

## МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

### «Дальневосточный федеральный университет» (ДВФУ)

#### Институт наукоемких технологий и передовых материалов



#### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Основы микромагнитного моделирования Направление подготовки 11.04.04 Электроника и наноэлектроника магистерская программа «Электроника и наноэлектроника (совместно с ИАПУ ДВО РАН)» Форма подготовки очная

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки 11.04.04 Электроника и наноэлектроника, утвержденного приказом Минобрнауки России от 22 сентября 2017 г. № 959

Рабочая программа обсуждена на заседании департамента общей и экспериментальной физики, протокол № 5 от «28» февраля 2023 г.

и.о. директора департамента общей и экспериментальной физики: канд. хим. наук, доцент Короченцев В.В.

Составитель: д.ф.-м.н., профессор Саранин А.А.

Владивосток 2023

| • | Рабочая программа пересмотрена на заседании Департамента риментальной физики и утверждена на заседании Департамента риментальной физики, протокол от «»2023г.№ | , |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| - | Рабочая программа пересмотрена на заседании Департамента риментальной физики и утверждена на заседании Департамента риментальной физики, протокол от «»202 г.№ | , |  |
| • | Рабочая программа пересмотрена на заседании Департамента риментальной физики и утверждена на заседании Департамента риментальной физики, протокол от «»202 г.№ |   |  |
| • | Рабочая программа пересмотрена на заседании Департамента риментальной физики и утверждена на заседании Департамента риментальной физики, протокол от «»202 г.№ | , |  |
| - | Рабочая программа пересмотрена на заседании Департамента риментальной физики и утверждена на заседании Департамента риментальной физики, протокол от «» г.№    |   |  |

#### Аннотация дисциплины

#### «Основы микромагнитного моделирования»

Дисциплина «Основы микромагнитного моделирования» входит в часть формируемую участниками образовательных отношений цикла дисциплин образовательной программы, является дисциплиной по выбору (Б1.В.ДВ.05.01), реализуется на 2 курсе в 3 семестре, завершается экзаменом. Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц (180 часов). Учебным планом предусмотрены лабораторные занятия (52 час.), самостоятельная работа студента (128 час., в том числе 36 час. на подготовку к экзамену), курсовое проектирование.

Язык реализации – русский.

#### Цель:

Изучение физических и математических основ работы метода микромагнитного моделирования, а также приобретение практических навыков формулировки и решения научно-исследовательских задач в области наномагнетизма.

#### Задачи:

- Изучить теоретические основы, (законы, взаимодействия) позволяющие описать явления и процессы, реализующиеся в магнитных средах на наноразмерном уровне.
- Получить представления о методах конечных разностей и конечных элементов для решения задач математической физики в области наномагнетизма.
- Получить практический навык работы в программном пакете The Object Oriented MicroMagnetic Framework (OOMMF).

Базой для освоения данной дисциплины являются курсы «Физика», «Дифференциальные уравнения», «Математическая физика», «Физика магнитных пленок и наноразмерных структур».

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы, характеризуют формирование следующих компетенций, индикаторов достижения компетенций:

| Наименован ие категории (группы) компетенций | е<br>  компетениии                                                                                                                                                                                                                                                                          | код и наименование<br>индикатора достижения<br>компетенции | по дисциплине)                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Научно- исследователь ский                   | ПК-3<br>Способен<br>осваивать<br>принципы<br>планирования<br>и методы<br>автоматизаци<br>и эксперимента<br>на основе<br>информацион<br>но-<br>измерительны<br>х комплексов<br>как средства<br>повышения<br>точности и<br>снижения<br>затрат на его<br>проведение,<br>овладевать<br>навыками |                                                            | Знает основные требования, предъявляемые к средствам проведения эксперимента, контроля и диагностики Умеет осуществлять разработку требований к средствам проведения эксперимента, контроля и диагностики в зависимости от исследовательской задачи Владеет навыками оценки соответствия средств проведения эксперимента, контроля и диагностики в проведения эксперимента, контроля и диагностики их нормативной документации Знает принципы |
|                                              | навыками<br>измерений в<br>реальном<br>времени                                                                                                                                                                                                                                              | 1 1                                                        | Знает принципы разработки проектных материалов при планировании и автоматизации эксперимента на основе информационно-измерительных комплексов                                                                                                                                                                                                                                                                                                 |

|               | T            |                         |                                   |
|---------------|--------------|-------------------------|-----------------------------------|
|               |              |                         | Умеет осуществлять                |
|               |              |                         | непосредственную                  |
|               |              |                         | разработку проектных              |
|               |              |                         | материалов для                    |
|               |              |                         | экспериментальных задач           |
|               |              |                         | в избранной области               |
|               |              |                         | электроники и                     |
|               |              |                         | наноэлектроники                   |
|               |              |                         | Владеет навыками                  |
|               |              |                         | эксплуатации                      |
|               |              |                         | высокотехнологичного              |
|               |              |                         | оборудования в избранной          |
|               |              |                         | области электроники и             |
|               |              |                         | наноэлектроники                   |
|               |              | ПК-3.3 тестирует и      | Знает основные                    |
|               |              | проводит диагностику    | принципы,                         |
|               |              | изделий наноэлектроники | предъявляемые к                   |
|               |              | 1                       | тестированию и                    |
|               |              |                         | диагностике изделий               |
|               |              |                         | наноэлектроники                   |
|               |              |                         | Умеет осуществлять                |
|               |              |                         | подготовку к процессу             |
|               |              |                         | тестирования и                    |
|               |              |                         | диагностики изделий               |
|               |              |                         | наноэлектроники                   |
|               |              |                         | Владеет навыками                  |
|               |              |                         | проведения диагностики и          |
|               |              |                         | тестирования изделий              |
|               |              |                         | наноэлектроники в                 |
|               |              |                         | соответствии с                    |
|               |              |                         | технической и                     |
|               |              |                         | эксплуатационной                  |
|               |              |                         | документацией                     |
| Научно-       |              | ПК-4.1 планирует        | Знает основные этапы              |
| исследователь |              | основные этапы          | экспериментальных                 |
| ский          | ПК-4         | экспериментальных       | исследований                      |
|               | a 5          | исследований            | Умеет планировать этапы           |
|               |              |                         | проведения эксперимента           |
|               | организации  |                         | для исследовательских             |
|               | и проведению |                         | задач                             |
|               | эксперимента |                         | Владеет навыками                  |
|               | льных        |                         | организации и проведения          |
|               | исследований |                         | экспериментальных                 |
|               | c            |                         | исследований с                    |
|               | применением  |                         | применением современных средств и |
|               | -            |                         | методов                           |
|               | современных  | ПК-4.2 самостоятельно   | Знает современные                 |
|               | средств и    | проводит                | средства и методы,                |
|               | методов      | экспериментальные       | позволяющие                       |
|               |              | исследования, используя | самостоятельно проводить          |
|               |              | современные средства и  | экспериментальные                 |
| L             | 1            | 1 - L                   | 1                                 |

|              |             | методы                      | исследования<br>Умеет определять                  |
|--------------|-------------|-----------------------------|---------------------------------------------------|
|              |             |                             | подходящие методы для                             |
|              |             |                             | проведения<br>экспериментальных                   |
|              |             |                             | исследований                                      |
|              |             |                             | Владеет навыками                                  |
|              |             |                             | настройки                                         |
|              |             |                             | высокотехнологичного                              |
|              |             |                             | оборудования в                                    |
|              |             |                             | соответствии                                      |
|              |             |                             | современными методами                             |
|              |             |                             | проведения экспериментальных работ                |
|              |             | ПК-4.1 планирует            | Знает методы                                      |
|              |             | основные этапы              | исследования                                      |
|              |             | экспериментальных           | поверхности                                       |
|              |             | исследований                | низкоразмерных структур                           |
|              |             |                             | Умеет оценивать и                                 |
|              |             |                             | выбирать подходящие                               |
|              |             |                             | типы и параметры<br>лабораторных установок        |
|              |             |                             | для экспериментальных                             |
|              |             |                             | исследований                                      |
|              |             |                             | Владеет методами                                  |
|              |             |                             | исследования                                      |
|              |             |                             | низкоразмерных структур,                          |
|              |             |                             | навыками оценки и                                 |
|              |             |                             | определения подходящих<br>параметров лабораторных |
|              |             |                             | установок для                                     |
|              |             |                             | экспериментальных                                 |
|              |             |                             | исследований                                      |
| Научно-      | ПК-6        | ПК-6.1 демонстрирует        | Знает основы                                      |
| педагогическ | Способен    | знание методов              | моделирования и расчётов                          |
| ий           | планировать | исследования<br>поверхности | атомной структуры и<br>свойств материалов         |
|              | и проводить | низкоразмерных структур,    | Умеет использовать                                |
|              | эксперимент | основных типов и            | необходимые алгоритмы                             |
|              | ы по        | параметров лабораторных     | и программные пакеты                              |
|              | моделирован | установок для               | для осуществления                                 |
|              | ию и        | экспериментальных           | моделирования структур и                          |
|              | практическо | исследований                | их свойств                                        |
|              | My          |                             | Владеет навыками                                  |
|              | определению |                             | моделирования структур и систем с разными         |
|              | структуры и |                             | параметрами                                       |
|              | свойств     | ПК-6.2 осуществляет         | Знает основы                                      |
|              | материалов, | моделирование и             | моделирования и расчётов                          |
|              | перспективн | практическое определение    | атомной структуры и                               |
|              | ых для      | структуры и свойств         | свойств материалов Умеет использовать             |
|              | Дии дии     | материалов                  | Умеет использовать                                |

| необходимые алгоритмы              |
|------------------------------------|
|                                    |
| и программные пакеты               |
| для осуществления                  |
| моделирования структур и           |
| их свойств                         |
| Владеет навыками                   |
| моделирования структур и           |
| систем с разными                   |
| параметрами                        |
| именяет методы Знает методы        |
| еского математического             |
| физических описания физических     |
| протекающих процессов, протекающих |
| низкоразмерных в низкоразмерных    |
| структурах                         |
| Умеет выбирать                     |
| подходящий для                     |
| конкретной задачи метод            |
| математического                    |
| описания                           |
| Владеет навыками                   |
| настройки или                      |
| модификации                        |
| программных алгоритмов             |
| и кодов, используемых              |
| для описания физических            |
| процессов, протекающих             |
| в низкоразмерных                   |
| структурах                         |
|                                    |

Для формирования вышеуказанных компетенций в рамках дисциплины «Основы микромагнитного моделирования» применяются следующие дистанционные образовательные технологии и методы / активного / интерактивного обучения: работа в малых группах.

#### І. Цели и задачи освоения дисциплины:

Цель: Изучение физических и математических основ работы метода микромагнитного моделирования, а также приобретение практических навыков формулировки и решения научно-исследовательских задач в области наномагнетизма.

#### Задачи:

- Изучить теоретические основы, (законы, взаимодействия) позволяющие описать явления и процессы, реализующиеся в магнитных средах на наноразмерном уровне.
- Получить представления о методах конечных разностей и конечных элементов для решения задач математической физики в области наномагнетизма.
- Получить практический навык работы в программном пакете The Object Oriented MicroMagnetic Framework (OOMMF).

Профессиональные компетенции студентов, индикаторы их достижения и результаты обучения по дисциплине

| Тип задач  | Код и                |                          | Наименование показателя |
|------------|----------------------|--------------------------|-------------------------|
|            | наименование         | Код и наименование       | оценивания              |
|            | профессиональной     | индикатора достижения    | (результата обучения по |
|            | компетенции          | компетенции              | дисциплине)             |
|            | (результат освоения) |                          |                         |
| Научно-    | ПК-3 Способен        |                          | Знает основные          |
| исследоват | осваивать            | требования к средствам   | требования,             |
| ельский    | принципы             | проведения эксперимента, | предъявляемые к         |
|            | планирования и       | контроля и диагностики   | средствам проведения    |
|            | методы               |                          | эксперимента,           |
|            | автоматизации        |                          | контроля и              |
|            | эксперимента на      |                          | диагностики             |
|            | основе               |                          | Умеет осуществлять      |
|            | информационно        |                          | разработку              |
|            | -измерительных       |                          | требований к            |
|            | комплексов как       |                          | средствам проведения    |
|            | средства             |                          | эксперимента,           |
|            | повышения            |                          | контроля и              |
|            | точности и           |                          | диагностики в           |
|            | снижения затрат      |                          | зависимости от          |
|            | на его               |                          | исследовательской       |

| проведение, |                                              | задачи                                 |
|-------------|----------------------------------------------|----------------------------------------|
| овладевать  |                                              | Владеет навыками                       |
| навыками    |                                              | оценки соответствия                    |
| измерений в |                                              | средств проведения                     |
| реальном    |                                              | эксперимента,                          |
| времени     |                                              | контроля и                             |
| Γ -         |                                              | диагностики их                         |
|             |                                              | нормативной                            |
|             |                                              | _                                      |
|             | TIV 2.2 noonoform moor                       | Знает принципы                         |
|             | ПК-3.2 разрабатывает проектные материалы при | знает принципы<br>разработки проектных |
|             | планировании и                               | материалов при                         |
|             | автоматизации                                | планировании и                         |
|             | эксперимента в избранной                     | автоматизации                          |
|             | области электроники и                        | эксперимента на основе                 |
|             | наноэлектроники                              | информационно-                         |
|             |                                              | измерительных                          |
|             |                                              | комплексов                             |
|             |                                              | Умеет осуществлять                     |
|             |                                              | непосредственную                       |
|             |                                              | разработку проектных                   |
|             |                                              | материалов для                         |
|             |                                              | экспериментальных задач                |
|             |                                              | в избранной области                    |
|             |                                              | электроники и                          |
|             |                                              | наноэлектроники<br>Владеет навыками    |
|             |                                              | эксплуатации                           |
|             |                                              | высокотехнологичного                   |
|             |                                              | оборудования в                         |
|             |                                              | избранной области                      |
|             |                                              | электроники и                          |
|             |                                              | наноэлектроники                        |
|             | ПК-3.3 тестирует и                           | Знает основные                         |
|             | проводит диагностику                         | принципы,                              |
|             | изделий наноэлектроники                      | предъявляемые к                        |
|             |                                              | тестированию и                         |
|             |                                              | диагностике изделий                    |
|             |                                              | наноэлектроники                        |
|             |                                              | Умеет осуществлять                     |
|             |                                              | подготовку к процессу                  |
|             |                                              | тестирования и<br>диагностики изделий  |
|             |                                              | наноэлектроники                        |
|             |                                              | Владеет навыками                       |
|             |                                              | проведения диагностики и               |
|             |                                              | тестирования изделий                   |
|             |                                              | наноэлектроники в                      |
|             |                                              | соответствии с                         |
|             |                                              | технической и                          |
|             |                                              | эксплуатационной                       |

|            |                 |                         | документацией                             |
|------------|-----------------|-------------------------|-------------------------------------------|
| TT         |                 | ПИ 4.1                  | _                                         |
| Научно-    |                 | ПК-4.1 планирует        | Знает основные этапы                      |
| исследоват |                 | основные этапы          | экспериментальных                         |
| ельский    |                 | экспериментальных       | исследований                              |
|            |                 | исследований            | Умеет планировать этапы                   |
|            |                 |                         | проведения эксперимента                   |
|            |                 |                         | для исследовательских                     |
|            |                 |                         | задач                                     |
|            |                 |                         | Владеет навыками                          |
|            |                 |                         | организации и проведения                  |
|            |                 |                         | экспериментальных                         |
|            |                 |                         | исследований с                            |
|            |                 |                         | применением                               |
|            |                 |                         | современных средств и                     |
|            |                 | 777.4.2                 | методов                                   |
|            |                 | ПК-4.2 самостоятельно   | Знает современные                         |
|            |                 | проводит                | средства и методы,                        |
|            |                 | экспериментальные       | позволяющие                               |
|            |                 | исследования, используя | самостоятельно                            |
|            |                 | современные средства и  | проводить                                 |
|            | ПК-4 Способен   | методы                  | экспериментальные                         |
|            |                 |                         | исследования                              |
|            | к организации и |                         | Умеет определять                          |
|            | проведению      |                         | подходящие методы для                     |
|            | эксперименталь  |                         | проведения                                |
|            | ных             |                         | экспериментальных                         |
|            | исследований с  |                         | исследований                              |
|            | применением     |                         | Владеет навыками                          |
|            | -               |                         | настройки                                 |
|            | современных     |                         | высокотехнологичного                      |
|            | средств и       |                         | оборудования в                            |
|            | методов         |                         | соответствии                              |
|            |                 |                         | современными методами                     |
|            |                 |                         | проведения                                |
|            |                 | ПИ 4.1                  | экспериментальных работ                   |
|            |                 | ПК-4.1 планирует        | Знает методы                              |
|            |                 | основные этапы          | исследования                              |
|            |                 | экспериментальных       | поверхности                               |
|            |                 | исследований            | низкоразмерных структур Умеет оценивать и |
|            |                 |                         | '                                         |
|            |                 |                         | выбирать подходящие                       |
|            |                 |                         | типы и параметры лабораторных установок   |
|            |                 |                         | для экспериментальных                     |
|            |                 |                         | исследований                              |
|            |                 |                         | Владеет методами                          |
|            |                 |                         |                                           |
|            |                 |                         | исследования                              |
|            |                 |                         | низкоразмерных структур,                  |
|            |                 |                         | навыками оценки и                         |
|            |                 |                         | определения подходящих                    |
|            |                 |                         | параметров лабораторных                   |
|            |                 |                         | установок для                             |

|                        |                                                                                                                                                                                |                                                                                                                                                                             | экспериментальных<br>исследований                                                                                                                                                                                                                                       |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Научно-педагогич еский | ПК-6 Способен планировать и проводить эксперименты по моделировани ю и практическому определению структуры и свойств материалов, перспективных для электроники и наноэлектрони | ПК-6.1 демонстрирует знание методов исследования поверхности низкоразмерных структур, основных типов и параметров лабораторных установок для экспериментальных исследований | Знает основы моделирования и расчётов атомной структуры и свойств материалов Умеет использовать необходимые алгоритмы и программные пакеты для осуществления моделирования структур и их свойств Владеет навыками моделирования структур и систем с разными параметрами |  |  |
|                        | КИ                                                                                                                                                                             | ПК-6.2 осуществляет моделирование и практическое определение структуры и свойств материалов                                                                                 | Знает основы моделирования и расчётов атомной структуры и свойств материалов Умеет использовать необходимые алгоритмы и программные пакеты для осуществления моделирования структур и их свойств Владеет навыками моделирования структур и систем с разными параметрами |  |  |
|                        |                                                                                                                                                                                | ПК-6.3 применяет методы математического описания физических процессов, протекающих в низкоразмерных структурах                                                              | Знает методы математического описания физических процессов, протекающих в низкоразмерных структурах Умеет выбирать подходящий для конкретной задачи метод математического описания Владеет навыками настройки или                                                       |  |  |

|  | модификации             |
|--|-------------------------|
|  | программных алгоритмов  |
|  | и кодов, используемых   |
|  | для описания физических |
|  | процессов, протекающих  |
|  | в низкоразмерных        |
|  | структурах              |

# II. Трудоёмкость дисциплины и виды учебных занятий по дисциплине

Общая трудоемкость дисциплины составляет 5 зачётных единиц (180 академических часов)

#### Структура дисциплины:

Форма обучения – очная

|   |                                                                                                                                     | C<br>e           |     | чество ч |    |     |    |                    |                                   |
|---|-------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|----------|----|-----|----|--------------------|-----------------------------------|
| № | Наименование раздела<br>дисциплины                                                                                                  | M<br>e<br>c<br>T | Лек | Лаб      | Пр | ОК* | СР | Конт<br>роль*<br>* | Формы промежуточной аттестации*** |
| 1 | Тема 1 Описание геометрических параметров и расчет магнитных постоянных моделируемого объекта на основании экспериментальных данных | 6                | 0   | 4        | 0  |     |    |                    |                                   |
| 2 | Тема 2 Анализ экспериментальных результатов исследования магнитной структуры                                                        | 6                | 0   | 4        | 0  |     |    |                    |                                   |
| 3 | Тема 3. Установка, изучение интерфейса и работа в программном пакете OOMMF                                                          |                  |     |          |    |     | 90 | 36                 | Экзамен                           |
|   | Тема 4. Моделирование двумерных (2D) наноструктур в ООММГ                                                                           | 6                | 0   | 6        | 0  |     |    |                    |                                   |
|   | Тема 5. Моделирование трехмерных (3D) наноструктур различной геометрической формы в OOMMF                                           | 6                | 0   | 6        | 0  |     |    |                    |                                   |
|   | Тема 6. Особенности<br>задания геометрии                                                                                            | 6                | 0   | 6        | 0  |     |    |                    |                                   |

| моделируемого 3D          |   |   |    |   |    |    |     |
|---------------------------|---|---|----|---|----|----|-----|
| объекта при               |   |   |    |   |    |    |     |
| использовании ScriptAtlas |   |   |    |   |    |    |     |
| B OOMMF                   |   |   |    |   |    |    |     |
| Тема 7 Формирование       |   |   |    |   |    |    |     |
| необходимой начальной     |   |   |    |   |    |    |     |
| конфигурации              | 6 | 0 | 6  | 0 |    |    |     |
| намагниченности 3D        |   |   |    |   |    |    |     |
| структур в ООММБ          |   |   |    |   |    |    |     |
| Тема 8. Виды обменного    |   |   |    |   |    |    |     |
| взаимодействия при        |   |   |    |   |    |    |     |
| моделировании 3D          | 6 | 0 | 4  | 0 |    |    |     |
| объектов в OOMMF          |   |   |    |   |    |    |     |
| Тема 9. Магнитная         |   |   |    |   |    |    |     |
| анизотропия при           |   | _ |    | _ |    |    |     |
| моделировании 3D          | 6 | 0 | 4  | 0 |    |    |     |
| объектов в OOMMF          |   |   |    |   |    |    |     |
| Тема 10. Симуляция        |   |   |    |   |    |    |     |
| процессов                 |   |   |    |   |    |    |     |
| перемагничивания под      |   |   | _  |   |    |    |     |
| действием внешнего        | 6 | 0 | 6  | 0 |    |    |     |
| магнитного поля в         |   |   |    |   |    |    |     |
| OOMMF                     |   |   |    |   |    |    |     |
| Тема 11. Симуляция        |   |   |    |   |    |    |     |
| спиновой динамики 3D      | 6 | 0 | 4  | 0 |    |    |     |
| объекта под действием     | 0 | U | 4  | U |    |    |     |
| температуры в ООММГ       |   |   |    |   |    |    |     |
| Тема 12. Моделирование    |   |   |    |   |    |    |     |
| топологических спиновых   | 6 | 0 | 4  | 0 |    |    |     |
| конфигураций в ООММГ      |   |   |    |   |    |    |     |
| Тема 13. Моделирование    |   |   |    |   |    |    |     |
| магнитостатических        |   |   |    |   |    |    |     |
| полей создаваемых         | 6 | 0 | 4  | 0 |    |    |     |
| ферромагнитной            |   |   | -  |   |    |    |     |
| наноструктурой в          |   |   |    |   |    |    |     |
| OOMMF                     |   |   |    |   |    |    |     |
| Тема 14. Моделирование    |   |   |    |   |    |    |     |
| пленок и многослойных     | 6 | 0 | 6  | 0 |    |    |     |
| структур в ООММБ          |   |   |    |   |    |    |     |
| Итого:                    |   |   | 68 |   | 90 | 36 | *** |

<sup>\*</sup>онлайн курс

# **Ш. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА**Тема 1 Описание геометрических параметров и расчет магнитных

**Тема 1 Описание геометрических параметров и расчет магнитных постоянных моделируемого объекта на основании экспериментальных данных** 

Базовое описание подхода к микромагнитному моделированию. Теоретическое описание микромагнитного моделирования и концепций, на которых он построен.

**Тема 2 Анализ экспериментальных результатов исследования** магнитной структуры

<sup>\*\*</sup> указать часы из УП

<sup>\*\*\*</sup>зачет/экзамен

Основы обработки полученных результатов моделирования. Построение петель магнитного гистерезиса, визуализация полученной векторной модели в прикладных приложениях.

### **Тема 3. Установка, изучение интерфейса и работа в программном пакете OOMMF**

Установка требуемых для моделирования программных пакетов, знакомство с интерфейсом и основами задания простейшей геометрии комбинацией операций простейшей логики и параметров материала в пакете микромагнитного моделирования ООММF.

#### **Тема 4. Моделирование двумерных (2D) наноструктур в ООММ**

Задание простейших магнитных плёнок (двухмерных наноструктур) с заданными параметрами материала и изначальной доменной конфигурацией. Расчёт полученной модели.

### **Тема 5. Моделирование трехмерных (3D) наноструктур различной геометрической формы в OOMMF**

Задание и расчёт наноструктур со сложной геометрией с использованием примитивов и логических операций. Расчёт полученных структур и анализ их магнитного поведения и доменной структуры

### Tema 6. Особенности задания геометрии моделируемого 3D объекта при использовании ScriptAtlas в OOMMF

Задание геометрии наностурктуры с использованием подпрограммы ScriptAtlas. Расчёт микромагнитной конфигурации полученной структуры, расчёт кривых намагничивания и построение полученных результатов.

### **Тема 7..** Формирование необходимой начальной конфигурации намагниченности 3D структур в OOMMF

Задание в наноструктурах микромагнитных конфигураций типа «вортекс», двухдоменное состояние, однодоменное состояние, вихревая доменная стенка и случайное направление намагниченности в образце. Расчёт остаточного состояния полученных структур и анализ их магнитного поведения.

### **Тема 8. Виды обменного взаимодействия при моделировании 3D** объектов в **OOMMF**

Задача взаимодействия Дзялошинского-Мория в микромагнитной модели. Изучения влияния знака и величины константы взаимодействия Дзялошинского-Мория на магнитное поведение расчётного образца.

### **Tema 9. Магнитная анизотропия при моделировании 3D объектов в OOMMF**

Задача магнитной анизотропии в приведённой микромагнитной модели. Исследование зависимости магнитного поведения наноструктур от типа анизотропии: магнитокристаллической (одноосной и кубической), наведённой и анизотропии формы.

### **Тема 10.** Симуляция процессов перемагничивания под действием внешнего магнитного поля в **OOMMF**

Расчёт изменения микромагнитной конфигурации с заданными параметрами геометрии и материала по времени для получения информации о динамических процессах, происходящих при перемагничивании заданной структуры.

## Tema 11. Симуляция спиновой динамики 3D объекта под действием температуры в OOMMF

Исследование влияния размера ячейки разбиения на динамику намагниченности под действием температуры.

### **Тема 12. Моделирование топологических спиновых конфигураций в OOMMF**

Расчёт величины топологического заряда микромагнитной конфигурации полученной в результате моделирования. Расчёт величины топологического заряда скирмионов.

### **Тема 13. Моделирование магнитостатических полей создаваемых** ферромагнитной наноструктурой в **OOMMF**

Моделирование и исследование полей рассеяния создаваемых наноструктурой и зависимости силовых линий от расстояния между соседними наноструктурами.

### **Тема 14. Моделирование пленок и многослойных структур в ООММF**

Создание негомогенных многослоевых наноструктур с использованием подпрограммы разбиения наноструктуры на регионы с разными параметрами материала. Расчёт состояния с минимальной энергией таких структур.

#### IV. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

#### ЛАБОРАТОРНЫЕ РАБОТЫ

Лабораторная работа №1. Описание геометрических параметров и расчет магнитных постоянных моделируемого объекта на основании экспериментальных данных (4 / час.)

- **1.** Используя изображение экспериментального образца, опишите его геометрическую форму и рассчитайте площадь поверхности ферромагнитного слоя.
- **2.** Постройте в OriginPro петли гистерезиса, измеренные экспериментально на вибромагнетометре в полях измеренных параллельно и перпендикулярно оси легкого намагничивания (о.л.н.).
- 3. Проведите нормировку построенных петель гистерезиса.
- **4.** Определите значения таких характеристик формы петель как коэрцитивная сила  $(H_c)$ , остаточная намагниченность  $(M_r/M_s)$ , поля эффективной анизотропии  $(H_{eff})$ .
- **5.** Зная состав экспериментальной структуры и геометрические параметры измеренного образца, рассчитайте его объем.
- **6.** Определив магнитный момент образца в насыщении, рассчитайте величину намагниченности насыщения образца  $(M_s)$ .
- **8.** Учитывая ориентацию о.л.н. и кристаллическую структуру экспериментального образца, произведите пересчет эффективной анизотропии в константу наведенной  $(K_u)$ , либо кристаллографической анизотропии  $(K_c)$ , которая будет использоваться в моделировании.
- **9.** Из графика температурного изменения намагниченности определите температуру Кюри  $(T_c)$  и рассчитайте константу обменного взаимодействия (A).
- **10.** Рассчитайте длину ферромагнитной корреляции для данного образца, используя формулу  $l_{ex} = \sqrt{\frac{2A}{\mu_0 M_s^2}}$ .

# Лабораторная работа №2. Анализ экспериментальных результатов исследования магнитной структуры (4\_/\_\_час.)

- **1.** Используя изображение доменной структуры в размагниченном состоянии, полученное методом магнитно-силовой микроскопии (МСМ), определите тип анизотропии образца.
- 2. Зная масштаб сканируемой на МСМ области образца, измерьте средний размер доменов.
- **3.** Обозначьте направление намагниченности в каждом домене МСМ изображения.

- **4.** Учитывая состав образца и толщины слоев, установите тип доменных границ.
- **5.** Разделите на изображении МСМ дефекты сканирования связанные с рельефом и особенности магнитной структуры топологические спиновые конфигурации (магнитные вихри, скирмионы, изменения киральности доменных границ).
- **6.** Обработайте изображение образца №2 в размагниченном состоянии, полученное на магнитооптическом Керр-микроскопе.
- **7.** По виду доменной структуры на изображении Керр-микроскопии определите тип анизотропии.
- **8.** Зная масштаб сканируемой области образца на Керр-микроскопе, измерьте средний размер доменов.
- **9.** Используя изображения Керр-микроскопии измеренные на образце №2 в процессе перемагничивания, определите плотность центров зарождения доменов.
- **10.** Постройте зависимость изменения среднего размера доменов при изменении внешнего магнитного поля.

# Лабораторная работа №4. Установка, изучение интерфейса и работа в программном пакете OOMMF (4\_/\_\_час.)

- **1.** Зайдите на сайт разработчика The Object Oriented MicroMagnetic Framework <a href="https://math.nist.gov/oommf/">https://math.nist.gov/oommf/</a> и скачайте версию программного пакета необходимую для вашей операционной системы.
- **2.** Скачайте ActiveTcl Software, подходящий для вашей ОС, с сайта <a href="https://www.activestate.com/products/activetcl/downloads/">https://www.activestate.com/products/activetcl/downloads/</a> и установите данный пакет.
- **3.** Запустите <u>oommf.tcl.</u>
- **4.** В появившемся окне выберите подпрограмму mmProbEd.
- **5.** Запустите пример 2D задачи из папки app\mmpe\examples.
- **6.** Запустите подпрограмму mmDisp и выведите отображение распределения намагниченности в процессе расчета.
- **7.** Поставьте расчет на паузу и сохраните полученное изображение микромагнитной структуры.
- **8.** Откройте подпрограмму mmGraph, возобновите расчет и постройте график изменения полной энергии системы от числа итераций.
- 9. Дождитесь момента, когда полная энергия достигнет минимума и сохраните изображение микромагнитной структуры.

- **10.** Откройте подпрограмму Oxsii и запустите пример 3D задачи из папки app\oxs\examples.
- **11.** Запустите продпрограмму mmDataTable для отображения текущего значения величины магнитного поля, а также критерия сходимости задачи.
- **12.** Запустите продпрограмму mmArchive для автоматического сохранения данных в ODT файле.
- **13.** Импортируйте данные ODT файла в OriginPro и постройте петлю гистерезиса, полученную на моделировании 3D структуры.

# Лабораторная работа №4. Моделирование двумерных (2D) наноструктур в ООММF (6\_/\_\_час.)

- **1.** Используя mmSlove2D задать двумерную задачу для наноструктур различной геометрической формы.
- **2.** Сохранить файл исходных задач в формате MIF 1.1.
- **3.** Запустите подпрограмму mmDisp, включите отображение полученных наноструктур и сохраните OMF файл данных структур.
- **4.** Задайте наноструктуру с определенными магнитными параметрами и геометрией и найдите конфигурацию намагниченности с минимальной энергией, реализуемую в отсутствие внешнего поля.
- **5.** Сделайте симуляцию процесса намагничивания образца в двух направлениях Ox и Oy, сохранив в ODT файле данные.
- **6.** Импортируйте данные ODT файла в OriginPro и постройте кривые намагничивания.
- **7.** Смоделируйте процессы перемагничивания в полях ориентированных вдоль *Ox* и *Oy*, сохраните данные в ODT файле.
- **8.** Импортируйте данные ODT файла в OriginPro и постройте петли гистерезиса.
- **9.** Напишите исходных код в формате MIF 1.1 для 2D наноструктуры с определенными магнитными и геометрическими параметрами.
- **10.** Используя командную строку сконвертируйте исходный код из кодировки MIF 1.1 в кодировку MIF 2.1.

# Лабораторная работа №5. Моделирование трехмерных (3D) наноструктур различной геометрической формы в ООММГ (6\_/\_\_час.)

1. Используя Oxsii задать трехмерную задачу для наноструктур

- различной геометрической формы.
- **2.** Сохранить файл исходных задач в формате MIF 2.1.
- **3.** Запустите подпрограмму mmDisp, включите отображение полученных наноструктур и сохраните OMF файл данных 3D наноструктур.
- **4.** Задайте наноструктуру с определенными магнитными параметрами и геометрией и найдите конфигурацию намагниченности с минимальной энергией, реализуемую в отсутствие внешнего поля.
- **5.** Сделайте симуляцию процесса намагничивания образца в трех направлениях Ox, Oy, Oz, сохранив в ODT файле данные.
- **6.** Импортируйте данные ODT файла в OriginPro и постройте кривые намагничивания в трех направлениях.
- **7.** Смоделируйте процессы перемагничивания в полях ориентированных вдоль Ox, Oy, Oz сохраните данные в ODT файле.
- **8.** Импортируйте данные ODT файла в OriginPro и постройте петли гистерезиса.
- **9.** Задайте наноструктуру, используя блок ImageAtlas, и сохраните OMF файл полученной геометрии.
- **10.** Задайте массив наноструктур, используя блок MultiAtlas, и сохраните ОМF файл полученной геометрии.

# Лабораторная работа №6. Особенности задания геометрии моделируемого 3D объекта при использовании ScriptAtlas в ООММГ (6\_/\_\_час.)

- **1.** Задайте 3D наноструктуру с определенными магнитными параметрами и геометрией, используя блок ScriptAtlas.
- **2.** Сохранить файл исходных задач в формате MIF 2.1.
- **3.** Запустите подпрограмму mmDisp, включите отображение полученных наноструктур и сохраните OMF файл данных 3D наноструктур.
- **4.** Задайте наноструктуру с определенными магнитными параметрами и геометрией, и найдите конфигурацию намагниченности с минимальной энергией, реализуемую в отсутствие внешнего поля.
- **5.** Задайте массив 3D наноструктур с определенными магнитными параметрами и геометрией, используя блок ScriptAtlas.
- **6.** Сохранить файл исходных задач в формате MIF 2.1.
- **7.** Запустите подпрограмму mmDisp, включите отображение полученного массива наноструктур и сохраните OMF файл.

**8.** Найдите конфигурацию намагниченности с минимальной энергией, реализуемую в отсутствие внешнего поля в массиве наноструктур.

# Лабораторная работа №7. Формирование необходимой начальной конфигурации намагниченности 3D структур в ООММГ (6\_/\_\_час.)

- **1.** Задайте 3D наноструктуру с определенными магнитными параметрами и геометрией, используя блок UniformVectorField, задайте однородную намагниченность по осям *Ox*, *Oy*, *Oz*. Сохраните полученные распределения намагниченности в OMF файлах.
- **2.** Задайте двухдоменное состояние через обращение к разным регионам моделируемой геомерии. Сохраните полученное распределение намагниченности в ОМF файле и исходный код задачи в МIF файле.
- **3.** Задайте двухдоменное состояние, используя подпрограмму ScriptVectorField. Сохраните полученное распределение намагниченности в ОМF файле и исходный код задачи в МIF файле.
- **4.** Задайте вихревое состояние, используя подпрограмму ScriptVectorField. Сохраните полученное распределение намагниченности в ОМF файле и исходный код задачи в МIF файле.
- **5.** Задайте полосовую доменную структуру, используя подпрограмму ScriptVectorField. Сохраните полученное распределение намагниченности в ОМF файле и исходный код задачи в МIF файле.
- **6.** Задайте хаотическое распределение намагниченности с размером ячейки 4×4×4 нм<sup>3</sup>. Сохраните полученное распределение намагниченности в ОМF файле и исходный код задачи в МIF файле.
- **7.** Сравните полные энергии системы при различных конфигурациях намагниченности и найдите конфигурацию с минимальной энергией.

# Лабораторная работа №8. Виды обменного взаимодействия при моделировании 3D объектов в OOMMF (4\_/\_\_час.)

- 1. Задайте 3D наноструктуру с определенными магнитными параметрами и геометрией. В полученной наноструктуре задайте косвенное обменное взаимодействие Дзялошинского-Мория.
- **2.** Задайте двухдоменное состояние, после минимизации энергии сохраните ОМF файл распределения намагниченности. Определите киральность доменных границ.

- **3.** Измените знак константы обменное взаимодействие Дзялошинского-Мория на противоположный, повторите задания 1 и 2.
- **4.** Задайте 3D наноструктуру трехслойной пленки с определенными магнитными параметрами. Между верхним и нижним слоями задайте косвенное обменное взаимодействие RKKY с антиферромагнитной связью через немагнитную прослойку.
- **5.** Задайте в качестве начальной конфигурации хаотическое распределение намагниченности в трехслойной пленке.
- **6.** Найдите конфигурацию с минимальной энергией в отсутствие внешнего магнитного поля.
- **7.** Сохраните полученное распределение намагниченности в ОМF файле и исходный код задачи в МІF файле.

# Лабораторная работа №9. Магнитная анизотропия при моделировании 3D объектов в OOMMF (4 / час.)

- **1.** Задайте 3D наноструктуру с определенными магнитными параметрами и геометрией. В полученной наноструктуре задайте одноосную анизотропию.
- **2.** Проведите симуляции процессов перемагничивания в полях ориентированных параллельно и перпендикулярно о.л.н..
- **3.** Включите автоматическое сохранение данных в ОDТ файл.
- **4.** Импортируйте данные ODT файла в OriginPro и постройте петли гистерезиса для двух случаев ориентации внешнего магнитного поля.
- **5.** Задайте 3D наноструктуру с определенными магнитными параметрами и геометрией. В полученной наноструктуре задайте кубическую анизотропию.
- **6.** Проведите симуляции процессов перемагничивания в полях ориентированных вдоль кристаллографических осей [100], [010], [001] и по диагонали [111].
- **7.** Включите автоматическое сохранение данных в ОDТ файл.
- **8.** Импортируйте данные ODT файла в OriginPro и постройте петли гистерезиса для двух случаев ориентации внешнего магнитного поля.

Лабораторная работа №10. Симуляция процессов перемагничивания под действием внешнего магнитного поля в OOMMF (6\_/\_\_час.)

- **1.** Задайте 3D наноструктуру с определенными магнитными параметрами и геометрией. В начальном состоянии задайте хаотическое распределение намагниченности. Проведите симуляцию процесса намагничивания вдоль оси *Ox*.
- 2. Включите автоматическое сохранение данных в ODT файл.
- **3.** Импортируйте данные ODT файла в OriginPro и постройте кривую намагничивания.
- **4.** Задайте в начальной конфигурации двухдоменное состояние. Исследуйте динамику доменной стенки под действием вращающегося магнитного поля в плоскости *Oxy*.
- **5.** Задайте в начальной конфигурации вихревое состояние намагниченности. Исследуйте динамику ядра вихря под действием переменного магнитного поля.
- **6.** Задайте однодоменное состояние намагниченности. Исследуйте процесс перемагничивания наноструктуры под действием локального смещающегося магнитного поля. Включите автоматическое сохранение данных в ОМF файл.

# Лабораторная работа №11. Симуляция спиновой динамики 3D объекта под действием температуры в OOMMF (4\_/\_\_час.)

- 1. Задайте 3D наноструктуру с определенными магнитными параметрами и геометрией. В начальном состоянии задайте вихревую намагниченность.
- **2.** Увеличивайте температуру, что найти предельную  $T_{crit}$  до которой данное состояние будет оставаться устойчивым.
- **3.** Увеличивайте температуру дальше выводя на mmGraph зависимость m=f(T).
- 4. Найдите точку Кюри для вашей структуры.
- 5. Увеличьте размер ячейки разбиения в 2 раза и повторите задания 1-4.
- **6.** Проведите анализ полученных результатов и сделайте вывод о том, как размер ячейки разбиения влияет на динамику намагниченности под действием температуры.

# Лабораторная работа №12. Моделирование топологических спиновых конфигураций в OOMMF (4\_/\_час.)

1. Задайте 3D наноструктуру с плоскостной магнитной анизотропией. В

начальном состоянии задайте вихревую намагниченность.

- 2. Сохраните распределение намагниченности в ОМГ файл.
- **3.** Измените кодировку полученного ОМF файла из binary 4 в text.
- **4.** Импортируйте полученное распределение намагниченности в OriginPro.
- **5.** Используя формулу  $N_{sk} = \frac{1}{4\pi} \iint \vec{m} \cdot \left( \frac{\partial \vec{m}}{\partial x} \times \frac{\partial \vec{m}}{\partial y} \right) dx \, dy$ , рассчитайте величину топологического заряда для данной конфигурации намагниченности.
- **6.** Задайте 3D наноструктуру перпендикулярной магнитной анизотропией и взаимодействием Дзялошинского-Мория. В начальном состоянии задайте скирмион.
- 7. Повторите действия, описанные в пунктах 2-5, для данной структуры.
- **8.** Сравните величины топологических зарядов рассчитанные для вихря и скирмиона.

# Лабораторная работа №13. Моделирование магнитостатических полей создаваемых ферромагнитной наноструктурой в ООММF (4\_/\_\_час.)

- 1. Задайте 3D наноструктуру с определенными магнитными параметрами и геометрией. При этом размер моделируемой области пространства должен в 2 раза превышать геометрические размеры наноструктуры в каждом из направлений.
- **2.** Задайте однодоменное состояние намагниченности вдоль оси Ox.
- 3. Найдите энергетический минимум для данной структуры.
- **4.** Включите отображение магнитостатических полей, создаваемых наноструктурой в mmDisp.
- **5.** Сохраните полученное распределение магнитостатических полей в ОМF файл.
- **6.** Задайте массив наноструктур так, чтобы моделируемая область пространства полностью охватывала данный массив.
- **7.** Задайте в качестве начальной конфигурации намагниченности хаотическое распределение.
- 8. Запустите минимизацию энергии системы в отсутствие внешнего поля.
- **9.** Получите распределение магнитостатических полей взаимодействия между элементами массива.
- 10. Уменьшите расстояние между элементами массива и пункты 7-9.

# Лабораторная работа №14. Моделирование пленок и многослойных структур в OOMMF (6\_/\_\_час.)

- **1.** Задайте 3D область ферромагнитной пленки размером 2×2 мкм<sup>2</sup> определенными магнитными параметрами и толщиной.
- 2. Задайте в качестве начальной конфигурации намагниченности хаотическое распределение.
- **3.** Запустите минимизацию полной энергии системы и сохраните OMF файл распределение намагниченности в энергетическом минимуме.
- **4.** Добавьте периодические граничные условия на краях моделируемой области с количеством трансляций вдоль Ox и Oy-3.
- **5.** Повторите действия из пунктов 2-3.
- **6.** Сравните полученные результаты без и с периодическими граничными условиями.
- **7.** Задайте многослойный нанодиск, состоящий из 5 ферромагнитных слоев разделенных немагнитными прослойками.
- 8. Задайте в качестве начальной конфигурации намагниченности однодоменное состояние.
- **9.** Запустите минимизацию полной энергии системы и сохраните OMF файл распределение намагниченности в энергетическом минимуме.
- **10.** Используя эффективную модель, описанную работе [Woo, S. et al. *Nature materials* 2016, **15**, (5), 501-506], проведите пересчет магнитных параметров моделируемой структуры.
- 11. Задайте новую структуру нанодиска с одним эффективным ферромагнитным слоем.
- 12. Повторите действия из пунктов 8-9.
- **13.** Сравните результаты, полученные при моделировании реальной многослойной структуры и эффективной модели.

#### V. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

| N₂  | Контролируемые разделы /                                                                  | Коды и этапы                |         | Оценочные средства            |                                                          |  |
|-----|-------------------------------------------------------------------------------------------|-----------------------------|---------|-------------------------------|----------------------------------------------------------|--|
| п/п | темы дисциплины                                                                           | формирования<br>компетенций |         | текущий контроль              | промежуточная<br>аттестация                              |  |
| 1   | Описание геометрических параметров и расчет магнитных постоянных моделируемого объекта на | ПК-3<br>ПК-4<br>ПК-6        | знает   | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 1-7<br>Собеседование<br>(УО-1)       |  |
|     | основании<br>экспериментальных данных                                                     |                             | умеет   | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 1<br>Собеседование<br>(УО-1) |  |
|     |                                                                                           |                             | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 1<br>Собеседование<br>(УО-1) |  |
| 2   | Анализ экспериментальных результатов исследования магнитной структуры                     | ПК-3                        | знает   | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 8-11<br>Собеседование<br>(УО-1)      |  |
|     |                                                                                           |                             | умеет   | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 2<br>Собеседование<br>(УО-1) |  |
|     |                                                                                           |                             | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 2<br>Собеседование<br>(УО-1) |  |
| 3   | Установка, изучение интерфейса и работа в программном пакете ООММБ                        | ПК-4                        | знает   | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 12-13<br>Собеседование<br>(УО-1)     |  |
|     |                                                                                           |                             | умеет   | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 3<br>Собеседование<br>(УО-1) |  |
|     |                                                                                           |                             | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 3<br>Собеседование<br>(УО-1) |  |
| 4   | Моделирование двумерных (2D) наноструктур в ООММF                                         | ПК-4                        | знает   | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 14-15<br>Собеседование<br>(УО-1)     |  |
|     |                                                                                           |                             | умеет   | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 4<br>Собеседование<br>(УО-1) |  |
|     |                                                                                           |                             | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 4<br>Собеседование<br>(УО-1) |  |

| 5                                                                                              | 5 Моделирование трехмерных (3D) наноструктур различной геометрической формы в ООММF   | ПК-4<br>ПК-6 | знает                         | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>вопросы 16-17<br>Собеседование<br>(УО-1)     |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------|-------------------------------|------------------------------------------------------|----------------------------------------------------------|
|                                                                                                |                                                                                       |              | умеет                         | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>задание,<br>тип 5<br>Собеседование<br>(УО-1) |
|                                                                                                |                                                                                       |              | владеет                       | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>задание,<br>тип 5<br>Собеседование<br>(УО-1) |
| 6 Особенности задания геометрии моделируемого 3D объекта при использовании ScriptAtlas в ООММБ | ПК-3,<br>ПК-4<br>ПК-6                                                                 | знает        | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 18-19<br>Собеседование<br>(УО-1) |                                                          |
|                                                                                                |                                                                                       |              | умеет                         | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>задание,<br>тип 6<br>Собеседование<br>(УО-1) |
|                                                                                                |                                                                                       |              | владеет                       | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>задание,<br>тип 6<br>Собеседование<br>(УО-1) |
| 7                                                                                              | 7 Формирование необходимой начальной конфигурации намагниченности 3D структур в ООММБ | ПК-4         | знает                         | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>вопросы 20-21<br>Собеседование<br>(УО-1)     |
|                                                                                                |                                                                                       |              | умеет                         | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>задание,<br>тип 7<br>Собеседование<br>(УО-1) |
|                                                                                                |                                                                                       |              | владеет                       | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>задание,<br>тип 7<br>Собеседование<br>(УО-1) |
| 8                                                                                              | 8 Виды обменного взаимодействия при моделировании 3D объектов в ООММБ                 | ПК-4<br>ПК-6 | знает                         | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>вопросы 22-23<br>Собеседование<br>(УО-1)     |
|                                                                                                |                                                                                       |              | умеет                         | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>задание,<br>тип 8<br>Собеседование<br>(УО-1) |
|                                                                                                |                                                                                       |              | владеет                       | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>задание,<br>тип 8<br>Собеседование<br>(УО-1) |
| 9                                                                                              | Магнитная анизотропия при моделировании 3D объектов в ООММБ                           | ПК-4         | знает                         | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>вопросы 24-25                                |
|                                                                                                |                                                                                       |              | умеет                         | Лабораторная работа<br>(ПР-6)                        | экзамен,<br>задание,<br>тип 9                            |

|       |                                                                                          |                       |         |                               | Собеседование<br>(УО-1)                                   |
|-------|------------------------------------------------------------------------------------------|-----------------------|---------|-------------------------------|-----------------------------------------------------------|
|       |                                                                                          |                       | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 9<br>Собеседование<br>(УО-1)  |
| 10    | Симуляция процессов перемагничивания под действием внешнего магнитного поля в ООММБ      | ПК-4                  | знает   | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 26-27<br>Собеседование<br>(УО-1)      |
|       |                                                                                          |                       | умеет   | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 10<br>Собеседование<br>(УО-1) |
|       |                                                                                          |                       | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 10<br>Собеседование<br>(УО-1) |
| 11    | Симуляция спиновой динамики 3D объекта под действием температуры в OOMMF                 | ПК-3,<br>ПК-4<br>ПК-6 | знает   | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 28-29<br>Собеседование<br>(УО-1)      |
|       |                                                                                          |                       | умеет   | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 11<br>Собеседование<br>(УО-1) |
|       |                                                                                          |                       | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 11<br>Собеседование<br>(УО-1) |
| топол | Моделирование топологических спиновых конфигураций в ООММГ                               | ПК-3,<br>ПК-4         | знает   | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 30-31<br>Собеседование<br>(УО-1)      |
|       |                                                                                          |                       | умеет   | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 12<br>Собеседование<br>(УО-1) |
|       |                                                                                          |                       | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 12<br>Собеседование<br>(УО-1) |
| 13    | Моделирование магнитостатических полей создаваемых ферромагнитной наноструктурой в ООММГ | ПК-3, ПК-4            | знает   | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 32-33<br>Собеседование<br>(УО-1)      |
|       |                                                                                          |                       | умеет   | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 13<br>Собеседование<br>(УО-1) |
|       |                                                                                          |                       | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 13                            |

|    |                                                      |                       |         |                               | Собеседование (УО-1)                                      |
|----|------------------------------------------------------|-----------------------|---------|-------------------------------|-----------------------------------------------------------|
| 14 | Моделирование пленок и многослойных структур в ООММБ | ПК-3,<br>ПК-4<br>ПК-6 | знает   | Лабораторная работа<br>(ПР-6) | экзамен,<br>вопросы 34-35<br>Собеседование<br>(УО-1)      |
|    |                                                      |                       | умеет   | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 14<br>Собеседование<br>(УО-1) |
|    |                                                      |                       | владеет | Лабораторная работа<br>(ПР-6) | экзамен,<br>задание,<br>тип 14<br>Собеседование<br>(УО-1) |

<sup>\*</sup> Рекомендуемые формы оценочных средств:

- 1) собеседование (УО-1), коллоквиум (УО-2); доклад, сообщение (УО-3); круглый стол, дискуссия, полемика, диспут, дебаты (УО-4); и т.д.
- 2) тесты (ПР-1); контрольные работы (ПР-2), эссе (ПР-3), рефераты (ПР-4), курсовые работы (ПР-5), научно-учебные отчеты по практикам (ПР-6); лабораторная работа (ПР-7); портфолио (ПР-8); проект (ПР-9); деловая и/или ролевая игра (ПР-10); кейс-задача (ПР-11); рабочая тетрадь (ПР-12); и т.д.
- 3) тренажер (ТС-1); и т.д.

#### VI. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Основы микромагнитного моделирования» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

# VII. СПИСОК ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Кудреватых Н.В. Магнетизм редкоземельных металлов и их интерметаллических соединений [Электронный ресурс] : учебное пособие / Н.В. Кудреватых, А.С. Волегов. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2015. 200 с. Режим доступа: http://www.iprbookshop.ru/69622.html ЭБС «IPRbooks».
- 2. Юрчук С.Ю. Методы математического моделирования [Электронный ресурс]: учебное пособие/ Юрчук С.Ю. Электрон. текстовые данные.— М.: Издательский Дом МИСиС, 2018. 96 с. Режим доступа: <a href="http://www.iprbookshop.ru/78562.html">http://www.iprbookshop.ru/78562.html</a> ЭБС «IPRbooks».
- 3. Мешков И.Н. Электромагнитное поле. Часть 1. Электричество и магнетизм [Электронный ресурс] / И.Н. Мешков, Б.В. Чириков. Электрон. текстовые данные. Москва, Ижевск: Регулярная и хаотическая динамика, 2014. 544 с. Режим доступа: <a href="http://www.iprbookshop.ru/28923.html">http://www.iprbookshop.ru/28923.html</a> ЭБС «IPRbooks».
- 4. Аполлонский С.М. Электромагнитные поля технического оборудования. Том І. Методы математической физики и их использование при расчетах электромагнитных полей [Электронный ресурс] : монография / С.М. Аполлонский. Электрон. текстовые данные. М. : Русайнс, 2016. 280 с. Режим доступа: http://www.iprbookshop.ru/61685.html ЭБС «IPRbooks».
- Ибатуллин Р.У. Физика. Часть 2. Электричество И [Электронный ресурс]: методические рекомендации/ Ибатуллин Р.У., Кузьмичева В.А.— Электрон. текстовые данные.— M.: Московская государственная академия 2016. водного транспорта, 39 http://www.iprbookshop.ru/65692.html

#### Дополнительная литература

- 1. Савельев И.В. Курс общей физики. В 5-и тт. Том 2. Электричество и магнетизм [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2011. 352 с. Режим доступа: <a href="https://e.lanbook.com/book/705">https://e.lanbook.com/book/705</a>.
- 2. Ландсберг Г.С. Элементарный учебник физики. Т.2 Электричество и магнетизм [Электронный ресурс] : учебник / Г.С. Ландсберг. Электрон. дан. Москва : Физматлит, 2011. 400 с. Режим доступа: https://e.lanbook.com/book/2240 .
- 3. Кудреватых Н.В. Магнетизм редкоземельных металлов и их интерметаллических соединений [Электронный ресурс] : учебное пособие / Н.В. Кудреватых, А.С. Волегов. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2015. 200 с. 978-5-7996-1604-5. Режим доступа: http://www.iprbookshop.ru/69622.html
- 4. Астайкин А.И. Метрология и радиоизмерения [Электронный ресурс]: учебное пособие / Астайкин А.И., Помазков А.П., Щербак Ю.П. Электрон.

текстовые данные. — Саров: Российский федеральный ядерный центр — ВНИИЭФ, 2010. — 405 с. — Режим доступа: <a href="http://www.iprbookshop.ru/18440.html">http://www.iprbookshop.ru/18440.html</a> — ЭБС «IPRbooks». Берлин Б.В. Получение тонких пленок реактивным магнетронным распылением [Электронный ресурс] / Б.В. Берлин, Л.А. Сейдман. — Электрон. текстовые данные. — М.: Техносфера, 2014. — 256 с. — 978-5-94836-369-1. — Режим доступа: <a href="http://www.iprbookshop.ru/31877.html">http://www.iprbookshop.ru/31877.html</a>

### Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. <a href="http://math.nist.gov/oommf/">http://math.nist.gov/oommf/</a>
- 2. <a href="http://deparkes.co.uk/wp-content/uploads/2014/02/userguide1.pdf">http://deparkes.co.uk/wp-content/uploads/2014/02/userguide1.pdf</a>
- 3. <a href="http://mumax.github.io/">http://mumax.github.io/</a>
- 4. https://arxiv.org/pdf/1406.7635.pdf
- 5. <a href="http://www.magpar.net/static/magpar/doc/html/install.html">http://www.magpar.net/static/magpar/doc/html/install.html</a>
- 6. <a href="http://www.magpar.net/static/magpar/doc/magpar.pdf">http://www.magpar.net/static/magpar/doc/magpar.pdf</a>
- 7. <a href="http://gmsh.info/">http://gmsh.info/</a>

# **Перечень информационных технологий** и программного обеспечения

При осуществлении образовательного процесса по дисциплине может использоваться стандартное программное обеспечение компьютерных учебных классов (Windows, Microsoft Office).

Также в работе используется программное обеспечение с открытым исходным кодом – программный пакет микромагнитного моделирования OOMMF.

#### VIII. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Успешное освоение дисциплины предполагает активную работу студентов на всех занятиях аудиторной формы: лекциях и практиках, выполнение аттестационных мероприятий. В процессе изучения дисциплины студенту необходимо ориентироваться выполнение лабораторных работ.

Освоение дисциплины «Основы мирокмагнитного моделирования» рейтинговую знаний предполагает систему оценки студентов И предусматривает стороны преподавателя текущий co контроль за лекций, подготовкой посещением студентами И выполнением всех практических заданий, выполнением всех видов самостоятельной работы.

Промежуточной аттестацией по дисциплине «Основы микромагнитного моделирования» является экзамен.

Студент считается аттестованным по дисциплине при условии выполнения всех видов текущего контроля и самостоятельной работы, предусмотренных учебной программой.

Шкала оценивания сформированности образовательных результатов по дисциплине представлена в фонде оценочных средств (ФОС).

# **ІХ.** МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Лабораторные занятия проводятся В компьютерных классах лабораторного корпуса (корпус L). Для проведения исследований, связанных выполнением задания по практике, a также ДЛЯ организации самостоятельной работы студентам доступно лабораторное оборудование и специализированные кабинеты, соответствующие действующим санитарным и противопожарным нормам, а также требованиям техники безопасности при проведении учебных и научно-производственных работ..

Перечень материально-технического и программного обеспечения дисциплины приведен в таблице.

#### Материально-техническое и программное обеспечение дисциплины

| Наименование специальных                           | Оснащенность                  | Перечень лицензионного           |
|----------------------------------------------------|-------------------------------|----------------------------------|
| помещений и помещений                              | специальных помещений         | программного обеспечения.        |
| для самостоятельной работы                         | и помещений                   | Реквизиты подтверждающего        |
|                                                    | для самостоятельной работы    | документа                        |
| 690922, Приморский край, г.                        | Специализированная            | Microsoft                        |
| Владивосток, остров Русский, лаборатория Департаме |                               | Office365/Microosoft/США/Платное |
| полуостров Саперный, поселок                       | общей и экспериментальной     | ПО                               |
| Аякс, 10, корпус L, ауд. L320                      | физики: лаборатория пленочных | Microsoft                        |

| технологий.                     | Teams/Microosoft/США/Платное ПО   |
|---------------------------------|-----------------------------------|
| 1. Сверхвысоковакуумный         | Gwyddion – Free SPM (AFM,         |
| комплекс Omicron                | SNOM/NSOM, STM, MFM,) data        |
| 2. ACM Integra Aura NT MDT      | analysis software / Department of |
| 3. Photolithography system Suss | Nanometrology/ Czech Metrology    |
| MicroTech MJB6 (Germany)        | Institute/ Бесплатное ПО          |
| Количество посадочных рабочих   |                                   |
| мест для студентов – 8          |                                   |