трактах	научного развития и
	разнообразных	трактах	возможностей
	методик,		внедрения новых
	аппаратуры и		технологий
	технологий		Технологии
	производства в		
	приборостроении		
Исспелователи ская	ОПК-2. Способен	ОПК-2.2	Знает современные
Исследовательская		т.	1
деятельность	организовать	-	методы организации
	проведение	аргументированно	работ по
	научного	защищает	проектированию
	исследования и	полученные	систем и разработке и
	разработку,	результаты,	технологий
	представлять и	связанные с	производства
	аргументированно	научными	приборов и
	защищать	исследованиями	комплексов
	полученные	для создания и	различного
	результаты	освоения	назначения. Умеет
	интеллектуальной	разнообразных	осуществлять отбор,
	деятельности,	методик и	систематизацию,
	связанные с	аппаратуры,	анализ и оценку
	обработкой,	разработки и	современных
	передачей и	технологий	достижений для
	измерением	производства	решения
	сигналов различной	приборов и	поставленных задач
	физической	комплексов	Владеет навыками
	природы в	различного	критической оценки
	приборостроении	назначения;	полученных
			результатов для
			обоснования выбора
			оптимальной
			стратегии решения
			практических задач
			проектирования
			аппаратуры
			неразрушающего
D	OTH 2 C C	ОПИ 2.1	контроля
Владение	ОПК-3. Способен	ОПК-3.1	Знает, как
информационными	приобретать и	Приобретает и	использовать новые
технологиями	использовать новые	использует новые	знания в своей
	знания в своей	знания в своей	предметной области
	предметной	предметной	на основе
	области, предлагать	области на основе	информационных
	новые идеи и	информационных	систем и технологий
	подходы к решению	систем и	Умеет использовать
	инженерных задач	технологий	новые знания в своей
			предметной области

	Ho cowers
	на основе
	информационных
	систем и технологий
	Владеет
	необходимыми
	знаниями в своей
	предметной области
OTHE 2.2	на
ОПК-3.2	Знает принципы
Предлагает новые	построения локальных
идеи и подходы на	и глобальных
основе	компьютерных сетей
информационных	Умеет использовать
систем и	современные
технологий к	информационные и
решению	компьютерные
инженерных задач	технологии, при
	разработке новых
	идей и подходов к
	решению инженерных
	задач Владеет
	методами и
	технологиями
	межличностной
	коммуникации,
	навыками публичной
ОПК-3.3	речи
	Знает Интернет-
Применяет	технологий, типовые
современные	процедуры
программные	применения проблемно-
пакеты для	•
создания и	ориентированных
редактирования документов и	прикладных программных средств
документов и технической	
документации,	в дисциплинах профессионального
компьютерного	профессионального цикла и
моделирования,	профессиональной
решения задач	сфере деятельности
инженерной	Умеет применять
графики	информационные
1 paprikri	технологии с учетом
	специфики
	профессиональной
	области Владеет
	современными
	методами научного
	исследования и
	информационно-
	информационно- коммуникационных
	технологий
<u> </u>	телпологии

Для формирования вышеуказанных компетенций в рамках дисциплины «Математическое и имитационное моделирование приборных систем» применяются следующие образовательные технологии и методы активного/интерактивного обучения: дискуссия, работа в малых группах.

I. Цели и задачи освоения дисциплины:

Целями освоения дисциплины «Математическое и имитационное моделирование приборных систем » являются освоение:

- 1. новых принципов имитационного и математического моделирования в области морского приборостроения;
 - 2. новых систем имитационного и математического моделирования;
 - 3. приобретение и закрепление навыков моделирования.

Задачи дисциплины:

- 1. ознакомление с новыми приемами математического и имитационного моделирования;
- 2. приобретение знаний в области построения математических и имитационных моделей;
 - 3. овладение системным подходом к моделированию;
- 4. формирование специалистов, глубоко владеющих современными технологиями и способных эффективно использовать эти знания при разработке и эксплуатации оборудования применительно к задачам гидроакустики.

Место дисциплины в структуре ОПОП ВО (в учебном плане):

Является дисциплиной части ОП, формируемой участниками образовательных отношений.

II. Трудоёмкость дисциплины и виды учебных занятий по дисциплине Общая трудоемкость дисциплины составляет 4 зачётные единицы (144 академических часа).

Структура дисциплины:

Форма обучения – очная.

	Науманаранна раздала	re)	Количество часов по видам	Формы
No ⊓a	Наименование раздела	crr	учебных занятий и работы	промежуточной и
	дисциплины)	обучающегося	текущей

			Лек	Лаб	фП	OK	CP	Контроль	аттестации
1	Тема 1. Модели и моделирование. Методы и программные средства	1			6	-			
2	Тема 2. Моделирование в среде Autodesk Inventor	1		6	6				
3	Тема 5. Математическое моделирование	1			6				
4	Тема 6. Математическое моделирование в среде MatLab	1		6	6		45	45	УО-1; ПР-7;
5	Тема 3. Имитационное моделирование	1			6	-			
6	Тема 4. Имитационное моделирование в среде LabView	1		6	6	-			

Для формирования вышеуказанных компетенций в рамках дисциплины «Математическое и имитационное моделирование приборных систем» применяются следующие методы активного обучения: практические занятия с применением имитационных методов, включающих разбор конкретных ситуаций, действий по инструкциям.

III. СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Лекционные занятия не предусмотрены

IV. СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Практические занятия (36часов, 12 с применением MAO)

Занятие 1. "Модели и моделирование"-3 часа

- 1.Общие представления о моделировании-1час
- 2. Разбор простых моделей приборных систем. -2часа

Занятие 2. "Модели и моделирование". - 3 часа

- 1. Типы моделей разного уровня абстрактности.-1 час
- 2. Разбор простых электромеханических моделей приборных систем. -

Занятие 3. Моделирование в среде Autodesk Inventor. -- 3 часа

- 1. Идеология построения системы Autodesk Inventor .- 2часа
- 2. Выполнение моделей простых устройств и деталей.-1часа

Занятие 4. Моделирование в среде Autodesk Inventor. -- 3 часа

- 1. Идеология построения системы Autodesk Inventor .-1 часа
- 2. Выполнение модели двухрычажного механизма с шаговыми двигателями применительно к системам поворота антенн-2часа

Занятие 5. Математическое моделирование. -- 3 часа

- 1. Методы математического моделирования применяемые в прибростроении.-2часа
 - 2. Простые примеры математических моделей, их недостатки-1час

Занятие 6. Математическое моделирование. -- 3 часа

- 1. Моделирование ПИД-регулятора, общие вопросы.-2 часа
- 2. Моделирование сигналов управления и связи.-1 часа

Занятие 7. Математическое моделирование в среде MatLab.- - 3 часа

- 1. Особенности моделирования в Matlab и Matlab Simulink-2часа
- 2. Примеры простых моделей в Matlab и Matlab Simulink.-1час

Занятие 8. Математическое моделирование в среде MatLab.- - 3 часа

- 1.Учет динамических параметров систем при моделировании, необходимость использования ПИД-регуляторов. -1час
- 2.Построение и проверка функционирования модели двухрычахжного механизма с двумя шаговыми двигателями и ПИД-регулятором. -2часа

Занятие 9. Имитационное моделирование.- 3 часов

- 1.Основные понятия имитационного моделирования технических устройств. 2часа
 - 2. Разбор простых имитационных моделей. -1часа

Занятие 10. Имитационное моделирование - - 3 часа

- 1. Имитационное моделирование систем с обратными связями. -2часа
- 2. Разбор ситуаций, когда нарушаются обратные связи. Критические

режимы, выход из них.-1 час

Занятие 11. Имитационное моделирование в среде LabView- - 3 часа

- 1.Идеология построения систем графического программирования на примере среды LabView . -1часа
 - 2. Разбор простых систем и их недостатков. 2 часа

Занятие 12. Имитационное моделирование в среде Lab View- -3 часа

- 1.Построение систем имитационного моделирования устройств, в которых присутствуют соединения по компьютерным сетям. -1 час
 - 2.Имитационное моделирования двухрычажного механизма. -2часа

Лабораторные работы

Занятие 1. Моделирование в среде Autodesk Inventor. -- 6 часов

Выполнение моделей двухрычажного механизма с заданными характеристиками и его деталей в среде Autodesk Inventor.-1часа

Занятие 2. Математическое моделирование в среде MatLab.- -6 часов

Моделирование заданной траектории движения с помощью двухрычажного механизма, анализ вопросов точности и времени выполнения в среде Matlab.

Занятие 3. Имитационное моделирование в среде Lab View- -6 часов

Реализация имитационной модели двухрычажного механизма с управлением по компьютерной сети.

V. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙРАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа определяется как индивидуальная или коллективная учебная деятельность, осуществляемая без непосредственного

руководства преподавателя, но по его заданиям и под его контролем. Самостоятельная работа — это познавательная учебная деятельность, когда последовательность мышления студента, его умственных и практических операций и действий зависит и определяется самим студентом.

Самостоятельная работа студентов способствует развитию самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровней, что в итоге приводит к развитию навыка самостоятельного планирования и реализации деятельности.

Целью самостоятельной работы студентов является овладение необходимыми компетенциями по своему направлению подготовки, опытом творческой и исследовательской деятельности.

Формы самостоятельной работы студентов:

- работа с основной и дополнительной литературой, интернетресурсами;
- самостоятельное ознакомление с лекционным материалом, представленным на электронных носителях, в библиотеке образовательного учреждения;
- подготовка реферативных обзоров источников периодической печати, опорных конспектов, заранее определенных преподавателем;
- поиск информации по теме с последующим ее представлением в аудитории в форме доклада, презентаций;
 - подготовка к выполнению аудиторных контрольных работ;
 - выполнение домашних контрольных работ;
 - выполнение тестовых заданий, решение задач;
 - составление кроссвордов, схем;
- подготовка сообщений к выступлению на семинаре, конференции;
 - заполнение рабочей тетради;
 - написание эссе, курсовой работы;
 - подготовка к деловым и ролевым играм;
 - составление резюме;
 - подготовка к зачетам и экзаменам;
- другие виды деятельности, организуемые и осуществляемые образовательным учреждением и органами студенческого самоуправления.

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине включает в себя:

- план-график выполнения самостоятельной работы по дисциплине, в

том числе примерные нормы времени на выполнение по каждому заданию;

- требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	В течение семестра	Подготовка к практическим занятиям, изучение литературы	36 часов	Работа на лабораторных занятиях (ПР-6)
2	В течение семестра	Выполнение самостоятельной работы № 1	12 часов	ПР-7 (конспект)
3	В течение семестра	Выполнение самостоятельной работы № 2	6 часов	УО-3 (доклад, сообщение)
7	В течение семестра	Подготовка к экзамену	36 часов	экзамен
Итого:		54 часа		

VI.СПИСОК ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Гадзиковский, В. И. Математическое и имитационное моделирование приборных систем / В. И. Гадзиковский. Москва : СОЛОН-ПРЕСС, 2017. 766 с. ISBN 978-5-91359-117-3. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/90342.html
- 2. Новиков, П. В. Математическое и имитационное моделирование приборных систем : учебно-методическое пособие / П. В. Новиков. Саратов : Вузовское образование, 2018. 75 с. ISBN 978-5-4487-0286-0. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/76797.html

- 3. Сидельников Г.М. Математическое и имитационное моделирование приборных систем мультимедиа [Электронный ресурс]: учебное пособие/ Сидельников Г.М., Калачиков А.А.— Электрон. текстовые данные.— Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2017.— 111 с.— Режим доступа: http://www.iprbookshop.ru/74664.html ЭБС «IPRbooks»
- 4. Математическое и имитационное моделирование приборных систем . Часть 3. Методы и алгоритмы обработки сигналов адаптивными КИХ и БИХ фильтрами / Ю. В. Рясный, Е. В. Дежина, Ю. С Черных, С. Л. Ремизов. Новосибирск : Сибирский государственный университет телекоммуникаций и информатики, 2017. 205 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/78149.html

Дополнительная литература

- 1. Алан Оппенгейм Математическое и имитационное моделирование приборных систем [Электронный ресурс]/ Алан Оппенгейм, Рональд Шафер— Электрон. текстовые данные.— М.: Техносфера, 2012.— 1048 с.— Режим доступа: http://www.iprbookshop.ru/26906 ЭБС «IPRbooks»
- 2. Умняшкин С.В. Теоретические основы цифровой обработки и представления сигналов [Электронный ресурс]: учебное пособие/ Умняшкин С.В.— Электрон. текстовые данные.— М.: Техносфера, 2012.— 368 с.— Режим доступа: http://www.iprbookshop.ru/26902 ЭБС «IPRbooks»

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. База данных Scopus http://www.scopus.com/home.url
- 2. База данных Web of Science http://apps.webofknowledge.com/
- 3. Научная библиотека ДВФУ https://www.dvfu.ru/library/

- 4. «eLIBRARY.RU Научная электронная библиотека http://elibrary.ru/defaultx.asp
- 5. CETEBOE ИЗДАНИЕ «WWW.IPRBOOKSHOP.RU» http://www.iprbookshop.ru
 - 6. Электронно-библиотечная система «Лань» https://e.lanbook.com/
- 7. Электронно-библиотечная система «Znanium.com» https://znanium.com/catalog

Перечень информационных технологий и программного обеспечения

- 1. LabView среда моделирования и создания виртуальных приборов;
- 2. Autodesk Inventor трёхмерная система автоматизированного проектирования и черчения
 - 4. Matlab универсальная программная система.
- 3. Пакет программного обеспечения Microsoft Office (Word, Outlook, Power Point, Excel, Photoshop)
 - 4. Microsoft teams.

VII. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Планирование и организация времени, отведенного на изучение дисциплины. Приступить освоению К дисциплины незамедлительно в самом начале учебного семестра. Рекомендуется основные положения Рабочей изучить структуру И дисциплины. Обратить внимание, что кроме аудиторной работы (лекции, лабораторные занятия) планируется самостоятельная работа, итоги которой влияют на окончательную оценку по итогам освоения учебной дисциплины. Все задания (аудиторные и самостоятельные) необходимо выполнять и предоставлять на оценку в соответствии с графиком.

В процессе изучения материалов учебного курса предлагаются следующие формы работ: чтение лекций, лабораторные занятия, задания

для самостоятельной работы.

Лекционные занятия ориентированы на освещение вводных тем в каждый раздел курса и призваны ориентировать студентов в предлагаемом материале, заложить научные и методологические основы для дальнейшей самостоятельной работы студентов.

Практические и лабораторные занятия акцентированы на наиболее принципиальных и проблемных вопросах курса и призваны стимулировать выработку практических умений.

Особо значимой для профессиональной подготовки студентов является самостоятельная работа по курсу. В ходе этой работы студенты отбирают необходимый материал по изучаемому вопросу и анализируют его. Студентам необходимо ознакомиться с основными источниками, без которых невозможно полноценное понимание проблематики курса.

Освоение курса способствуетразвитию навыков обоснованных и самостоятельных оценок фактов и концепций. Поэтому во всех формах контроля знаний, особенно при сдаче экзамена, внимание обращается на понимание проблематики курса, на умение практически применять выводы. Работа с литературой. Рекомендуется знания и делать использовать различные возможности работы с литературой: фонды ДВФУ библиотеки И электронные библиотеки (http://www.dvfu.ru/library/), а также доступные для использования другие научно-библиотечные системы.

Подготовка к экзамену. К сдаче экзамена допускаются обучающиеся, выполнившие все задания (практические, самостоятельные), предусмотренные рабочей программой дисциплины, посетившие не менее 85% аудиторных занятий.

Шкала оценивания сформированности образовательных результатов по дисциплине представлена в фонде оценочных средств (ФОС).

VIII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебные занятия по дисциплине проводятся в помещениях, оснащенных соответствующим оборудованием и программным обеспечением.

Перечень материально-технического и программного обеспечения дисциплины приведен в таблице.

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещенийи помещений для самостоятельной работы	Перечень лицензионного программного обеспечения.
Мультимедийные аудитории L529, E729, E728, E625	Экран с электроприводом Trim Screen Line, проектор Mitsubishi, подсистема видеокоммутации, подсистема аудиокоммутации и звукоусиления, акустическая система для потолочного монтажа Extron, цифровой аудиопроцессор, документ-камера AverVision, доска аудиторная, специализированная учебная мебель	Microsoft Office 365, Microsoft Teams, Microsoft Visio, MathCad Education Universety Edition, AutoCAD, 7-Zip, Scilab, LabView, Matlab, Autodesk Inventor
Компьютерный класс E 725, E 726, E 727	Методика «Emona DATEx Экран с электроприводом Trim Screen Line, проектор Mitsubishi, подсистема видеокоммутации, подсистема аудиокоммутации и звукоусиления, акустическая система для потолочного монтажа Extron, цифровой аудиопроцессор, документ-камера AverVision,	Microsoft Office 365, Microsoft Teams, Microsoft Visio, MathCad Education Universety Edition, AutoCAD, 7-Zip, Scilab,
Читальные залы Научной библиотеки ДВФУ с открытым доступом к фонду (корпус А – уровень 10)	Моноблок HP ProOne 400 All-in-One 19,5 (1600х900), Core i3-4150T, 4GB DDR3-1600 (1х4GB), 1ТВ HDD 7200 SATA, DVD+/-RW, GigEth, Wi-Fi, BT, usb kbd/mse, Win7Pro (64-bit) + Win8.1Pro (64-bit), 1-1-1 Wty Скорость доступа в Интернет 500 Мбит/сек.	Microsoft Office 365, Microsoft Teams, Microsoft Visio, MathCad Education Universety Edition, AutoCAD, 7-Zip, Scilab,

В целях обеспечения специальных условий обучения инвалидов и лиц с ограниченными возможностями здоровья в ДВФУ все здания оборудованы пандусами, лифтами, подъемниками, специализированными местами, оснащенными туалетными комнатами, табличками информационно- навигационной поддержки.