

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ПЕРЕДОВАЯ ИНЖЕНЕРНАЯ ШКОЛА «ИНСТИТУТ БИОТЕХНОЛОГИЙ, БИОИНЖЕНЕРИИ И ПИЩЕВЫХ СИСТЕМ»

СОГЛАСОВАНО

Научный руководитель ОП

<u>Шкрыль Ю.Н.</u> (подпись) (ФИО)

Руководитель ОП

Пентехина Ю.К.

(подпись) (ФИО)

УТВЕРЖДАЮ

И.о. декана Факультета промышленных биотехнологий и биоинженерии

Подпись Цыганков В.Ю. (И.О. Фамилия)

17 февраля 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теории эволюции

Специальность 06.05.01 Биоинженерия и биоинформатика

Генная и клеточная инженерия Форма подготовки: очная

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта по специальности 06.05.01 Биоинженерия и биоинформатика, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 12 августа 2020 г. № 973.

И.о. декана Факультета промышленных биотехнологий и биоинженерии, д-р биол. наук, доцент Цыганков В.Ю.

Составитель: Ph.D., научный сотрудник Пентехина Ю.К.

1. Раоочая программа пересмотрена и утверждена	на заседании Факультета промышленных оиотехнологии и
биоинженерии, протокол от «»	202 г. №
2. Рабочая программа пересмотрена и утверждена	на заседании Факультета промышленных биотехнологий и
биоинженерии, протокол от «»	202г. №
3. Рабочая программа пересмотрена и утверждена	на заседании Факультета промышленных биотехнологий и
биоинженерии, протокол от «»	202r. №
4. Рабочая программа пересмотрена и утверждена	на заседании Факультета промышленных биотехнологий и
биоинженерии, протокол от «»	202 г. №
5. Рабочая программа пересмотрена и утверждена	на заседании Факультета промышленных биотехнологий и
биоинженерии, протокол от «»	202r. №

Аннотация дисциплины

Теории эволюции

Общая трудоемкость дисциплины составляет 4 зачётных единицы / 144 академических часа. Является дисциплиной части ОП, формируемой участниками образовательных отношений, изучается на 2 курсе и завершается зачетом. Учебным планом предусмотрено проведение лекционных занятий в объеме 18 часов, практических занятий в объеме 18 часов, а также выделены часы на самостоятельную работу студента — 108 часов.

Язык реализации: русский.

Цель: ознакомление обучающихся с общими закономерностями исторического развития живой материи и причин ее возникновения.

Задачи: рассмотреть современные представлениями о возникновении жизни на Земле; изучить механизмы эволюции (естественный отбор, дрейф генов, горизонтальный перенос генов); основные проблемы эволюции; эволюция жизни на Земле; результаты эволюции.

Для успешного изучения дисциплины у обучающихся должны быть сформированы следующие предварительные компетенции: ПК-1.1 Применяет современные подходы, характерные для биоинженерии и биоинформатики, для решения проблем, стоящих как перед фундаментальной, так и прикладной наукой; ПК-1.2 Использует полученные знания и профессиональные навыки для грамотного анализа большого массива информации по биологическим объектам, участвует в конструировании модифицированных или новых биологических объектов.

Компетенции студентов, индикаторы их достижения и результаты обучения по дисциплине:

	Код и	Код и	
	наименование	наименование	Наименование показателя
Тип задач	компетенции	индикатора	оценивания (результата обучения
	(результат	достижения	по дисциплине)
	освоения)	компетенции	
	ПК-1. Способен	ПК-1.1 Применяет	Знает специфику проведения
Научно-	самостоятельно	современные	научно-исследовательских проектов
исследо-	проводить	подходы,	в области биоинженерии и
вательский	теоретическую и	характерные для	биоинформатики и представления
	экспериментальную	биоинженерии и	результатов исследования

научно- исследователь- скую работу в области биоинженерии,	биоинформатики, для решения проблем, стоящих как перед фундаментальной,	Умеет планировать научно- исследовательские проекты в области биоинженерии и биоинформатики, готовить отчетную документацию по итогам
биоинформатики, а также оформлять ее в письменной	так и прикладной наукой	их реализации, представлять результаты исследований в различных формах дискуссий
форме, излагать в устной форме и участвовать в различных формах дискуссий		Владеет навыками организации и реализации научно-исследовательских проектов в области биоинженерии и биоинформатики, подготовки отчетной документации и представления результатов исследований в различных формах дискуссий
	ПК-1.2 Использует полученные знания и профессиональные навыки для грамотного анализа	Знает научные проблемы по тематике проводимых исследований и разработок
	большого массива информации по биологическим объектам, участвует	Умеет определять сферы применения результатов научно- исследовательских работ
	в конструировании модифицированных или новых биологических объектов	Владеет методами проведения анализа научных данных, результатов экспериментов и наблюдений

Для формирования вышеуказанных компетенций в рамках дисциплины «Теории эволюции» применяются следующие дистанционные образовательные технологии и методы / активного / интерактивного обучения: работа в малых группах; презентации с использованием различных вспомогательных средств с обсуждением; просмотр и обсуждение видеофильмов.

І. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель: ознакомление обучающихся с общими закономерностями исторического развития живой материи и причин ее возникновения.

Задачи: рассмотреть современные представлениями о возникновении жизни на Земле; изучить механизмы эволюции (естественный отбор, дрейф генов, горизонтальный перенос генов); основные проблемы эволюции; эволюция жизни на Земле; результаты эволюции.

Дисциплина «Теории эволюции» является дисциплиной части ОП, формируемой участниками образовательных отношений. Для успешного изучения дисциплины у обучающихся должны быть сформированы следующие предварительные компетенции: ПК-1.1 Применяет современные подходы, характерные для биоинженерии и биоинформатики, для решения проблем, стоящих как перед фундаментальной, так и прикладной наукой; ПК-1.2 Использует полученные знания и профессиональные навыки для грамотного анализа большого массива информации по биологическим объектам, участвует в конструировании модифицированных или новых биологических объектов.

Профессиональные компетенции студентов, индикаторы их достижения и результаты обучения по дисциплине:

Тип задач	Код и наименование профессиональной компетенции (результат освоения)	Код и наименование индикатора достижения компетенции	Наименование показателя оценивания по дисциплине)
Научно- исследо- вательский	ПК-1. Способен самостоятельно проводить теоретическую и экспериментальную научно-исследовательскую работу в области биоинженерии, биоинформатики, а также оформлять ее в письменной форме, излагать в	ПК-1.1 Применяет современные подходы, характерные для биоинженерии и биоинформатики, для решения проблем, стоящих как перед фундаментальной, так и прикладной наукой	Знает специфику проведения научно-исследовательских проектов в области биоинженерии и биоинформатики и представления результатов исследования Умеет планировать научно-исследовательские проекты в области биоинженерии и биоинформатики, готовить отчетную документацию по итогам их реализации, представлять результаты исследований в различных формах дискуссий

устной форме и участвовать в различных формах дискуссий		Владеет навыками организации и реализации научно-исследовательских проектов в области биоинженерии и биоинформатики, подготовки отчетной документации и представления результатов исследований в различных формах дискуссий
	ПК-1.2 Использует полученные знания и профессиональные навыки для	Знает научные проблемы по тематике проводимых исследований и разработок
	грамотного анализа большого массива информации по биологическим объектам, участвует	Умеет определять сферы применения результатов научно- исследовательских работ
	в конструировании модифицированных или новых биологических объектов	Владеет методами проведения анализа научных данных, результатов экспериментов и наблюдений

П. ТРУДОЁМКОСТЬ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 4 зачётных единицы (144 академических часа).

Ш. СТРУКТУРА ДИСЦИПЛИНЫ

Форма обучения – очная

			С Количество часов по видам е учебных занятий и работы м обучающегося				Формы		
№	Наименование раздела дисциплины	е с т р	Лек	Лаб	Пр	ОК	СР	Конт-	промежуточной аттестации
1.	Тема 1. История эволюционного учения	4	2		4				
2.	Тема 2. Теория Дарвина о происхождения видов	4	4		4				
3.	Тема 3. Разнообразие живых организмов	4	4		6		108		Зачет
4.	Тема 4. Микроэволюция	4	4		2				
5.	Тема 5. Молекулярная эволюция	4	4		2				
	ИТОГО:		18		18		108		

IV. СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Тема 1. История эволюционного учения

Этапы развития эволюционных идей. Основные положения и высказывания о зарождении и развитии жизни на Земле. Древние эволюционные идеи. Эволюционные идеи Нового времени. Эволюционная теория Ж.Б. Ламарка. Эволюционная теория Ч. Дарвина. «Новый синтез» - синтетическая теория эволюции. Грегор Мендель в развитии эволюционного учения, теория эволюции Дарвина и генетика. Молекулярные свидетельства эволюции.

Тема 2. Теория Дарвина о происхождения видов

Зарождение теории Ч. Дарвина и ее развитие. Биография Дарвина. Теория Дарвина. Происхождение видов путём естественного отбора.

Тема 3. Разнообразие живых организмов

Биоразнообразие. Биосфера и многообразие форм живых организмов. Царства живой природы. Биосистемы. Строение клеток прокариот и эукариот. Деление клеток. Генетическая информация, кодирование, передача.

Тема 4. Микроэволюция

Понятие о микроэволюции. Элементарное эволюционное явление. Филетическая микроэволюция. Видообразование.

Тема 5. Молекулярная эволюция

Механизмы эволюции генома: мутации, рекомбинация, мобильные элементы, перемешивание экзонов и альтернативный сплайсинг, псевдогены, горизонтальный перенос генов у прокариот и эукариот, удвоение генома, размер генома. Происхождение генов *de novo*. Гипотизы молекулярной эволюции: селекционная, нейтральная, мутационная. Эксперименты в области молекулярной эволюции *in vitro*. Молекулярная филогенетика. Эволюция белковых последовательностей.

V. СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1. История эволюционного учения Эволюционные теории.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 2. Микроэволюция. Молекулярная эволюция

Учения Грегора Менделя. Закон Харди-Вайнберга. Современная концепция отбора. Мутации. Рекомбинация. Мобильные элементы. Дрейф генов. Современная концепция отбора.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 3-4. Молекулярная филогенетика

Установления родственных связей между живыми организмами на основании полученной аминокислотной последовательности.

VI. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

	Контроли-	Код и наимено-		Оценочны	е средства*
№ п/п	руемые разделы/темы дисциплины	вание индикатора достижения	Результаты обучения	текущий контроль	промежу- точная аттестация
	Тема 1. История эволюцион- ного учения	ПК-1.1	Знает специфику проведения научно-исследовательских проектов в области биоинженерии и биоинформатики и представления результатов исследования	УО-3 УО-4	-
1.	Тема 2. Теория Дарвина о происхождения видов Тема 3. Разнообразие живых организмов	Применяет современные подходы, характерные для биоинженерии и биоинформатики, для решения проблем, стоящих как перед фунда-	Умеет планировать научно- исследовательские проекты в области биоинженерии и биоинформатики, готовить отчетную документацию по итогам их реализации, представлять результаты исследований в различных формах дискуссий	УО-3	-
	Тема 4. Микро- эволюция Тема 5. Молекулярная эволюция	перед фунда ментальной, так и прикладной наукой	Владеет навыками организации и реализации научно- исследовательских проектов в области биоинженерии и биоинформатики, подготовки отчетной документации и представления результатов исследований в различных формах дискуссий	ПР-6 ПР-7	-

	ПК-1.2 Использует полученные знания и профессиональные навыки	Знает научные проблемы по тематике проводимых исследований и разработок	УО-3 УО-4	-
	для грамотного анализа большого массива информации по биологическим объектам,	Умеет определять сферы применения результатов научно-исследовательских работ	УО-3	-
	участвует в конструировании модифицированных или новых биологических объектов	Владеет методами проведения анализа научных данных, результатов экспериментов и наблюдений	ПР-6 ПР-7	-
Зачет			_	УО-1

^{*} Формы оценочных средств:

VII. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа определяется как индивидуальная или коллективная учебная деятельность, осуществляемая без непосредственного руководства педагога, но по его заданиям и под его контролем. Самостоятельная работа — это познавательная учебная деятельность, когда последовательность мышления студента, его умственных и практических операций и действий зависит и определяется самим студентом.

Самостоятельная работа студентов способствует развитию самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровня, что в итоге приводит к развитию навыка самостоятельного планирования и реализации деятельности.

¹⁾ собеседование (УО-1), коллоквиум (УО-2); доклад, сообщение (УО-3); круглый стол, дискуссия, полемика, диспут, дебаты (УО-4); и т.д.

²⁾ тесты (ПР-1); контрольные работы (ПР-2), эссе (ПР-3), рефераты (ПР-4), курсовые работы (ПР-5), научноучебные отчеты по практикам (ПР-6); практические задания (ПР-7); портфолио (ПР-8); проект (ПР-9); деловая и/или ролевая игра (ПР-10); ситуационные задачи (ПР-11); рабочая тетрадь (ПР-12); кроссворды (ПР-13) и т.д.

³⁾ тренажер (ТС-1); и т.д.

Целью самостоятельной работы студентов является овладение необходимыми компетенциями по своему направлению подготовки, опытом творческой и исследовательской деятельности.

Формы самостоятельной работы студентов:

- работа с основной и дополнительной литературой, Интернет ресурсами;
- самостоятельное ознакомление с лекционным материалом, представленным на электронных носителях, в библиотеке образовательного учреждения;
- подготовка реферативных обзоров источников периодической печати, опорных конспектов, заранее определенных преподавателем;
- поиск информации по теме, с последующим ее представлением в аудитории в форме доклада, презентаций;
 - подготовка к выполнению аудиторных контрольных работ;
 - выполнение домашних контрольных работ;
 - выполнение тестовых заданий, решение задач;
 - составление кроссвордов, схем;
 - подготовка сообщений к выступлению на семинаре, конференции;
 - заполнение рабочей тетради;
 - написание эссе, курсовой работы;
 - подготовка к деловым и ролевым играм;
 - составление резюме;
 - подготовка к зачетам и экзаменам;
- другие виды деятельности, организуемые и осуществляемые образовательным учреждением и органами студенческого самоуправления.

VIII. СПИСОК ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

1. Северцов, А.С. Теории эволюции: учебник для вузов / А.С.

- Северцов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2023. 384 с. Режим доступа: https://urait.ru/bcode/512379
- 2. Северцов, А.Н. Этюды по теории эволюции: индивидуальное развитие и эволюция / А.Н. Северцов. Москва: Издательство Юрайт, 2023. 252 с. Режим доступа: https://urait.ru/bcode/516706
- 3. Мелких, А.В. Теория направленной эволюции: монография / А.В. Мелких. Долгопрудный: Интеллект, 2020. 384 с. Режим доступа: https://znanium.com/catalog/product/1238963

Дополнительная литература

- 1. Иванов, А.Л. Эволюция и филогения растений: учебное пособие / А.Л. Иванов. 2-е изд., испр. и доп. Москва; Берлин: Директ-Медиа, 2020. 292 с. Режим доступа: https://znanium.com/catalog/document?id=418379
- 2. Сироткин, О.С. Эволюция теории химического строения вещества А.М. Бутлерова в унитарную теорию строения химических соединений (основы единой химии): монография / О. С. Сироткин. Москва: ИНФРА-М, 2020. 247 с. Режим доступа: https://znanium.com/catalog/product/1036451
- 3. Фесенкова, Л.В. Теория эволюции и ее отражение в культуре: монография / Л.В. Фесенкова. Москва: Институт философии РАН, 2003. 175 с. Режим доступа: https://znanium.com/catalog/product/345297

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

1. Электронная библиотека. - Режим доступа: https://www.medlib.ru/library/library/books

Перечень информационных технологий и программного обеспечения

1. Программное обеспечение: Microsoft Word, Microsoft Excel, Microsoft PowerPoint, OC Windows, ClustalX, MEGA, Chimera, BioEdit.

ІХ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Успешное освоение дисциплины предполагает активную работу студентов на всех занятиях аудиторной формы: лекциях и практиках, выполнение аттестационных мероприятий. В процессе изучения дисциплины студенту необходимо ориентироваться на проработку лекционного материала и подготовку к практическим занятиям.

Освоение дисциплины «Теории эволюции» предполагает рейтинговую систему оценки знаний студентов и предусматривает со стороны преподавателя текущий контроль за посещением студентами лекций, подготовкой и выполнением всех практических заданий, выполнением всех видов самостоятельной работы.

Промежуточной аттестацией по дисциплине «Теории эволюции» является зачет.

Студент считается аттестованным по дисциплине при условии выполнения всех видов текущего контроля и самостоятельной работы, предусмотренных учебной программой.

Шкала оценивания сформированности образовательных результатов по дисциплине представлена в фонде оценочных средств (ФОС).

Х. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебные занятия по дисциплине «Теории эволюции» проводятся в помещениях, оснащенных соответствующим оборудованием и программным обеспечением.

Перечень материально-технического и программного обеспечения дисциплины приведен в таблице.

Материально-техническое и программное обеспечение дисциплины

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Учебная аудитория для проведения занятий	Экран проекционный ScreenLine Trim White Ice 50 см черная кайма сверху,	
лекционного и	размер рабочей области 236х147 см	

	T	
семинарского типа,	Документ-камера Avervision CP355AF	
оснащенная оборудованием	ЖК-панель 47", Full HD, LG M4716	
и техническими средствами	CCBA	
обучения	Мультимедийный проектор, Mitsubishi	
(690922, Приморский край,	EW33OU, 3000 ANSI Lumen, 1280x800	
г. Владивосток,	Сетевая видеокамера Multipix MP-	
о. Русский, п. Аякс, 10,	HD718	
корпус G, каб. G513)		
Аудитории для	Помещения для самостоятельной	
самостоятельной работы	работы обучающихся оснащены	
студентов	компьютерной техникой с	
(690922, Приморский край,	возможностью подключения к сети	
г. Владивосток,	«Интернет» и обеспечением доступа в	
о. Русский,	электронную информационно-	
п. Аякс, 10, корпус А,	образовательную среду ДВФУ.	
каб. А1007 (А1042))	Комплекты учебной мебели (столы и	
, , , , , , , , , , , , , , , , , , ,	стулья). Моноблок Lenovo C360G-	
	i34164G500UDK – 115 шт.	
	Интегрированный сенсорный дисплей	
	Polymedia FlipBox. Копир-принтер-	
	цветной сканер в e-mail с 4 лотками	
	Xerox WorkCentre 5330 (WC5330C).	
	Полноцветный копир-принтер-сканер	
	Xerox WorkCentre 7530 (WC7530CPS).	
	Скорость доступа в Интернет 500	
	Мбит/сек. Рабочие места для людей с	
	ограниченными возможностями	
	здоровья оснащены дисплеями и	
	принтерами Брайля; оборудованы:	
	портативными устройствами для	
	чтения плоскопечатных текстов,	
	сканирующими и читающими	
	машинами видеоувеличителем с	
	возможностью регуляции цветовых	
	спектров; увеличивающими	
	электронными лупами и	
	ультразвуковыми маркировщиками	
1	J J J J J J J J J J J J J J J J J J J	