

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» $(ДВ\Phi Y)$

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ШКОЛА)

	mi micinit i (mkom)
«СОГЛАСОВАНО» ¹ Руководитель ОП Кульчин Ю.Н. (подпись) (Ф.И.О. рук. ОП)	«УТВЕРЖДАЮ» Заведующий Базовой кафедрой «Фотоника и цифровые лазерные технологии» (название кафедры) Кульчин Ю.Н. (подпись) (Ф.И.О. зав. каф.)
« <u>31</u> » <u>августа</u> 2021г.	« <u>31</u> » <u>августа</u> 2021г.
	АММА ДИСЦИПЛИНЫ енная фотоника
_	ки 12.04.01 Приборостроение
магистерская программа «Цифровые л	назерные технологии, оптоволоконные сети» ² одготовки очная
курс 1 семестр 1,2 лекции 36 час. практические занятия 36 час. лабораторные работы 0 час. в том числе с использованием МАО лек. всего часов аудиторной нагрузки 72 час. в том числе с использованием МАО 18 час. самостоятельная работа 72 час. в том числе на подготовку к экзамену 27 час. в том числе на подготовку к экзамену 27 час. контрольные работы (количество) курсовая работа / курсовой проект - семеста зачет 1 семестр экзамен 2 семестр	
образовательного стандарта высшего обра образования и науки РФ от <u>22 сентяб</u>	ии с требованиями федерального государственного зования, утвержденного приказом Министерства ря 2017 г № 957/ образовательного стандарта, ержденного приказом ректора от №
Рабочая программа обсуждена на заседании технологий ПИ ДВФУ протокол № 12 от «	Базовой кафедры Фотоники и цифровых лазерных 31 » августа 2021 г.
Заведующий кафедрой <u>академик РАН Кульчи</u> Составитель (ли) : <u>академик РАН, д.фм.н., пр</u>	
1 кроме РПД общеуниверситетских дисциплин. 2 На титульном дисте РПЛ общеуниверситетских д	испиплин названия направлений и профилей че

² На титульном листе РПД общеуниверситетских дисциплин названия направлений и профилей не указываются, перечисляются только шифры направлений, на которых данная дисциплина реализуется. Если дисциплина реализуется для всех направлений подготовки, на титульном листе указывается «Для всех направлений подготовки бакалавриата/специалитета/ магистратуры», шифры в этом случае не указываются.

Оборотная сторона титульного листа РПД

І. Рабочая программа пересм	отрена на заседан	ии кафедры:
Протокол от «»	20 г	. №
Заведующий кафедрой	(подпись)	Ю.Н. Кульчин (И.О. Фамилия)
П. Рабочая программа перес	мотрена на заседа	нии кафедры:
Протокол от «»	20	г. №
Заведующий кафедрой	(подпись)	<u>Ю.Н. Кульчин</u> (И.О. Фамилия)

Аннотация к рабочей программе дисциплины «Современная фотоника»

Дисциплина разработана для студентов, обучающихся по направлению подготовки 12.04.01 «Приборостроение», магистерская программа «Цифровые лазерные технологии, оптоволоконные сети», в соответствии с требованиями ФГОС ВО 3++, входит в Блок 1 Дисциплины (модули) учебного плана, в часть ОПОП, формируемую участниками образовательных отношений, и является обязательной дисциплиной (Б1.В.04).

Для освоения данного материала студенты должны знать общую физику, теоретическую физику, электродинамику, прикладную оптику, физику твердого тела, волоконную и интегральную оптику, нелинейную оптику, лазерную физику, физическую химию и высшую математику.

В дисциплине «Современная фотоника» изучают физические основы, принципы и методы управления оптическими сигналами в устройствах фотоники и рассматривают нелинейно-оптические устройства, волноводные оптические переключатели и датчики физических величин

Цель курса: дать необходимые представления о физических принципах, используемых для управления оптическими сигналами, основных методах и устройствах управления излучением, а также об особенностях применения различных методов управления излучением в лазерной технике, оптических линиях связи, приборах интегральной оптики и волоконно-оптических датчиках.

Задачи дисциплины:

- дать студенту представления об основных физических принципах управления оптическими сигналами;
- изучить основные характеристики оптических сигналов и их классификацию;
- изучить оптические характеристики материалов;
- изучить физические основы оптических эффектов, используемых для управления оптическими сигналами;

- изучить нелинейно-оптические эффекты и преобразования оптических сигналов в устройствах фотоники;
- дать представление об управлении оптическими сигналами в устройствах интегральной оптики, волоконно-оптических системах связи и волноводных и волоконных датчиках.

Для успешного изучения дисциплины «Современная фотоника» у обучающихся должны быть сформированы следующие предварительные компетенции:

- способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий (УК-1);
- способен определить и реализовать приоритеты собственной деятельности и способы её совершенствования на основе самооценки (УК-6).

В результате изучения данной дисциплины у обучающихся формируются следующие профессиональные компетенции:

Задача профессиональной деятельности	Объекты или область знания профессионально	вание профес- сиональной компетенции	Код и наимено- вание индика- тора достижения профессиональ- ной компетен- ции	предъявляемых к выпускникам)
Научные исследования в области оптического приборостроения, оптических материалов и технологий Научные исследования в области приборостроения, конструкци	рический и ин- терференционный подход), дифрак- ционные, поляри- зационные и дру-	ПК-3 - способность провести экспериментальные исследования, измерения по заданным методикам с выбором технических средств и обработкой результатов	организации ис- следований и раз- работок, методы проведения экспе- риментов и наблю- дений, обобщения и обработки ин- формации. ПК-3.2 умеет	29.004 Специа- лист в области проектирования и сопровождения производства оп- тотехники, опти- ческих и оптико- электронных приборов и ком- плексов Анализ опыта

тромагнитные,	излучения.	
оптические, теп-		
лофизические,		
акустические,		
акустооптические,		
радиационные и		
другие методы		
контроля и изме-		
рений;		

Код индикатора достижения компетенции	Наименование показателя оценивания (результата обучения по дисциплине)			
ПК-3.1	знает	основные физические процессы, используемые для управления оптическими сигналами, основные методы и устройства управления излучением, а также об особенностях применения различных методов управления излучением в лазерной технике, оптических линиях связи, приборах интегральной оптики и волоконнооптических датчиках.		
	умеет	использовать приобретенные знания при анализе поставленной задачи исследований в области лазерных технологий		
	владеет	методами анализа поставленной задачи исследований в области лазерных технологий		
	знает	основные характеристики оптических сигналов и их классификацию, оптические характеристики материалов, физические основы оптических эффектов, используемых для управления оптическими сигналами		
	умеет	проводить измерения и исследования различных эффектов, возникающих в оптических волноводах и волокнах при внешнем воздействии по заданной методике		
	владеет	методами измерения и исследования различных эффектов для разработки новых типов волоконных датчиков и сенсоров, обладающих высокой чувствительностью и избирательностью.		

Видами учебных занятий и работы обучающегося по дисциплине могут являться:

Обозначение	Виды учебных занятий и работы обучающегося
Лек	Лекции
ПЗ	Практические занятия
СР	Самостоятельная работа обучающегося в период теоретического обучения

Общая трудоемкость освоения дисциплины составляет 144 часа (4 зачётные единицы) для Блока 1. Учебным планом предусмотрено следующее количество часов: лекционные занятия (36 часов), практические занятия (36 часов) и самостоятельная работа студента (72 часа и в том числе 27 часов для подготовки к экзамену). Дисциплина реализуется на 1 курсе в 1, 2 семестрах. Форма промежуточной аттестации – зачёт, экзамен.

Структура дисциплины:

Форма обучения – очная.

						Формы промежу-			
№	Наименование раздела дисциплины	Семестр	ЛЭП	Лаб	ďΠ	МО	dЭ	Контроль	точной аттеста- ции, текущего контроля успе- ваемости
1	Современная фотоника	1	18	0	18	0	36	0	зачет
2	Современная фотоника	2	18	0	18	0	9	27	экзамен
	Итого:		36	0	36	0	45	27	144

Для формирования вышеуказанных компетенций в рамках дисциплины «Современная фотоника» применяются следующие методы активного обучения: проблемное обучение, консультирование и рейтинговый метод.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Содержание теоретической части курса разбивается на <u>разделы</u>, темы.

Раздел І. Основы нелинейной оптики (_2/__час.) – через косую черту указываются часы по очной/заочной форме обучения

Тема 1. Нелинейно-оптические взаимодействия света и вещества (_1/__час.)

Нелинейно-оптические взаимодействия света и вещества. Природа нелинейно-оптических явлений. Классификация нелинейно-оптических эффектов. Поляризация диэлектриков в постоянном электрическом поле. Поляризация изотропного диэлектрика в световом поле. Взаимодействие интенсивных электромагнитных волн с нелинейной средой. Генерация второй гармоники. Условие фазового синхронизма.

Тема 2. Статический и динамический эффект Керра в нелинейной среде (_1/__час.)

Статический и динамический эффект Керра в нелинейной среде. Керровская самофокусировка света в нелинейной среде. Плазменная самофокусировка. Фазовая самомодуляция светового излучения. Расширение спектра фемтосекундных импульсов в нелинейных средах. Компрессия лазерных импульсов.

Раздел II. Явления филаментации и генерации суперконтинуума при распространении лазерных импульсов в нелинейной среде

(_4/__час.) – через косую черту указываются часы по очной/заочной форме обучения

Тема 1. Генерация суперконтинуума при распространении импульсного лазерного излучения в конденсированных средах (_2/__час.)

Генерация суперконтинуума при распространении импульсного лазерного излучения в конденсированных средах. Фазовая самомодуляция и элементарная теория спектрального уширения сверхкоротких лазерных импульсов. Нелинейное волновое уравнение для описания процесса филаментации лазерногого импульса.

Тема 2. Изменение формы и спектра импульса при филаментации. (_2/__час.)

Изменение формы и спектра импульса при филаментации. Филаментация импульсного излучения в газообразных средах. Атмосферные приложения мощного фемтосекундного излучения. Филаментация лазерного пучка, как источник суперконтинуума для экологического мониторинга.

Раздел III. Фотонные кристаллы (_2/__час.) – через косую черту указываются часы по очной/заочной форме обучения

Тема 1. Фотонные кристаллы (_2/__час.)

Классификация фотонных кристаллов. Одномерные, двумерные и трехмерные фотонные кристаллы. Механизмов формирования фотонных запрещённых зон. Роль дефектов в фотонно-кристаллических структурах. Фотонно-кристаллические устройства. Фотонно-кристаллические волокна. Классификация. Характеристики фотонно-кристаллических волокон:

модовые, дисперсионные, энергетические и спектральные характеристики. Фотонно-кристаллические волокна с запрещенной зоной: Брэгговские волоконные световоды; 2D – фотонно-кристаллические волоконные световоды.

Раздел IV. Нелинейная оптика волоконных световодов (_6/__час.) – через косую черту указываются часы по очной/заочной форме обучения

Тема 1. Нелинейно-оптические процессы в волоконных световодах (1часть) (_2/ час.)

Нелинейно-оптические процессы в волоконных световодах. Волноводное усиление эффективности нелинейно-оптических процессов в волоконных световодах. Фазовая самомодуляция излучения в волоконных световодах. Влияние дисперсии на нелинейные процессы в волоконных световодах. Фазовая кросс-модуляция импульсов в волоконных световодах. Четырех-волновое смешение волн.

Тема 2. Нелинейно-оптические процессы в волоконных световодах (2 часть) (_2/ час.)

Вынужденное комбинационное рассеяние (ВКР) излучения в волоконных световодах. Вынужденное рассеяние Мандельштама-Бриллюэна в волоконных световодах. Распространение ультра коротких лазерных импульсов в волоконных световодах. Накачка в области нормальной дисперсии. Накачка в области аномальной дисперсии. Генерация суперконтинуума в волоконых световодах.

Тема 3. Нелинейно-оптические процессы в волоконных световодах (3 часть) (_2/__час.)

Нелинейные свойства фотонно-кристаллических волоконных световодов. Дисперсионные свойства микроструктурированных фотонно-кристаллических волоконных световодов. Генерация суперконтинуума в МС-волоконных световодах. Генерация суперконтинуума в МС-волоконных световодах, имеющих две длины волны нулевой дисперсии. Нелинейно-оптические свойства ФК – волоконных световодов.

Раздел V. Волоконные лазеры (_4/__час.)

Тема 1. Принцип работы волоконного лазера (_1/_ час.)

Принцип работы волоконного лазера. Активные волоконные световоды. Резонаторы волоконных лазеров. Непрерывные волоконные лазеры. Волоконные лазеры на основе вынужденного комбинационного рассеяния излучения. Однокаскадные, многокаскадные и составные ВКР-лазеры. Волоконные ВКР-лазеры со случайной распределенной обратной связью.

Тема 2. Импульсные волоконные лазеры (_1/__час.)

Импульсные волоконные лазеры. Методы получения импульсного излучения волоконных лазеров: модуляция добротности, активная и пассивная синхронизация мод волоконного лазера, использованием зеркального насыщающегося полупроводникового поглотителя (SESAM).

Тема 3. Методы компенсации дисперсионного расплывания импульсов в волоконных лазерах. (_1/__час.)

Призменные компенсаторы дисперсии групповой скорости. Решеточный групповой скорости. Компенсатор дисперсии дисперсии групповой скорости на основе интерферометра Жира Турнуа. Компенсаторы дисперсии групповой скорости на основе чирпированных Системы брэгговских зеркал. волоконно-оптических генераторов суперконтинуума. Усиление УКИ в волоконных лазерах.

Тема 4. Волоконные лазеры в технологии. (_1/__час.)

Волоконные лазеры в технологии. Физические процессы при обработке материалов лазерным излучением. Методы поверхностной лазерной обработки. Применение волоконных лазеров для сварки, сверления и обработки материалов.

Раздел VI. Нелинейная фотоника наноструктур (_4/__час.)

Тема 1. Энергетический спектр наноразмерных структур. (_2/__час.)

Энергетический спектр наноразмерных структур. Объемная кристаллическая структура: энергетический спектр носителей заряда в объемной кристаллической структуре, плотность состояний электронов в энергетической зоне объемной кристаллической структуры. Энергетический состояний носителей спектр И плотность заряда В одномерной изолированной квантовой яме и квантовой нити. Квантовые точки и плотность состояний электронов.

Тема 2. Экситонные состояния в полупроводниковых и диэлектрических материалах (_2/__час.)

Экситонные состояния в полупроводниковых и диэлектрических материалах. Свободные экситоны или экситоны Ванье-Мотта. Связанные Френкеля). Влияние экситоны (экситоны формы наночастиц энергетическую подсистему носителей заряда. Одночастичные состояния в Двухчастичные (экситонные) состояния в наночастицах сложной формы. наночастицах с неправильной геометрией формы. Влияние окружающей среды энергетический спектр экситонов В наночастицах. Низкоэнергетическая оптическая нелинейность жидких нанокомпозитных сред на основе наночастиц.

Раздел VII. Лазерное охлаждение, пленение и управление атомами (_4/__час.)

Тема 1. Лазерное охлаждение и пленение (_2/__ час.)

Допплеровское и зеемановское охлаждение атомов. Остановка и пленение атомов: допплеровские ловушки, магнито-оптические ловушки и сизифово охлаждение. Лазерное охлаждение ниже уровня отдачи. Охлаждение атомов на основе селективного по скоростям когерентного пленения населенностей. Испарительное охлаждение атомов. Физика холодных атомов и ее приложения. Однокомпонентная плазма. Бозе-Эйнштейновскя конденсация атомов. Атомный лазер. Атомный фонтан и атомные часы. Атомная оптика. Методы построения элементов атомной оптики.

Тема 2. Управление атомными пучками (_2/ час.)

Управление атомными пучками с использованием материальных структур. Управление атомными пучками с использованием статических электрических и магнитных полей. Управление атомными пучками при помощи лазерного излучения. Атомно-оптическая нанолитография. Нанолитография прямого осаждения. Нанолитография на резисте. Атомная наноперьевая литография.

Раздел VIII. Фотоника самоорганизующихся наностуктурированных биоминеральных объектов и их биомиметических аналогов (_4/__час.)

Тема 1. Фотоника самоорганизующихся наностуктурированных биоминеральных объектов (_2/__час.)

Морфология и физико-химические характеристики спикул глубоководных стеклянных морских губок (ГСМГ). Роль фотонно-кристаллических свойств спикул слубоководных морских губок в процессе их метаболизма. Нелинейно-оптические свойства спикул глубоководных стеклянных морских губок

Тема 2. Фотоника биомиметических аналогов наностуктурированных биоминеральных объектов (_2/ час.)

Биомиметическое моделирование биосиликатного нанокомпозитного материала спикул ГСМГ. Золь-гель технологии химического моделирования материалов биоминеральных нанокомпозитных оптические И ИХ характеристики. 2-D 3-D биомиметические нанокомпозитные биоминеральные структуры для фотоники, биомедицины, сорбции. Биосилификация живых В системах cиспользованием клонированных белков силикатеинов.

Раздел IX. Динамическая голография и оптические Novelty фильтры (_4/__час.)

Тема 1. Динамическая голография и оптические Novelty фильтры (_2/ час.)

Адаптивная оптика. Динамическая голография. Процесс взаимодействия двух плоских волн на динамических голограммах в фоторефрактивных кристаллах. Передаточная характеристика оптического Novelty фильтра. Особенности функционирования оптических Novelty фильтров.

Тема 2. Оптические Novelty фильтры (_2/ час.)

Низкочастотный и высокочастотный Novelty фильтры. Полосовой Novelty фильтр. Novelty фильтры, основанные на использовании явления фанинга в фоторефрактивных кристаллах. Функциональные Novelty-фильтры для обработки изображений на основе эффекта фанинга. Высокочастотные корреляционные Novelty-фильтры реального времени.

Раздел X. Адаптивные оптоэлектронные системы СМАРТ – ГРИД мониторинга физических полей и объектов (_2/__час.)

Тема 1. Адаптивные оптоэлектронные системы СМАРТ – ГРИД мониторинга физических полей и объектов (_2/ час.)

Лазерная диагностика. Интеллектуальные распределенные измерительные системы (СМАРТ – ГРИД) мониторинга физических полей и объектов. Томографические распределенные волоконно-оптические измерительные системы (РВОИС) для реконструкции распределений скалярных и векторных физических полей. Протяженные волоконно-оптические измерительные линии на основе одноволоконных многомодовых интерферометров и методы адаптивной пространственной фильтрации. Методы мультиплексирования волоконно-оптических измерительных линий в СМАРТ – ГРИД системах мониторинга. Пространственное мультиплексирование. Угловое мультиплексирование. Спектральное мультиплексирование.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Структура и содержание практической части курса включает в себя тематику и содержание практических занятий, семинаров, лабораторных работ.

Практические занятия (_36/__час.)

Занятие 1. Основы нелинейной оптики (_2/__час.)

- 1. Нелинейно-оптические взаимодействия света и вещества.
- 2. Статический и динамический эффект Керра в нелинейной среде.

Занятие 2. Явления филаментации и генерации суперконтинуума при распространении лазерных импульсов в нелинейной среде (_2/__час.)

- 1. Генерация суперконтинуума при распространении импульсного лазерного излучения в конденсированных средах
- 2. Задание 1

Вывод уравнения для описания процесса взаимодействия импульсного лазерного излучения с веществом при генерации суперконтинуума

Ознакомиться с литературой:

- Zheltikov A M (Ed.) Supercontinuum Generation.// Special issue of Appl. Phys., 2003, v. B 7, No. 2, pp.3-23.
- Сметанина Е.О., Компанец В.О., Чекалин С.В., Кандидов В.П.Особенности филаментации фемтосекундного лазерного излучения в условиях аномальной дисперсии в плавленом кварце. Ч.1 Численное исследование.// Квантовая электроника, 2012, т. 42, №10, с. 913-919.

Занятие 3. Филаментация импульсного излучения в газообразных средах. (_2/_ час.)

- 1. Нелинейное волновое уравнение для описания процесса филаментации лазерногого импульса. Изменение формы и спектра импульса при филаментации.
- 2. Задание 2

Описание особенностей процесса филаментации лазерного излучения в атмосфере.

Ознакомиться с литературой:

 Fedotiv V.Y., Tverskoy O.V., Kandidov V.P. Transport of high fluence energy by femtosecond filament in air.//Appl. Phys., 2010, v. B 99, p.299-306.

Занятие 4. Фотонные кристаллы (_2/__час.)

- 1. Классификация фотонных кристаллов. Одномерные, двумерные и трехмерные фотонные кристаллы. Механизмов формирования фотонных запрещённых зон. Роль дефектов в фотонно-кристаллических структурах. Фотонно-кристаллические устройства.
- 2. Задание 3

Типы фотонно-кристаллических волоконных световодов и уравнения для описания распространения излучения в них. Ознакомиться с литературой:

 Мендез А., Морзе Т. Справочник по специализированным оптическим волокнам.// Москва: Техносфера, 2012.-728 с.

Занятие 5. Нелинейная оптика волоконных световодов (_2/__час.)

- 1. Волноводное усиление эффективности нелинейнооптических процессов в волоконных световодах. Фазовая самомодуляция излучения в волоконных световодах. Влияние дисперсии на нелинейные процессы в волоконных световодах. Фазовая кросс-модуляция импульсов в волоконных световодах. Четырех-волновое смешение волн.
- 2. Задание 4

Вывод уравнения для описания генерации суперконтинуума в волоконных световодах

Ознакомиться с литературой:

■ Воронин В. Г., Наний О.Е. Основы нелинейной волоконной оптики.// М.: «Университетская книга», 2011. - 128 с.

Занятие 6. Принципы функционирования оптических квантовых генераторов (_2/__час.)

- 1. Физика лазеров. Типы лазеров. Непрерывные и нестационарные режимы работы лазеров.
- 2. Задание 5

Принципы функционирования оптических квантовых генераторов.

Ознакомиться с литературой:

• Звелто О. Принципы лазеров. М.:Издательство: Лань, 2008.-720 с.

Занятие 7. Принцип работы волоконного лазера. (_2/__час.)

- 1. Принцип работы волоконного лазера. Активные волоконные световоды. Резонаторы волоконных лазеров. Непрерывные волоконные лазеры. Волоконные лазеры на основе вынужденного комбинационного рассеяния излучения.
- 2. Задание 6

Волоконные ВКР-лазеры со случайной распределенной обратной связью.

Ознакомиться с литературой:

■ Бабин С.А., Ватник И.Д. Волоконные лазеры со случайной распределенной обратной связью на рэлеевском рассеянии.// Автометрия. 2013, т.49, №4, с.3-29.

Занятие 8. Импульсные волоконные лазеры (_2/_ час.)

- 1. Методы получения импульсного излучения волоконных лазеров: модуляция добротности, активная и пассивная синхронизация мод волоконного лазера, использованием зеркального насыщающегося полупроводникового поглотителя (SESAM). Методы компенсации дисперсионного расплывания импульсов в волоконных лазерах.
- 2. Системы волоконно-оптических генераторов суперконтинуума. Усиление УКИ в волоконных лазерах.

Занятие 9. Волоконные лазеры в технологии. (_2/__час.)

- 1. Физические процессы при обработке материалов лазерным излучением. Методы поверхностной лазерной обработки.
- 2. Проверочное задание.

Занятие 10. Энергетический спектр наноразмерных структур. (_2/ час.)

- 1. Энергетический спектр наноразмерных структур. Объемная кристаллическая структура: энергетический спектр носителей заряда в объемной кристаллической структуре, плотность состояний электронов в энергетической зоне объемной кристаллической структуры. Энергетический спектр и плотность состояний носителей заряда в одномерной изолированной квантовой яме и квантовой нити. Квантовые точки и плотность состояний электронов.
- 2. Залание 7

Решение волнового уравнения Шредингера для заряженной частицы движущейся в прямоугольной потенциальной яме с бесконечно высокими стенками

Ознакомиться с литературой:

• Фридрихов С.А., Мовнин С.М. Физические основы электронной техники.- М.: Высшая школа, 1982.-608 с.

Занятие 11. Экситонные состояния в полупроводниковых и диэлектрических материалах (_4/__час.)

- 1. Экситонные состояния в полупроводниковых и диэлектрических материалах. Свободные экситоны или экситоны Ванье-Мотта. Связанные экситоны (экситоны Френкеля). Влияние формы наночастиц на энергетическую подсистему носителей заряда.
- 2. Задание 8

Уравнения описывающие резонансное отражение и поглощение света в структурах с квантовыми ямами Ознакомиться с литературой:

• Федоров А.В. Физика и технология гетероструктур, оптика квантовых наноструктур. Учебное пособие— СПб: СПбГУ ИТМО., 2009. С. 195.

Занятие 12. Лазерное охлаждение, пленение и управление атомами (_4/ час.)

- 1. Физика холодных атомов и ее приложения. Однокомпонентная плазма. Бозе-Эйнштейновскя конденсация атомов. Атомный лазер. Атомный фонтан и атомные часы. Атомная оптика. Методы построения элементов атомной оптики.
- 2. Задание 9

Движение атомов в магнитном поле.

Ознакомиться с литературой:

• Ландау Л.Д., Лифшиц.Е.М. Квантовая механика (нерелятивистская теория). М.: Физматлит, 1963.-704 с.

Занятие 13. Фотоника самоорганизующихся наностуктурированных биоминеральных объектов (_4/__час.)

- 1. Морфология и физико-химические характеристики спикул глубоководных стеклянных морских губок (ГСМГ). Роль фотонно-кристаллических свойств спикул слубоководных морских губок в процессе их метаболизма. Нелинейно-оптические свойства спикул глубоководных стеклянных морских губок
- 2. Задание 10

Определить, какие объекты относятся к биоминералам.

Ознакомиться с литературой:

 Meyers M.A, et al. Biological materials: Structure and mechanical properties // Progress in Materials Science, 2008. V.53. P.1.

Занятие 14. Адаптивные оптоэлектронные системы СМАРТ – ГРИД мониторинга физических полей и объектов. Допуск к экзамену. (_4/_ час.)

- 1. Допуск к экзамену
- 2. Задание 11

Принципы организации томографических систем. Прямое и обратное преобразования Радона.

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Современная фотоника» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

В данном разделе РПУД приводится перечень основной литературы (учебники, учебные пособия, монографии) и перечень дополнительной литературы, в который включаются издания, рекомендуемые для углубленного изучения. В перечень основной литературы должны входить учебники, учебные пособия и монографии, изданные в течение последних 5 лет для гуманитарных, социальных и экономических дисциплин и 10 лет для технических, математических и естественнонаучных дисциплин.

Не менее трех источников основной литературы, указанных в РПУД, должны быть доступны обучающимся в одной или нескольких электронно-библиотечных системах (электронных библиотеках), сформированных на основании прямых договорных отношений с правообладателями. В данном случае необходимо привести полное библиографическое описание источника и рабочую гиперссылку на соот-

ветствующий электронный ресурс. Каталог электронных ресурсов размещен на сайте $\Pi B\Phi V$ http://www.dvfu.ru/library/electronic-resources/russian-database.php.

В список основной литературы также включаются печатные издания (учебники, учебные пособия, монографии), имеющиеся в фондах НБ ДВФУ, с таким расчетом, чтобы суммарное количество экземпляров каждого из изданий составляло не менее 50 на 100 студентов, обучающихся по образовательной программе. Наряду с полным библиографическим описание источника помещается рабочая гиперссылка на электронный каталог НБ ДВФУ.

Все издания дополнительной литературы также должны быть представлены либо в электронно-библиотечных системах (электронных библиотеках), сформированных на основании прямых договорных отношений с правообладателями, либо в НБ ДВФУ в количестве, предусмотренном соответствующим ФГОС ВО/ ОС ВО ДВФУ.

Основная литература

(электронные и печатные издания)

- 1. Ахманов С.А., Никитин С.Ю. Физическая оптика. М.: Изд. МГУ, 1998.
- 2. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука, 1988.
- 3. Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989.
- 4. Тарасов Л.В. Физические основы квантовой электроники. М.: Советское Радио, 1976.
- 5. Ярив, А. Квантовая электроника. / А. Ярив. М.; Сов. Радио, 1980.
- 6. Шполянский Ю.А. Сценарии развития фемтосекундного спектрального суперконтинуума. В кн.: Проблемы когерентной и нелинейной оптики. СПб. 2000. С. 136-152.
- 7. П.Г.Крюков «Фемтосекундные импульсы», М., Физматлит, 2008.
- 8. Кившарь Ю.С., Агравал Г.П. Оптические солитоны. От световодов к фотонным кристаллам.// М. Физматлит, 2005.-648 с.
- 9. Мендез А., Морзе Т. Справочник по специализированным оптическим волокнам.// Москва: Техносфера, 2012.-728 с.
- 10. Желтиков А.М. Дырчатые волноводы.//В сб. лекций «Фундаментальная оптика и спектроскопия» Выпуск 3. М.: ФИАН, 2001. 189 с.

- 11. Дифракционная нанофотоника / Под ред. В.А. Сойфера. М.Физматлит. 2011. -680 с.
- 12. Агравал Г. Нелинейная волоконная оптика.// М.: Мир, 1996.-323 с.
- 13. Воронин В. Г., Наний О. Е. Основы нелинейной волоконной оптики.// М.: «Университетская книга», 2011. 128 с.
- 14. Экситоны. Под редакцией Э.Рашба, М.Стержа, М.,Наука, 1985. 15.Шик А. Я., Бакуева Л. Г., Мусихин С. Ф., Рыков С. А. Физика низкоразмерных систем /Под ред. А. Я. Шика.—СПб.: Наука, 2001.- 160 с.
- 15. Кульчин Ю.Н., Вознесенский С.С., Безвербный А.В., Дзюба В.П. Фотоника биоминеральных и биомиметических структур и материалов.- М.:Физматлит, 2011.-224 с.
- 16. Кульчин Ю.Н. Распределенные волоконно-оптические измерительные системы.- М.: Физматлит, 2001.- 272 с.
- 17. Кульчин Ю.Н., Витрик О.Б, Камшилин А.А., Ромашко Р.В. Адаптивные методы обработки спекл-модулированных оптических полей.// М., Издво Физматлит, 2009. 288 с.

Дополнительная литература

(печатные и электронные издания)

- 1. Zheltikov A M (Ed.) Supercontinuum Generation.// Special issue of Appl. Phys., 2003,v. B 7, No. 2, pp.3-23.
- 2. Сметанина Е.О., Компанец В.О., Чекалин С.В., Кандидов В.П. Особенности филаментации фемтосекундного лазерного излучения в условиях аномальной дисперсии в плавленом кварце. Ч.1 Численное исследование.// Квантовая электроника, 2012, т. 42, №10, с. 913- 919.
- 3. Fedotiv V.Y., Tverskoy O.V., Kandidov V.P. Transport of high-fluence energy by femtosecond filament in air.//Appl. Phys., 2010, v. B 99, p.299-306.
- 4. Мендез А., Морзе Т. Справочник по специализированным оптическим волокнам.// Москва: Техносфера, 2012.-728 с.
- 5. Воронин В. Г., Наний О. Е. Основы нелинейной волоконной оптики.// М.: «Университетская книга», 2011. 128 с.
- 6. Звелто О. Принципы лазеров. М.:Издательство: Лань, 2008.-720 с.

- 7. Бабин С.А., Ватник И.Д. Волоконные лазеры со случайной распределенной обратной связью на рэлеевском рассеянии.// Автометрия. 2013, т.49, №4, с.3-29.
- 8. Фридрихов С.А., Мовнин С.М. Физические основы электронной техники.- М.:Высшая школа, 1982.-608 с.
- 9. Федоров А.В. Физика и технология гетероструктур, оптика квантовых наноструктур. Учебное пособие— СПб: СПбГУ ИТМО., 2009. С. 195.
- 10. Ландау Л.Д., Лифшиц.Е.М. Квантовая механика (нерелятивистская теория). М.: Физматлит, 1963.-704 с.
- 11. Meyers M.A, et al. Biological materials: Structure and mechanical properties // Progress in Materials Science, 2008. V.53. P.1.

Нормативно-правовые материалы³

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

В данном разделе приводится перечень ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины, в виде названия сайта, интернет-портала и т.п. и рабочей гиперссылки. Не допускается размещение ресурсов, содержащих материалы, не соответствующие этическим нормам, в том числе в формате баннеров и т.п.

1. http://bourabai.kz/cm/computer_tomography3.htm

Перечень информационных технологий и программного обеспечения

Указывается перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости). Если для данного курса создан ЭУК в интегрированной платформе электронного обучения Blackboard ДВФУ, это также указывается с приложением идентификатора курса.

Программное обеспечение: не требуется

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

-

³ Данный раздел включается при необходимости

Содержание методических указаний может включать:

рекомендации по планированию и организации времени, отведенного на изучение дисциплины;

описание последовательности действий обучающихся, или алгоритм изучения дисциплины;

рекомендации по использованию материалов учебно-методического комплекса;

рекомендации по работе с литературой;

рекомендации по подготовке к экзамену (зачету);

разъяснения по работе с электронным учебным курсом, по выполнению домашних заданий и т.д.

Если по дисциплине изданы методические указания (рекомендации), здесь необходимо поместить их перечень со всеми выходными данными, а сами пособия либо приложить к РПД в печатном (изданном) виде, либо поместить в электронном виде в приложении к РПД (Приложение 3). Если изданных методических указаний по дисциплине нет, в приложение выносить ничего не нужно, все методические указания помещаются в данном разделе РПД.

При освоении данной дисциплины основную роль играют аудиторные занятия в виде лекций и самостоятельная работа студентов, заключающаяся в выполнении домашнего задания и изучении прослушанного материала. Для того чтобы осветить современное состояние оптики и фотоники в программе предусмотрено широкое использование современных научных работ и публикаций по данной теме и посещение лабораторий ИАПУ ДВО РАН. Рекомендуется посещение студентами научных семинаров и конференций ДВФУ и ИАПУ ДВО РАН, а также в других университетах и институтах.

<u>Рекомендованная литература для подготовки к лекциям и само-</u> <u>стоятельной работы студентов по разделам</u>

Раздел I Основы нелинейной оптики

- 1. Ахманов С.А., Никитин С.Ю. Физическая оптика. М.: Изд. МГУ, 1998.
- 2. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука, 1988.
- 3. Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989.
- 4. Тарасов Л.В. Физические основы квантовой электроники. М.: Советское Радио, 1976.

5. Ярив, А. Квантовая электроника. / А. Ярив. - М.; Сов. Радио, 1980.

Раздел II Явления филаментации и генерации суперконтинуума при распространении лазерных импульсов в нелинейной среде

- 1. С.А. Ахманов, В.А. Выслоух, А.С. Чиркин "Оптика фемтосекундных лазерных импульсов", М. Наука, 1988.
- 2. Шполянский Ю.А. Сценарии развития фемтосекундного спектрального суперконтинуума. В кн.: Проблемы когерентной и нелинейной оптики. СПб. 2000. С. 136-152.
- 3. Кандидов В.П.,Шленов С.А.,Косарева О.Г. Филаментация мощного фемтосекундного лазерного излучения.// Квантовая электроника. 2009, т.39, №3, с. 205-228.
- 4. Чекалин С.В., Кандидов В.П. От самофокусировки световых пучков к филаментации лазерных импульсов.// УФН, 2013, т.183, №2, 133-152
- 5. П.Г.Крюков «Фемтосекундные импульсы», М., Физматлит, 2008.
- 6. А. М. Желтиков Да будет белый свет: генерация суперконтинуума сверхкороткими лазерными импульсами УФН. 176:6. 2006 С. 623-649.

Раздел III Фотонные кристаллы

- 1. Кившарь Ю.С., Агравал Г.П. Оптические солитоны. От световодов к фотонным кристаллам.// М. Физматлит, 2005.-648 с.
- 2. Мендез А., Морзе Т. Справочник по специализированным оптическим волокнам.// Москва: Техносфера, 2012.-728 с.
- 3. Желтиков А.М. Дырчатые волноводы.//В сб. лекций «Фундаментальная оптика и спектроскопия» Выпуск 3. М.: ФИАН, 2001. 189 с.
- 4. Lehtonen M. Application of microstructured fibers.(Doctoral Dissertation)// Espoo, Finland:Helsinki University of Technology. 2005.- 43 p
- 5. Дифракционная нанофотоника / Под ред. В.А. Сойфера. М.Физматлит. 2011. -680 с.

Раздел IV Нелинейная оптика волоконных световодов

- 1. Желтиков А.М. Нелинейная оптика микроструктурированных волокон.// УФН, 2004, т.174, №1, с.73-105.
- 2. Агравал Г. Нелинейная волоконная оптика.// М.: Мир, 1996.-323 с.
- 3. Воронин В. Г., Наний О. Е. Основы нелинейной волоконной оптики.// М.: «Университетская книга», 2011. 128 с.
- 4. Кандидов В.П.,Шленов С.А.,Косарева О.Г. Филаментация мощного фемтосекундного лазерного излучения.// Квантовая электроника. 2009, т.39, №3, с. 205-228.

5. Дианов Е.М., Крюков П.Г. Генерация суперконтинуума в волоконных структурах под действием непрерывной последовательности УКИ.// Квантовая электроника, 2001, т.31, №10, с.877-882.

Раздел V Волоконные лазеры

- 1. Курков А.С., Дианов Е.М. Непрерывные волоконные лазеры средней мощности.// Квантовая электроника, 2004, т.34,№10, с. 881- 900.
- 2. Дианов.Е.М. Волоконные лазеры.// УФН, 2004, т.174, №10, с. 1139-1142.
- 3. Дианов Е.М. На пороге пета-эры.// УФН, 2013, т.183, №5, с.511-518.
- 4. П.Г.Крюков, Лазеры ультракоротких импульсов, в журнале "Квантовая электроника",2001, т.30, N2, с. 95-103.
- 5. Бабин С.А., Ватник И.Д. Волоконные лазеры со случайной распределенной обратной связью на рэлеевском рассеянии.// Автометрия. 2013, т.49, №4, с.3-29.

Раздел VI Нелинейная фотоника наноструктур

- 1. Экситоны. Под редакцией Э.Рашба, М.Стержа, М.,Наука, 1985.
- 2. Шик А. Я., Бакуева Л. Г., Мусихин С. Ф., Рыков С. А. Физика низкоразмерных систем /Под ред. А. Я. Шика.—СПб.: Наука, 2001.- 160 с.
- 3. Кульчин Ю.Н., Вознесенский С.С., Безвербный А.В., Дзюба В.П. Фотоника биоминеральных и биомиметических структур и материалов.- М.:Физматлит, 2011.-224 с.
- 4. Pokutnyi S. I. Theory of exciton states in quasizero-dimensional nanosystems (review) // Phys. Express. –2011. 1, No 3. P. 158–168.
- 5. Миличко В.А., Дзюба В.П., Кульчин Ю.Н. Аномальная оптическая нелинейность диэлектрических нанодисперсий // Квантовая электроника, 2013, т. 43, в 6, с.567-573.

Раздел VII Лазерное охлаждение, пленение и управление атомами

- 1. Коэн-Таунджи К.Н. Управление атомами с помощью фотонов.// УФН, 1999, т.169, №3. с. 292-304.
- 2. Филипс У.Д. Лазерное охлаждение и пленение нейтральных атомов.// УФН, 1999, т.169,№3, с.306-322.
- 3. Wieman C.E., Pritchard D., Wineland D.J. Atom cooling, trapping and quantum manipulation.// Reviews of Modern Physics, 1999, v.71, No.2, pp.253-262.
- 4. Мазец И.Е., Матисов Б.Г. Динамика лазерного охлаждения ниже температуры отдачи.// Письма в ЖЭТФ, 1994, т.60.в.10,с.686-690.
- 5. Кеттерле В. Когда атомы ведут себя как волны. Бозе-эйнштейновская конденсация и атомный лазер.// УФН,2003, т.173,№12,с.1339-1358.

6. Балыкин В.И. Атомная оптика и нанотехнологии.// УФН, 2009, т.179, №3, с.297-305.

Раздел VIII Фотоника самоорганизующихся наностуктурированных биоминеральных объектов и их биомиметических аналогов

- 1. Meyers M.A, et al. Biological materials: Structure and mechanical properties // Progress in Materials Science, 2008. V.53. P.1.
- 2. Muller W. E. G., et al. Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. //Biosensors and Bioelectronics, 2006.v. **21.** p.1149.
- 3. Кульчин Ю.Н. и др. Волоконные световоды на основе природных биоминералов спикул морских губок // Квантовая электроника, 2008. Т. 38. С. 51.
- 4. Кульчин Ю.Н., Вознесенский С.С., Безвербный А.В., Дзюба В.П. Фотоника биоминеральных и биомиметических структур и материалов. М.: Физматлит, 2011.- с. 224.
- 5. Кульчин Ю.Н. и др. Фотоника самоорганизующихся наноструктурированных биоминеральных объектов океанического происхождения и их аналогов.// Вестник РАН, 2013, т.83,№2, с.1-13.

Раздел IX Динамическая голография и оптические Novelty фильтры

- 1. Kohonen T. Self-Organization and Associative Mamory. New York: Springer, 1983.
- 2. Anderson D.Z. and Feinberg J. Optical Novelty Filter // IEEE J. Quantum Electronics, 1989, v. 25, №3, p.635 647.
- 3. Кульчин Ю.Н. Распределенные волоконно-оптические измерительные системы.- М.: Физматлит, 2001.- 272 с.
- 4. Кульчин Ю.Н. Адаптивные распределенные оптоэлектронные информационно-измерительные системы // УФН, 2003, т.173, №8, с.894-899.
- 5. Кульчин Ю.Н., Витрик О.Б, Камшилин А.А., Ромашко Р.В. Адаптивные методы обработки спекл-модулированных оптических полей.// М., Издво Физматлит, 2009. 288 с.

Раздел Х Адаптивные оптоэлектронные системы СМАРТ – ГРИД мониторинга физических полей и объектов

- 1. Кульчин Ю.Н. Распределенные волоконно-оптические измерительные системы. М.: Физматлит, 2001. 272 с.
- 2. Grattan K.T.V., B.T.Meggitt. Optical fiber sensor technology. London: Chapman & Hall, 1995.
- 3. Kersey A.D. A review of recent developments in fiber optic sensor technology // Optical Fiber Technology. 1996. V.2. P.291–317.

- 4. Kersey A.D. A review of recent developments in fiber optic sensor technology // Optical Fiber Technology. 1996. V.2. P.291–317.
- 5. Кульчин Ю.Н. Адаптивные распределенные оптоэлектронные информационно-измерительные системы // УФН, 2003, т.173, №8, с.894-899.
- 6. Кульчин Ю.Н., Витрик О.Б., Камшилин А.А., Ромашко Р.В. Адаптивные методы обработки спекл-модулированных оптических полей. М.: Физматлит.2009.- 288 с.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

В данном разделе приводятся сведения о материально-техническом обеспечении дисциплины (с указанием наименования приборов и оборудования, компьютеров, учебно-наглядных пособий, аудиовизуальных средств; аудиторий, специальных помещений), необходимом для осуществления образовательного процесса по дисциплине.

Учебная дисциплина обеспечена учебно-методической документацией и материалами. Ее содержание представлено в локальной сети кафедры и находится в режиме свободного доступа для студентов. Доступ студентов для самостоятельной подготовки осуществляется через компьютеры дисплейного класса (в стандартной комплектации).

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ШКОЛА)

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Современная фотоника» Направление подготовки 12.04.01 Приборостроение

Магистерская программа «Цифровые лазерные технологии, оптоволоконные сети»

Форма подготовки очная

Владивосток 2022

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки вы- полнения	Вид самостоятель- ной работы	Примерные нормы времени на выполнение	Форма контроля
1	15.09-25.09	Раздел 2. Задание 1	4	ПР-1, ПР-7
2	25.09-10.10	Раздел 2. Задание 2	4	ПР-1, ПР-7
3	11.10-20.10	Раздел 3. Задание 3	4	ПР-1, ПР-7
4	21.10-30.10	Раздел 4. Задание 4	6	ПР-1, ПР-7
5	01.11-10.11	Раздел 5. Задание 5	6	ПР-1, ПР-7
6	11.11-20.11	Раздел 5. Задание 6	6	ПР-1, ПР-7
7	21.11-25.12	Подготовка к зачё- ту	6	Зачёт
8	10.02-05.03	Раздел 6. Задание 7	2	ПР-1, ПР-7
9	06.03-20.03	Раздел 6. Задание 8	2	ПР-1, ПР-7
10	21.03-05.04	Раздел 7. Задание 9	2	ПР-1, ПР-7
11	06.04-20.04	Раздел 8. Задание 10	2	ПР-1, ПР-7
12	21.04-15.05	Раздел 9. Задание 11	1	ПР-1, ПР-7
13	16.05-01.06	Подготовка к до- пуску на экзамен	27	Экзамен
TID 1	HD 7	Всего	72	

 Π P-1 – тест, Π P-7 – конспект (см. Положение о фондах оценочных средств образовательных программ высшего образования – программ бакалавриата, специалитета, магистратуры ДВФУ №12-13-850 от 12.05.2015)

Рекомендации по самостоятельной работе студентов

Приводятся рекомендации по организации и выполнению самостоятельной работы в целом по курсу.

Самостоятельная работа студентов состоит из подготовки к практическим занятиям, работы над рекомендованной литературой и лекционным материалам по выполненным конспектам, выполнения заданий преподавателя,

написания докладов, подготовки доклада, презентаций по теме практического занятия.

Методические указания к самостоятельной работе студентов

Приводятся методические указания по выполнению каждого из предусмотренных планом-графиком видов самостоятельной работы по дисциплине с указанием цели (задач), характеристики заданий, требований к содержанию и оформлению, рекомендаций по выполнению и критериев оценки.

№ задания	Тема задания	Содержание задания
Раздел 2. Задание 1	Вывод уравнения для описания процесса взаимо-действия импульсного лазерного излучения с веществом при генерации суперконтинуума.	 Ознакомиться с литературой: Zheltikov A M (Ed.) Supercontinuum Generation.// Special issue of Appl. Phys., 2003, v. В 7, No. 2, pp.3-23. Сметанина Е.О., Компанец В.О., Чекалин С.В., Кандидов В.П.Особенности филаментации фем- тосекундного лазерного излучения в условиях аномальной дисперсии в плавленом кварце. Ч.1 Численное исследование.// Квантовая электро- ника, 2012, т. 42, №10, с. 913- 919.
Раздел 2. Задание 2	Описание осо- бенностей_ про- цесса филамен- тации лазерного излучения в ат- мосфере.	Ознакомиться с литературой: Fedotiv V.Y., Tverskoy O.V., Kandidov V.P. Transport of high-fluence energy by femtosecond filament in air.//Appl. Phys., 2010, v. B 99, p.299-306.
Раздел 3. Задание 3	Типы фотонно- кристаллических волоконных све- товодов и урав- нения для описа- ния распростра- нения излучения в них.	Ознакомиться с литературой: Мендез А., Морзе Т. Справочник по специализированным оптическим волокнам.// Москва: Техносфера, 2012728 с
Раздел 4. Задание 4	Вывод уравнения для описания генерации суперконтинуума в волоконных световодах.	Ознакомиться с литературой: Воронин В. Г., Наний О. Е. Основы нелинейной волоконной оптики.// М.: «Университетская книга», 2011 128 с.

Раздел 5.	Принципы функ-	Ознакомиться с литературой:
Задание 5	ционирования оптических квантовых генераторов.	Звелто О. Принципы лазеров. М.:Издательство: Лань, 2008720 с.
Раздел 5.	Волоконные ВКР-	Ознакомиться с литературой:
Задание 6	лазеры со случайной распределенной обратной связь.	Бабин С.А., Ватник И.Д. Волоконные лазеры со случайной распределенной обратной связью на рэлеевском рассеянии.// Автометрия. 2013, т.49, №4, с.3-29.
Раздел 6.	Решение волно-	Ознакомиться с литературой:
Задание 7	вого уравнения Шредингера для заряженной частицы движущейся в прямоугольной потенциальной яме с бесконечно высокими стен- ками	Фридрихов С.А., Мовнин С.М. Физические основы электронной техники М.:Высшая школа, 1982 608с.
Раздел 6.	Уравнения опи-	Ознакомиться с литературой:
Задание 8	сывающие резонансное отражение и поглощение света в структурах с квантовыми ямами	Федоров А.В. Физика и технология гетероструктур, оптика квантовых наноструктур. Учебное пособие—СПб: СПбГУ ИТМО., 2009. С. 195.
Раздел 7.	Движение атомов	Ознакомиться с литературой:
Задание 9	в магнитном по- ле.	Ландау Л.Д., Лифшиц.Е.М. Квантовая механика (нерелятивистская теория). М.: Физматлит, 1963704 с.
Раздел 8.	Определить, ка-	Ознакомиться с литературой:
Задание 10	кие объекты от- носятся к биоми- нералам.	Meyers M.A, et al. Biological materials: Structure and mechanical properties // Progress in Materials Science, 2008. V.53. P.1.
Раздел 10.	Принципы орга-	Ознакомиться с литературой:
Задание 11	низации томо- графических сис- тем. Прямое и об- ратное преобра-	http://bourabai.kz/cm/computer_tomography3.htm

зования Радона.		

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ШКОЛА)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Современная фотоника» Направление подготовки 12.04.01 Приборостроение

Магистерская программа «Цифровые лазерные технологии, оптоволоконные сети»

Форма подготовки очная

Владивосток 2022

Паспорт ФОС

Заполняется в соответствии с Положением о фондах оценочных средств образовательных программ высшего образования — программ бакалавриата, специалитета, магитратуры ДВФУ, утвержденным приказом ректора от 12.05.2015 Note 12-13-850.

Для успешного изучения дисциплины «Современная фотоника» у обучающихся должны быть сформированы следующие предварительные компетенции:

- способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий (УК-1);
- способен определить и реализовать приоритеты собственной деятельности и способы её совершенствования на основе самооценки (УК-6).

В результате изучения данной дисциплины у обучающихся формируются следующие профессиональные компетенции:

Код и формулировка компетенции	Код и наименование индикатора дос- тижения компетенции
ПК-3. Способность провести экспериментальные исследования, измерения по заданным методикам с выбором технических средств и обработкой результатов	ПК-3.1 . Знает методы и средства планирования и организации исследований и разработок, методы проведения экспериментов и наблюдений, обобщения и обработки информации.
	ПК-3.2. Умеет грамотно проводить измерения различных параметров лазерного излучения.

№	Контролируемые	Коды и этапы формирования		Оценочные средства	
Π/Π	разделы / темы	компетенций		текущий	промежуточна
	дисциплины			контроль	я аттестация
1	Основы	ПК-3	знает	УО-1	
	нелинейной		умеет	УО-1	
	оптики		владеет	УО-3	
	Явления фила-		знает	УО-1, УО-2	
	ментации и ге-		умеет	УО-3	
2	нерации супер-	ПК-3	владеет	ПР-1	Вопросы
	континуума при	IIK-3			Раздел 2
	распространении				
	лазерных им-				

	пульсов в нелинейной среде.				
	Филаментация		знает	УО-1, УО-2	
	импульсного излучения в газообразных средах.		умеет	УО-3	
3		ПК-3	владеет	ПР-1	Вопросы Раздел 2
			знает	УО-1, УО-2	
4	Фотонные кри-	TT 4	умеет	УО-3	
4	сталлы	ПК-3	владеет	ПР-1	Вопросы Раздел 3
	Нелинейная оп-		знает	УО-1, УО-2	
_	тика волоконных	TT 4	умеет	УО-3	
5	световодов	ПК-3	владеет	ПР-1	Вопросы Раздел 4
	Принципы		знает	УО-1, УО-2	
	функционирова-		умеет	УО-3	
6	6 ния оптических квантовых генераторов	ПК-3	владеет	ПР-1	Вопросы Раздел 5
	П		знает	УО-1, УО-2	
_	Принцип работы 7 волоконного ла- зера	ПК-3	умеет	УО-3	
7			владеет	ПР-1	Вопросы Раздел 5
	8 Импульсные во- локонные лазе- ры. Зачетное за- нятие.		знает	УО-1, УО-2	
			умеет	УО-3	
8		ПК-3	владеет	ПР-1	Вопросы Разделы 2-5
	Волоконные ла-		знает	УО-1, УО-2	
0	зеры в техноло-	пис э	умеет	УО-3	
9 1	гии	ПК-3	владеет	ПР-1	Вопросы Раздел б
	Энергетический		знает	УО-1, УО-2	
10	спектр нанораз-	пи з	умеет	УО-3	
10	мерных структур	ПК-3	владеет	ПР-1	Вопросы Раздел 6
	Экситонные со-		знает	УО-1, УО-2	
	стояния в полу-		умеет	УО-3	
11	проводниковых и диэлектриче- ских материалах	ПК-3	владеет	ПР-1	Вопросы Раздел 7
12	Лазерное охлаж-	ПК-3	знает	УО-1, УО-2	

	дение, пленение		умеет	УО-3	
	и управление		владеет	ПР-1	Вопросы
	атомами				Раздел 8
	Фотоника само-		знает	УО-1, УО-2	
	организующихся		умеет	УО-3	
	наностуктуриро-		владеет	ПР-1, ПР-4	Вопросы
13	ванных биоми-	ПК-3		·	Раздел 9
	неральных объ-				
	ектов				
	Адаптивные оп-		знает	УО-1, УО-2	
	тоэлектронные		умеет	УО-3	
	системы СМАРТ		владеет	ПР-1, ПР-4	Вопросы
	– ГРИД мони-			111 1, 111	Раздел 10
14	4 торинга физиче-	ПК-3			
	ских полей и				
	объектов. До-				
	пуск к экзамену.				

УО-1 – собеседование; УО-2 – коллоквиум; УО-3 – доклад, сообщение; ПР-1 – тест, ПР-4 – реферат (см. Положение о фондах оценочных средств образовательных программ высшего образования – программ бакалавриата, специалитета, магистратуры ДВФУ №12-13-850 от 12.05.2015)

Шкала оценивания уровня сформированности компетенций

Код индикатора достижения ком- петенции	Этапы формирования компе- тенции		критерии	показатели
ПК-3.1	знает (порого- вый уровень)	основные физические процессы, используемые для управления оптическими сигналами, основные методы и устройства управления излучением, а также об особенностях применения различных методов управления излучением в лазерной технике, оптических линиях связи, приборах	знание основных физических процессов, используемых для управления оптическими сигналами; знание основных методов и устройств управления излучением; знание особенностей применения различных методов управления излучением в лазерной технике, оптических линиях связи, приборах ин-	способность перечислить основные физические процессы, используемых для управления оптическими сигналами; способность перечислить и раскрыть суть методов и устройств управления излучением; знание особенностей применения различных методов управления излучением в лазерной технике,

			<u>-</u>	
		интегральной оптики и воло-конно-оптических дат-чиках.	тегральной оптики и волоконно-оптических датчиках.	оптических линиях связи, приборах интегральной оптики и волоконно-оптических датчиках.
	умеет (про- двинутый)	использовать приобретенные знания при анализе поставленной задачи исследований в области лазерных технологий	умение использовать приобретенные знания при анализе поставленной задачи исследований в области лазерных технологий	способность де- лать анализ по- ставленной задачи исследований в области лазерных технологий
	владеет (вы- сокий)	методами ана- лиза поставлен- ной задачи ис- следований в области лазер- ных технологий	владение методами анализа поставленной задачи исследований в области лазерных технологий	способность вы- полнить задания предусмотренные курсом в установ- ленные сроки в строгом соответ- ствии с предъяв- ляемыми требо- ваниями; способность объ- яснить и эффек- тивно представить результаты освое- ния курса
ПК-3.2	знает (пороговый уровень)	основные характеристики оптических сигналов и их классификацию, оптические характеристики материалов, физические основы оптических эффектов, используемых для управления оптическими сигналами	знание основных характеристик оптических сиг- налов и их клас- сификацию; знание оптиче- ских характери- стик материалов; знание физиче- ских основ оп- тических эффек- тов, используе- мых для управ- ления оптиче- скими сигналами	способность перечислить основные характеристи оптических сигналов и описать их классификацию; способность дать описание оптических характеристик материалов; способность раскрыть суть физических основ оптических эффектов, используемых для управления оптическими сигналами
	умеет (про- двинутый)	проводить измерения и исследования различных эффектов,	умение проводить измерения и исследования различных эф-	способность проводить измерения и исследования различных эффек-

		возникающих в	фектов, возни-	тов, возникающих
		оптических вол-	кающих в опти-	в оптических вол-
		новодах и во-	ческих волново-	новодах и волок-
		локнах при	дах и волокнах	нах при внешнем
		внешнем воз-	при внешнем	воздействии по
		действии по за-	воздействии по	изученным в кур-
		данной методи-	заданной мето-	се методикам
		ке	дике	
		методами изме-	владение мето-	способность вы-
		рения и исследования различных эффектов для разработки новых типов во-	дами измерения	полнить задания
			и исследования	предусмотренные
			различных эф-	курсом в установ-
			фектов для раз-	ленные сроки в
			работки новых	строгом соответ-
	владеет (вы-	локонных дат-	типов волокон-	ствии с предъяв-
	сокий)	чиков и сенсо-	ных датчиков и	ляемыми требо-
		ров, обладаю- щих высокой чувствительно- стью и избира-	сенсоров, обла-	ваниями;
			дающих высокой	способность объ-
			чувствительно-	яснить и эффек-
			стью и избира-	тивно представить
			тельностью.	результаты освое-
		тельностью.		ния курса

^{*} Критерий — это признак, по которому можно судить об отличии состояния одного явления от другого. Критерий шире показателя, который является составным элементом критерия и характеризует содержание его. Критерий выражает наиболее общий признак, по которому происходит оценка, сравнение реальных явлений, качеств, процессов. А степень проявления, качественная сформированность, определенность критериев выражается в конкретных показателях. Критерий представляет собой средство, необходимый инструмент оценки, но сам оценкой не является. Функциональная роль критерия — в определении или не определении сущностных признаков предмета, явления, качества, процесса и др.

Показатель выступает по отношению к критерию как частное к общему.

Показатель не включает в себя всеобщее измерение. Он отражает отдельные свойства и признаки познаваемого объекта и служит средством накопления количественных и качественных данных для критериального обобшения.

Главными характеристиками понятия «показатель» являются конкретность и диагностичность, что предполагает доступность его для наблюдения, учета и фиксации, а также позволяет рассматривать показатель как более частное по отношению к критерию, а значит, измерителя последнего.

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Заполняется в соответствии с Положением о фондах оценочных средств образовательных программ высшего образования — программ бакалавриата, специалитета, магистратуры ДВФУ, утвержденным приказом ректора от 12.05.2015 No 12-13-850.

Оценка представляет собой сумму баллов, заработанных студентом при выполнении заданий и выставляется в соответствии со следующей шкалой:

Оценка по 5-балльной шкале	Сумма баллов за разделы	Оценка ECTS

5 — «отлично»	90-100	A
	85-89	В
4 – «хорошо»	75-84	С
	70-74	D
3 – «удовлетворительно»	65-69	
	60-64	Е
2 – «неудовлетворительно»	Ниже 60	F

Расшифровка уровня знаний, соответствующего кредитно-модульной системе и полученным баллам, дается в таблице указанной ниже

Оценка по 5-балльной шкале – оценка по ECTS	Сумма баллов за разделы	Требования к знаниям на устном зачёте/экзамене
«зачтено»/«отлично» — А	90 ÷ 100	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.
«зачтено»/ «хорошо» — D, C, B	70 ÷ 89	Оценка «хорошо» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.
«зачтено»/ «удовлетворительно» — Е, D	60 ÷ 69	Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.
«не зачтено»/	менее 60	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части

«неудовлетворительно»	программного	мате	риала,	до	пускает
_	существенные		_		оценка
	«неудовлетвори	ительно»	ставито	ся сту	дентам,
F	которые не м	иогут прод	олжить	обучен	ие без
	дополнительны	іх занятий	по со	ответст	зующей
	дисциплине.				

Критерии оценки (устный ответ)

100-85 баллов - если ответ показывает прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; свободное владение монологической речью, логичность и последовательность ответа; умение приводить примеры современных проблем изучаемой области.

85-76 - баллов - ответ, обнаруживающий прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; свободное владение монологической речью, логичность и последовательность ответа. Однако допускается одна - две неточности в ответе.

75-61 - балл - оценивается ответ, свидетельствующий в основном о знании процессов изучаемой предметной области, отличающийся недостаточной глубиной и полнотой раскрытия темы; знанием основных вопросов теории; слабо сформированными навыками анализа явлений, процессов, недостаточным умением давать аргументированные ответы и приводить примеры; недостаточно свободным владением монологической речью, логичностью и последовательностью ответа. Допускается несколько ошибок в содержании ответа; неумение привести пример развития ситуации, провести связь с другими аспектами изучаемой области.

60-50 баллов - ответ, обнаруживающий незнание процессов изучаемой предметной области, отличающийся неглубоким раскрытием темы; незнанием основных вопросов теории, несформированными навыками анализа явлений, процессов; неумением давать аргументированные ответы, слабым владением монологической речью, отсутствием логичности и последовательности. Допускаются серьезные ошибки в содержании ответа; незнание современной проблематики изучаемой области.

Критерии оценки (письменного/устного доклада, реферата, сообщения, эссе, в том числе выполненных в форме презентаций):

100-86 баллов выставляется студенту, если студент выразил своё мнение по сформулированной проблеме, аргументировал его, точно опрелив ее содержание и составляющие. Приведены данные отечественной и зарубежной литературы, статистические сведения, информация нормативно правового характера. Студент знает и владеет навыком самостоятельной исследовательской работы по теме исследования; методами и приемами анализа теоретических и/или практических аспектов изучаемой области. Фактических ошибок, связанных с пониманием проблемы, нет; графически работа оформлена правильно.

85-76 - баллов - работа характеризуется смысловой цельностью, связностью и последовательностью изложения; допущено не более 1 ошибки при объяснении смысла или содержания проблемы. Для аргументации приводятся данные отечественных и зарубежных авторов. Продемонстрированы исследовательские умения и навыки. Фактических ошибок, связанных с пониманием проблемы, нет. Допущены одна-две ошибки в оформлении работы.

75-61 балл - студент проводит достаточно самостоятельный анализ основных этапов и смысловых составляющих проблемы; понимает базовые основы и теоретическое обоснование выбранной темы. Привлечены основные источники по рассматриваемой теме. Допущено не более 2 ошибок в смысле или содержании проблемы, оформлении работы

60-50 баллов - выставляется студенту, если работа представляет собой пересказанный или полностью переписанный исходный текст без каких бы то ни было комментариев, анализа. Не раскрыта структура и теоретическая составляющая темы. Допущено три или более трех ошибок в смысловом содержании раскрываемой проблемы, в оформлении работы.

Оценочные средства для промежуточной аттестации

Промежуточная аттестация студентов по дисциплине «Современная фотоника» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

По дисциплине «Современная фотоника» предусмотрены виды промежуточной аттестации: зачет и экзамен. Зачет проводится с использованием оценочных средств устного опроса в форме собеседования и письменного тестирования. Экзамен проводится с использованием оценочных средств устного опроса в форме ответов на вопросы экзаменационных билетов.

В зависимости от вида промежуточного контроля по дисциплине и формы его организации могут быть использованы различные критерии оценки знаний, умений и навыков.

Указывается, какой именно вид промежуточной аттестации (экзамен, зачет, дифференцированный зачет) предусмотрен по дисциплине, в какой форме (устной, письменной), с использованием каких оценочных средств (устный опрос в форме ответов на вопросы экзаменационных билетов, устный опрос в форме собеседования, выполнение письменных заданий, тестирование и т.д.) он проводится.

Дается краткая характеристика процедуры применения используемого оценочного средства.

Приводятся вопросы, задания к экзамену (зачету), образец экзаменационного билета с пояснением принципа его составления (если по дисциплине предусмотрен экзамен), критерии оценки к экзамену (зачету).

Список вопросов к зачёту и экзамену

- 1. Дайте определение физических процессов приводящих к образованию филамента в среде.
- 2. Охарактеризуйте спектр излучения лазерного филамента и объясните от чего он зависит.
- 3. Что служит причиной возникновения конической эмиссии излучения при филаментации?
- 4. Приведите примеры, где может использоваться излучение суперконтинуума возникающее при филаментации лазерных импульсов.
- 5. Дайте определение фотонного кристалла.
- 6. Какие процессы приводят к образованию запрещенных состояний для фотонов в фотонных кристаллах?
- 7. Дайте определение дефекта в фотонном кристалле. Приведите примеры использования дефектов в фотонных кристаллах.
- 8. Дайте классификацию фотонно-кристаллических волоконных световодов и поясните изменением каких их параметров можно изменять их световедущие и дисперсионные характеристики
- 9. Каким типом нелинейности определяются нелинейно-оптические свойства волоконных световодов?
- 10. Что служит причиной волноводного усиления эффективности нелинейно-оптических процессов в волоконных световодах?
- 11.К каким эффектам приводит процесс фазовой самомодуляции импульсного излучения в волоконных световодах?
- 12. Какие нелинейно-оптические процессы наблюдаются в волоконных световодах?

- 13. Охарактеризуйте зависимость спектральных изменений в распространяющемся по волоконному световоду лазерном импульсе от дисперсионных праметров световода.
- 14. Как влияют дисперсионные свойства микроструктурированных фотонно-кристаллических волоконных свкетоводах?
- 15.Охарактеризуйте принципы, заложенные в основу работы волоконных лазеров. Приведите примеры конструкций волоконных лазеров и какие легирующие примеси используются для активирования материала сердцевины волоконного световода?
- 16.Объясните принцип работы волоконного ВКР-лазера. Какие типы волоконных ВКР лазеров Вы знаете?
- 17. Какие методы используются для получения импульсного излучения волоконных лазеров?
- 18. Какие методы используются для компенсации дисперсионного увеличения длительности импульсов в волоконных лазерах?
- 19. Объясните, как можно получить ультракороткие мощные импульсы в волоконных лазерах.
- 20. Какие процессы называются природной биоминерализацией и чем они определяются?
- 21. Что обусловливает фотонно-кристаллические свойства спикул морских стеклянных губок?
- 22. Как называются технологии копирующие процессы в живой Природе и каковы их возможности?
- 23. Что такое динамическая голография? Какими физическими процессами она определяется и где может быть импользована?
- 24. Что такое Novelty-фильтр и чем определяются его характеристики?
- 25. Какой эффект называется эффектом фанинга и как он может быть использован для создания Novelty-фильтров?
- 26. Какие системы называются волоконно-оптическими СМАРТ-ГРИД системами мониторинга физических полей и какие принципы заложены в их основу?
- 27. Какие типы волоконно-оптических датчиков Вам известны?
- 28. Что такое протяженная волоконно-оптическая измерительная линия? Какие принципы заложены в основу мкльтплексирования волоконно-оптических датчиков в волоконно-оптическую измерительную линию?
- 29. Объясните принципы допплеровского и зеемановского лазерного охлаждения атомов.
- 30. Какими способами можно добиться охлаждения атомов ниже уровня отдачи?

- 31. Приведите примеры практического использования лазерного метода охлаждения атомов.
- 32. Что лежит в основе явления квантово-размерного квантования энергетических уровней?
- 33. Приведите примеры низкоразмерных наноструктур и охарактеризуйте энергетический спектр носителей заряда в них.
- 34.Охарактеризуйте экситонные состояния в полупроводниковых и диэлектрических материалах.
- 35.Как влияет геометрическая форма наночастиц на энергетический спектр носителей заряда?
- 36.Как влияет окружающая среда (матрица) на энергетический спектр экситонов в наночастицах?
- 37. Чем определяется низкопороговая оптическая нелинейность гетерогенных сред содержащих наночастицы из диэлектрических материалов?

Оценочные средства для текущей аттестации

Приводятся типовые оценочные средства для текущей аттестации и критерии оценки к ним (по каждому виду оценочных средств) в соответствии с Положением о фондах оценочных средств образовательных программ высшего образования — программ бакалавриата, специалитета, магистратуры ДВФУ, утвержденным приказом ректора от 12.05.2015 №12-13-850.

Текущая аттестация студентов по дисциплине «Современная фотоника» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Текущая аттестация по дисциплине «Современная фотоника» проводится в форме контрольных мероприятий (реферата, тестирования, практической работы) (защиты практической/контрольной работы, реферата, эссе, тестирования – указать то, что используется в конкретной дисциплине) по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Объектами оценивания выступают:

- учебная дисциплина (активность на занятиях, своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
- степень усвоения теоретических знаний;
- уровень овладения практическими умениями и навыками по всем видам учебной работы;
- результаты самостоятельной работы.

По каждому объекту дается характеристика процедур оценивания в привязке к используемым оценочным средствам.

Для текущего контроля успеваемости проводятся 2-3 аудиторных письменных теста. Тесты включают по 3-6 вопросов закрытого типа (возможны варианты), длительность теста 40-60 минут.

	Тестовые вопросы		
Раздел	Вопрос	Правильный ответ	
Раздел 2.	Вопрос 1.	3	
	Явление филаментации лазерного излучения обусловлено процессом:		
	 Самофокусировки; Самодефокусировки; Обоими этими процессами. 		
	Вопрос 2.	1	
	Генерация суперконтинуума при филаментации излучения связана с:		
	1.Поцессом фазовой самомодуляции лазерного излучения		
	в среде с нелинейностью керровского типа;		
	2.Возникновением плазменного канала, вызванного		
	ионизацией среды под воздействием лазерного излучения;		
	3. Этими двумя процессами.		
	Вопрос 3.	3	
	Какими процессами определяется антистоксов сдвиг частоты суперконтинуума при филаментации лазерного излучения?		
	1.Многофотонным процессом генерации лазерной плазмы в филаменте.		
	2. Фазовой самомодуляцией излучения.		
	3.Обоими этими процессами.		
	Вопрос 4.	3	
	Для каких из нижеперечисленных работ может использовать- ся излучение скперконтинуума?		

	1.Для получения отверстий сверхмалого диаметра.	
	2. Для выполнения операций лазерной сварки материалов.	
	3. Для спектроскопических измерений.	
Раздел 3.	Вопрос 1.	2
	Фотонными кристаллами называются среды, для которых наблюдается:	
	1. Наличие высоких значений групповой скорости для распространяющегося излучения;	
	2.Наличие фотонных запрещенных зон;	
	3.Отсутствие каких- либо специфических особенностей.	
	Вопрос 2.	1 и 3
	Наличие дефектов в фотонных кристаллах приводит к:	
	1.Появлению локализованных мод, в фотонной запрещенной зоне;	
	2. Увеличению потерь для распространяющегося излучения;	
	3.Появлению делокализованных мод, в фотонной запрещенной зоне.	
	Вопрос 3.	1
	Брегговские волоконные световоды являются:	
	1.Одномерными фотонными кристаллами;	
	2. Двухмерными фотонными кристаллами;	
	3. Трехмерными фотонными кристаллами.	
	Вопрос 4.	1
	Какие из 2-D фотонно-кристаллических световодов обладают большими потерями?	
	1.Микроструктурированные;	
	2.Дырчатые;	
	3.Оба типа световодов имеют одинаковый уровень потерь.	
L		<u> </u>

Раздел 4.	Вопрос 1.	3
	Усиление эффективности нелинейно-оптических процессов в волоконных световодах происходит из-за:	
	1. Локализации поля световой волны в области сердцевины волокна с малым радиусом;	
	2. Достижения больших длин взаимодействия каналируемого излучения с материалом сердцевины в волокнах с малыми потерями;	
	3. Вследствие реализации обоих вышеперечисленных причин.	
	Вопрос 2.	1
	При фазовой самомодуляции импульсного излучения наблюдается:	
	1.Уширение спектра вследствие генерации новых частот;	
	2.Изменение длительности импульса;	
	3.Изменение длительности импульса и уширение его спектра.	
	Вопрос 3.	5
	Какие нелинейно-оптические процесса взаимодействия излучения со средой, оказывают воздействие на форму и спектр распространяющихся в волоконных световодах лазерных импульсов:	
	1.Потеря мощности изучения;	
	2. Эффекты дисперсии групповой скорости;	
	3.Образование солитонов и световых ударных волн;	
	4.ВКР и ВРМБ – процессы неупругого рассеяния излучения;	
	5.Все перечисленные эффекты;	
	6.Только 2-й и 3-й.	
	Вопрос 4.	4
	Почему фотонно-кристаллические световоды обладают более значительными нелинейно-оптическими характеристиками в сравнении с обычными волоконными световодами? Потому что:	
	1.Обеспечивают более высокую концентрацию излучения в	

	сердцевине световода;	
	2.Позволяют управлять дисперсионными характеристиками;	
	3.Обладают малыми потерями.	
	4.Обладают свойствами 1 и 2;	
	5.Обладают свойствами: 1 и 3;	
	6.Обладают свойствами: 2 и 3.	
	Вопрос 5.	1
	Какие из фотонно-кристаллических волоконных световодов проявляют более высокие нелинейно-оптические характеристики?	
	1. Микроструктурированные волоконные световоды;	
	2.Дырчатые волоконные световоды;	
	3.Оба типа световодов имеют одинаковые характеристики.	
Раздел 5.	Вопрос 1.	9
	Отличительными особенностями волоконных лазеров являются:	
	1.Рекордные мощности излучения (до 50-100 кВт);	
	2.Уникальное качество излучения;	
	3. Рекордные эффективности (до 30-35%);	
	4.Полностью монолитный (интегральный) дизайн;	
	5.Не требуют постоянного технического обслуживания;	
	6.Компактность и нечувствительность с окружающим условиям;	
	7. Только 1 и 3 из вышеперечисленного;	
	8.Только 1, 3 и 6;	
	9.Все указанные характеристики.	
	Вопрос 2.	1
	Легирование сердцевины активных волоконных световодов волоконных лазеров производится следующими редкоземельными химическими элементами:	

1.Nd, Yb, Er, Ho, Tm;	
2.Только Nd, Yb;	
3.Только Үb, Ег, Но.	
Вопрос 3.	4
В качестве резонаторов в волоконных лазерах используют:	
1.Зеркальные резонаторы Фабри-Перо;	
2. Кольцевые волоконные резонаторы;	
3. Резонаторы на основе решеток Брэгга;	
4.Все типы резонаторов.	
Вопрос 4.	3
Волоконные лазеры способны генерировать:	
1.Только непрерывное излучение;	
2.Только импульсное излучение;	
3.Способны работать в обоих режимах.	
Вопрос 5.	3
Для создания ВКР-волоконных лазеров используют:	
1.Световоды специального сечения;	
2.Световоды легированные Nd, Yb, Er, Ho, Tm;	
3.Обычные световоды из германосиликатного и фосфоросиликатного стекла.	
Вопрос 6.	3
Для достижения импульсного режима генерации волоконных лазеров используют:	
1.Только режим активной синхронизации мод;	
2.Только режим пассивной синхронизации мод;	
3.Оба данные режима.	
Вопрос 7.	2
Что такое стретчер?	

	1. Устройство для усиления лазерного импульса;	
	2. Устройство с большой дисперсией групповой скорости;	
	3. Устройство для сжатия импульса.	
Раздел 6.	Вопрос 1.	1 и 2
	От чего зависит энергетический спектр носителей заряда в изолированных квантовых ямах, квантовых нитях и квантовых точках?	
	1.От размеров;	
	2.От формы;	
	3.От окружения.	
	Вопрос 2.	3
	Какой объект называется искусственным атомом?	
	1.Квантовая яма;	
	2.Квантовая нить;	
	3. Квантовая точка.	
	Вопрос 3	1
	К чему приводит изменение формы наночастиц?	
	1.К размыванию энергетических уровней;	
	2.К сужению энергетических уровней;	
	3. Ничего не изменяет.	
	Вопрос 4.	2
	Как влияет материал матрицы на энергию связи экситонов, если ее диэлектрическая проницаемость меньше диэлектрической проницаемости для материала наночастицы?	
	1. Никак не влияет;	
	2. Увеличивает;	
	3.Уменьшает.	
	Вопрос 5.	3
	Низкопороговая оптическая нелинейность гетерогенных	

	жидких наномомпозитных сред определятся:	
	1. Наличием дефектных донорных уровней в запрещенной зоне материала наночастицы;	
	2. Размыванием экситонных и квантоворазмерных энергетических уровней, обусловленных изменением геометрической формы наночастиц;	
	3. Этим двумя эффектами.	
Раздел 7.	Вопрос 1.	1
	Принцип допплеровского охлаждения атомов лазерным излучением связан с	
	1. Резонансным поглощением фотонов слазерного излучения;	
	2. Упругим рассеянием фотонов атомом;	
	3.Двумя этими эффектами.	
	Вопрос 2.	1
	Линейный эффект Зеемана в лазерном охлаждении атомов нужен:	
	1.Для компенсации допплеровского сдвига частоты энергетических уровней;	
	2. Для отклонения атомов в неоднородном поле;	
	3. Для ускорения атомов.	
	Вопрос 3.	1
	В допплеровской ловушке для охлажденных атомов используют	
	1. Направленные навстречу друг другу лазерные пучки одинаковой частоты меньшей чем резонансная частота атома;	
	2. Направленные навстречу друг другу лазерные пучки одинаковой частоты большей чем резонансная частота атома;	
	3. Направленные навстречу друг другу лазерные пучки разной частоты.	
	Вопрос 4.	2
	Магнитооптическая ловушка в устройствах лазерного охлаждения	

	1.Не используется;	
	2.Дополняет допплеровскую систему охлаждения;	
	3.Имеет самостоятельное назначение.	
	Вопрос 5.	2
	Атомным лазером называется устройство	
	1. Генерирующее когерентное световое излучение;	
	2.Создающее когерентный поток атомов;	
	3.Устройство генерирующее когерентное СВЧ излучение.	
Раздел 8.	Вопрос 1.	5
	Фотонно-кристаллические свойства обнаруживаются	
	1.Только у биологических объектов;	
	2.Только у объектов неживой природы;	
	3. Только у искусственно созданных объектов;	
	4. Только у объектов живой и неживой природы;	
	5.У всех вышеперечисленных объектов.	
	Вопрос 2.	4
	Морские губки – животные имеющие:	
	1.Скелет из карбоната кальция;	
	2.Скелет из гидратированного диоксида кремния;	
	3.Не имеют биоминерального скелета;	
	4.Бывают разных типов.	
	Вопрос 3.	3
	Спикулы стеклянных морских губок обладают:	
	1.Световедущими свойствами;	
	2.Свойствами фотонных кристаллов;	
	3.Свойствами чирпированных фотонных кристаллов.	
	Вопрос 4.	2
	Фотонно-кристаллические свойства спикул необходимы для:	

	1.Защиты от хищников;	
	2.Для поддержания энергетического баланса;	
	3.Не нужны вовсе.	
	Вопрос 5.	3
	Какие технологии позволяют искусственно воссоздать материал спикул стеклянных морских губок:	
	1.3оль-гель технологии;	
	2. Геномные технологии клонирования белков силикатеинов;	
	3.Обе перечисленные технологии.	
Раздел 9.	Вопрос 1.	2
	Динамической голограммой называется объект, который	
	1.Существует только в момент его записи;	
	2.Существует некоторое время после прекращения записи;	
	3.Стирается под действием излучения с другой длиной волны.	
	Вопрос 2.	3
	Novelty – фильтром в оптике называется фильтр, который по- зволяет:	
	1.Обнаруживать изменения произошедшие в наблюдаемом объекте или сцене;	
	2.Обнаруживать то, что осталось неизменным в непрерывно изменяющейся сцене;	
	3.В зависимости от назначения, либо 1, либо 2.	
Раздел 10.	Вопрос 1.	6
	СМАРТ-ГРИД системы мониторинга должны удовлетворять следующим требованиям:	
	1.Высокая скорость измерения физических параметров;	
	2. Работа измерительных систем в реальном времени;	
	3.Адаптивность и/или обучаемость измерительных систем;	
	4.Удаленный доступ к контролируемым объектам или процес-	

сам;	
5.Высокая помехозащищенность и способность работать в ус-	
ловиях недостаточного количества данных.	
6.Всем требованиям сразу;	
7.Только 4-му;	
8.4-му и 5-му.	
Вопрос 2.	1
СМАРТ-ГРИД системы мониторинга томографического типа используют	
1. Математический аппарат преобразований Радона;	
2.Математический аппарат преобразований Фурье;	
3. Математический аппарат преобразований Лапласа.	
Вопрос 3.	1
Системы мультиплексирования в СМАРТ-ГРИД системах мониторинга необходимы:	
1.Для объединения отдельных датчиков в протяженные измерительные линии;	
2.Для уплотнения каналов передачи данных;	
3.Для разбиения системы на сектора.	

Правильный ответ на вопрос -10 баллов.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ШКОЛА)

МЕТОДИЧЕСКИЕ УКАЗАНИЯ*

по дисциплине «Современная фотоника» Направление подготовки 12.04.01 Приборостроение

Магистерская программа «Цифровые лазерные технологии, оптоволоконные сети»

Форма подготовки очная

Владивосток 2022

^{*}При наличии опубликованных методических указаний по дисциплине