

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования и Лапа невостоиный федеральный учиверситет»

«Дальневосточный федеральный университет» (ДВФУ)

Институт наукоемких технологий и передовых материалов

 «СОГЛАСОВАНО»
 Руководитель ОП
 «УТВЕРЖДАЮ»

 Изститут наукоемой подпись
 Саранин А.А.
 «Общей и экспериментальной физики

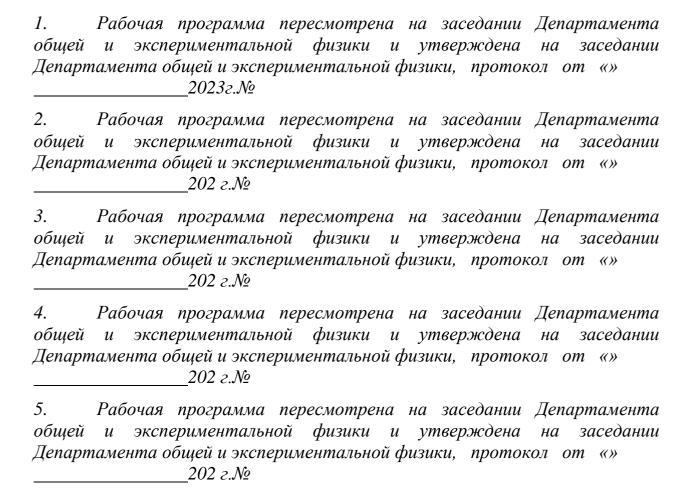
 — (подпись)
 (Ф.И.О. рук. ОП)
 (Ф.И.О.)

 «28 » февраля
 _2023_г__
 «28 » февраля
 _2023_г__

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дополнительные главы кристаллографии Направление подготовки 11.04.04 Электроника и наноэлектроника Профиль: Электроника и наноэлектроника (совместно с ИАПУ ДВО РАН) Форма подготовки: очная

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки 11.04.04 Электроника и наноэлектроника, утвержденного приказом Минобрнауки России


om <u>29 сентября</u> <u>2017_г. № 959</u> / *OC ДВФУ*, утвержденного <u>om</u> <u>20</u> г. № _____.

Рабочая программа обсуждена на заседании департамента общей и экспериментальной физики, протокол № 5 от «28» февраля 2023 г.

и.о. директора департамента общей и экспериментальной физики: канд. хим. наук, доцент Короченцев В.В.

Составители: к.ф.-м.н. Крайнова Г.С.

Владивосток 2023

Аннотация дисциплины «Дополнительные главы кристаллографии»

Учебная дисциплина «Дополнительные главы кристаллографии» предназначена для магистрантов 1 курса магистратуры 11.04.04 Электроника и наноэлектроника, магистерской программы «Электроника и наноэлектроника (совместно с ИАПУ ДВО РАН)».

Дисциплина «Дополнительные главы кристаллографии» входит в часть формируемую участниками образовательных отношений цикла дисциплин образовательной программы, дисциплиной является выбору (Б1.В.ДВ.03.01), реализуется на 1 курсе во 2 семестре, завершается зачётом. Общая трудоемкость освоения дисциплины составляет 3 З.Е. (108 часов). (54 Учебным предусмотрены лабораторные планом занятия час.), самостоятельная работа студента (54 час.), зачет.

Язык реализации – русский.

Цель изучения дисциплины - формирование у студентов представлений о периодической и квазипериодической структурах на атомном уровне; овладение комбинативным подходом к изучению различных форм кристаллического вещества, необходимыми методами исследования кристаллических многогранников и структур.

Задачи:

- дать представление о современных проблемах кристаллографии, симметрии как инвариантности, саморавенстве объектов;
- сформулировать главные принципы структурообразования кристаллов;
- сформировать умение работать с квазипериодическими и модулированными структурами;
- ознакомление с базовыми понятиями геометрической кристаллографии, кристаллохимии, кристаллофизики;
 - умение описывать кристаллов с помощью законов кристаллографии.

В результате изучения данной дисциплины у обучающихся формируется следующая профессиональная компетенция:

Тип задач	Код и наименование профессиональной компетенции (результат освоения)	Код и наименование индикатора достижения компетенции
ПК-7 Способен разрабатывать технические задания на проектирование технологический технологических процессов производства материалов и изделий электронной техники	ПК-7.1 определяет задачи проектирования технологического объекта, этапы проектирования изделий, составляющих основу компонентной базы электроники ПК-7.2 разрабатывает технологическую документацию на проектируемые устройства, приборы и системы электронной техники	

Код и наименование индикатора	Наименование показателя оценивания		
достижения компетенции	(результата обучения по дисциплине)		
	<u>Знает</u> алгоритм постановки задач проектирования		
ПК-7.1 определяет задачи	технологического объекта, этапы проектирования изделий		
проектирования технологического	<u>Умеет</u> осуществлять проектирование технологического объекта		
объекта, этапы проектирования	или изделия, составляющего основу компонентной базы		
изделий, составляющих основу	электроники		
компонентной базы электроники	<u>Владеет</u> навыками проектно-конструкторской деятельности		
	электроники и наноэлектроники		
	<u>Знает</u> состав проектной документации, совокупность		
	документов, определяющих технологический процесс		
	производства материалов и изделий электронной техники		
ПК-7.2 разрабатывает	<u>Умеет</u> разрабатывать технические задания на проектирование		
технологическую документацию на	технологических процессов производства материалов и изделий		
проектируемые устройства, приборы	электронной техники, используя существующие нормативы и		
и системы электронной техники	иные данные		
	<u>Владеет</u> навыками разработки технических заданий и		
	технологической документации для устройств, приборов и систем		
	электронной техники подлежащих проектированию		

І. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Лабораторные работы (54 часов)

Блок №1. Основные понятия кристаллографической геометрии (12 часов).

- 1. Подбор и изучение теоретического материала по темам блока 1.
- 2. Постановка задач, определение порядка выполнения заданий практической части. Обработка результатов выполненных заданий.

- 3. Формулировка описательной части, формулировка выводов, составление отчета.
- 4. Защита лабораторной работы: сдача краткой теории по теме работы, объяснение экспериментальных результатов.

Вопросы блока 1:

- 1). (r, R) системы точек. Теорема о локальной правильности системы точек.
- 2). Разбиение пространства и методы их описания. Разбиение евклидовой плоскости теория планигонов. Теория параллелоэдров и стереоэдров.
- 3). Непериодические разбиения. Мозаики Пенроуза.
- 4). Описание квазикристаллов и квазипериодических структур.

Блок №2. Внутреннее строение кристаллов (16 часов).

- 1. Подбор и изучение теоретического материала по темам блока 2.
- 2. Постановка задач, определение порядка выполнения заданий практической части. Обработка результатов выполненных заданий.
- 3. Формулировка описательной части, формулировка выводов, составление отчета.
- 4. Защита лабораторной работы: сдача краткой теории по теме работы, объяснение экспериментальных результатов.

Вопросы блока 2:

- 1). Пространственная решетка. Системы координатных осей. Понятие кристаллографической зоны. Уравнение зоны.
- 2). Понятие кристаллографического и полярного комплексов. Стереографическая проекция. Сетка Вульфа и приемы работы с ней.
- 3). Симметрия кристаллов. Преобразование координат при повороте вокруг оси. Преобразования координат при зеркальном отражении, инверсии.

- 4). Сложение элементов симметрии. Основные понятия теории групп.
- 5). Точечные группы симметрии.
- 6). Трансляционные группы. Группы Браве. Открытые симметричные преобразования. Сочетания трансляций и точечных элементов симметрии.

Блок №3. Грамматика формы и ее связь с кристаллографией (12 часов).

- 1. Подбор и изучение теоретического материала по темам блока 3.
- 2. Постановка задач, определение порядка выполнения заданий практической части. Обработка результатов выполненных заданий.
- 3. Формулировка описательной части, формулировка выводов, составление отчета.
- 4. Защита лабораторной работы: сдача краткой теории по теме работы, объяснение экспериментальных результатов.

Вопросы блока 3:

- 1). Структурно-кристаллографические разновидности простых форм.
- 2). Связь между структурой и внешней формой кристаллов. Простые формы кристаллов в классах низшей и средней категорий.
- 3). Простые формы кристаллов в классах высшей категории кубической сингонии.

Блок №4. Основы кристаллохимии (14 часов).

- 1. Подбор и изучение теоретического материала по темам блока 4.
- 2. Постановка задач, определение порядка выполнения заданий практической части. Обработка результатов выполненных заданий.
- 3. Формулировка описательной части, формулировка выводов, составление отчета.
- 4. Защита лабораторной работы: сдача краткой теории по теме работы, объяснение экспериментальных результатов.

Вопросы блока 4:

- 1). Атомно-молекулярные модели роста кристаллов.
- 2). Основы кристаллохимии.
- 3). Координация атомов и ионов в структурах кристаллов. Координационные полиэдры.
- 4). Плотнейшие упаковки.
- 5). Изображение кристаллических структур. Типы структур. Изоморфизм в структурах. Полиморфизм, политипизм и псевдоморфизм в кристаллах.

II. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Дополнительные главы кристаллографии» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

III. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№	Контролируемые	Коды и этапы формирования компетенций		Оцено	чные средства
п/п	разделы / темы дисциплины			текущий контроль	промежуточная аттестация
1	Блок 1. Основные понятия кристаллографическ	ПК- 12	знает	Лабораторная работа 1 (ПР-6)	зачет, вопросы 1-4 Собеседование (УО-1)
	ой геометрии		умеет	Отчет по лабораторной работе (ПР-6)	зачет, защита лабораторной работы Собеседование (УО-1)
			владеет	Собеседование (УО-1)	зачет, защита практических заданий

					Собеседование (УО-1)
2	Блок 2. Внутреннее строение кристаллов	ПК- 12	знает	Лабораторная работа 2 (ПР-6) Тест 1 (ПР-1)	зачет, вопросы 5-10 Собеседование (УО-1)
			умеет	Коллоквиум 1 (УО-2) Домашнее задание (УО-1)	зачет, защита коллоквиума, домашнего задания Собеседование (УО-1)
			владеет	Контрольная работа 1, 2 (ПР-2)	зачет, защита контрольных работ Собеседование (УО-1)
3	3 Блок 3. Грамматика формы и ее связь с кристаллографией	вязь с 12	знает	Лабораторная работа 3 (ПР-6)	зачет, вопросы 11-13 Собеседование (УО-1)
			умеет	Домашнее задание (ПР-6)	зачет, защита домашнего задания Собеседование (УО-1)
			владеет	Собеседование (УО-1)	зачет, защита практических заданий Собеседование (УО-1)
4		ПК- 12	знает	Лабораторная работа 4, 5 (ПР-6)	зачет, вопросы 14-18 Собеседование (УО-1)
			умеет	Коллоквиум 2 (УО-2)	зачет, защита коллоквиума Собеседование (УО-1)
			владеет	Контрольная работа (ПР-2)	зачет, защита контрольной работы Собеседование (УО-1)

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

IV. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Основная литература

(электронные и печатные издания)

- 1. Ю. К. Егоров-Тисменко. Кристаллография и кристаллохимия : учебник для вузов / [под ред. В. С. Урусова]. М: МГУ, 2014. 587 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:734049&theme=FEFU
- 2. Белов Н.П., Покопцева О.К., Яськов А.Д. Основы кристаллографии и кристаллофизики. Часть І. Введение в теорию симметрии кристаллов: Учебное пособие. СПб: СПбГУ ИТМО, 2009. 43 с. http://window.edu.ru/resource/335/63335
- 3. Трушин В.Н., Андреев П.В., Фаддеев М.А. Рентгеновский фазовый анализ поликристаллических материалов. Электронное учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2012. 89 с. http://window.edu.ru/resource/210/79
- 4. Э.Э. Лорд, А. Л. Маккей, С. Ранганатан. Новая геометрия для новых материалов // Пер. с анг. под ред.В. Я. Шевченко, В. Е. Дмитриенко , М: Физматлит, 2010, 260 с.

https://e.lanbook.com/book/48204

5. Агеев О.А., Федотов А.А., Смирнов В.А. Методы формирования структур элементов наноэлектроники и наносистемной техники: Учебное пособие. - Таганрог: Изд-во ТТИ ЮФУ, 2010. - 72 с. http://window.edu.ru/resource/948/73948

Дополнительная литература:

- 1. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит, 2009. 416 с. http://www.iprbookshop.ru/12979.html
- 2. Шевченко О.Ю. Основы физики твердого тела: учебное пособие / О.Ю. Шевченко. Электрон. текстовые данные. СПб. : Университет ИТМО, 2010. 77 с http://www.iprbookshop.ru/67512.html
- 3. Федотов А.К. Физическое материаловедение. Часть 1. Физика твердого: учебное пособие / А.К. Федотов. Электрон. текстовые данные. Минск: Вышэйшая школа, 2010. 400 с. Режим доступа: http://www.iprbookshop.ru/20161.html
- 4. Орлова М.Н. Наноэлектроника [Электронный ресурс]: курс лекций/ Орлова М.Н., Борзых И.В.— Электрон. текстовые данные.— М.: Издательский Дом МИСиС, 2013. 50 с. Режим доступа: http://www.iprbookshop.ru/56246.html
- 5. Астайкин А.И. Метрология и радиоизмерения [Электронный ресурс]: учебное пособие / Астайкин А.И., Помазков А.П., Щербак Ю.П. Электрон. текстовые данные. Саров: Российский федеральный ядерный центр ВНИИЭФ, 2010. 405 с. Режим доступа: http://www.iprbookshop.ru/18440.html ЭБС «IPRbooks».

МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Крайнова Г.С., Полянский Д.А., Писаренко Т.А. Виды симметрии кристаллических многогранников. Типы кристаллических решеток. Методические указания по курсу «Кристаллография и кристаллофизика» // Владивосток, ДВГУ, 2003, 32 с.
- 2. Крайнова Г.С., Кузнецов Р.Ю. Точечные группы симметрии. Методические указания к лабораторной работе // Владивосток, 2010, 22 с.
- 3. Электронный учебно-методический комплекс по теории симметрии // Владивосток, 2010.
- 4. Крайнова Γ. С. Стереографическая проекция. Методические указания к лабораторной работе // Владивосток, 2010, 16 с.

Перечень информационных технологий и программного обеспечения

Для проведения лабораторных работ по дисциплине «Дополнительные главы кристаллографии» и оформления отчетов может использоваться стандартное программное обеспечение компьютерных учебных классов (Windows XP, MicrosoftOffice и др.).

V. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Студент в процессе обучения должен не только освоить учебную программу, но и приобрести навыки самостоятельной работы. Студент должен уметь планировать и выполнять свою работу. Удельный вес самостоятельной работы составляет значительную часть времени изучаемого цикла (50%). Это отражено в учебных планах и графиках учебного процесса, с которым каждый студент может ознакомиться у преподавателя дисциплины.

Главное в период обучения — научиться методам самостоятельного умственного труда, сознательно развивать свои творческие способности и овладевать навыками творческой работы. Для этого необходимо строго соблюдать дисциплину учебы и поведения. Необходимо осуществлять самоконтроль, который является необходимым условием успешной учебы.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения исследований, связанных с выполнением практических заданий по дисциплине доступно лабораторное оборудование и специализированные кабинеты, соответствующие действующим санитарным и противопожарным нормам, а также требованиям техники безопасности при проведении учебных и научно-производственных работ.

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
690922, Приморский край, г. Владивосток, остров Русский, полуостров Саперный, поселок Аякс, 10, корпус L, ауд. L442	Специализированная лаборатория Департамента общей и экспериментальной физики: Лаборатория материаловедения и кристаллографии Лабораторные столы и стулья Количество посадочных рабочих мест для студентов - 8	Microsoft Office365/Microosoft/США/ Платное ПО Microsoft Teams/Microosoft/США/Пла тное ПО

В целях обеспечения специальных условий обучения инвалидов и лиц с ограниченными возможностями здоровья в ДВФУ все здания оборудованы пандусами, лифтами, подъемниками, специализированными местами, оснащенными туалетными комнатами, табличками информационно навигационной поддержки.

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	1 - 4 недели	Подготовка отчета по лабораторной работе №1	12 час.	Защита отчетов
		Подготовка к устному опросу		
2	5 - 10недели	Подготовка отчета по лабораторной	18 час.	Защита
		работе 2		отчетов
		Подготовка к контрольным работам 1,		
		2		
		Подготовка у тесту 1		
		Выполнение домашнего задания		
3	11 - 13	Подготовка отчета по лабораторной	10 час.	Защита
	недели	работе 3		отчетов
		Подготовка к собеседованию		
		Выполнение домашнего задания		
4	14 - 18	Подготовка отчета по лабораторным	14 час.	Защита
	недели	работам 4,5		отчетов

Подготовка к коллоквиуму Подготовка к контрольной работе 3		
Итого	54 часа	

Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Задания и методические рекомендации для самостоятельной работы обеспечивают подготовку отчетов к лабораторным работам. Их полное содержание приведено в программе и методических указаниях. Методические указания к лабораторным работам в электронном виде и печатном виде берутся у ведущего преподавателя.

Требования к представлению и оформлению результатов самостоятельной работы

Результаты самостоятельной работы отражаются в письменных работах (отчетах по лабораторным работам).

К представлению и оформлению отчетов по лабораторным работам предъявляются следующие требования.

Структура отчета по лабораторной работе

Отчеты по лабораторным работам представляются в электронной форме, подготовленные как текстовые документы в редакторе MSWord.

Отчет по работе должен быть обобщающим документом, включать всю информацию по выполнению заданий, в том числе, построенные диаграммы, таблицы, приложения, список литературы и (или) расчеты, сопровождая необходимыми пояснениями и иллюстрациями в виде схем, экранных форм («скриншотов») и т. д.

Структурно отчет по лабораторной работе, как текстовый документ, комплектуется по следующей схеме:

✓ *Титульный лист*— *обязательная* компонента отчета, первая страница отчета, по принятой для лабораторных работ форме (титульный лист отчета должен размещаться в общем файле, где представлен текст отчета);

- ✓ *Исходные данные к выполнению заданий* обязательная компонента отчета, с новой страницы, содержат указание варианта, темы и т.д.);
- ✓ *Основная часть* материалы выполнения заданий, разбивается по рубрикам, соответствующих заданиям работы, с иерархической структурой: разделы подразделы пункты подпункты и т. д.
- ✓ Рекомендуется в основной части отчета заголовки рубрик (подрубрик) давать исходя из формулировок заданий, в форме отглагольных существительных;
- ✓ Список литературы— обязательная компонента отчета, с новой страницы, содержит список источников, использованных при выполнении работы, включая электронные источники (список нумерованный, в соответствии с правилами описания библиографии);
- ✓ *Приложения* необязательная компонента отчета, с новой страницы, содержит дополнительные материалы к основной части отчета.

Набор текста

Набор текста осуществляется на компьютере, в соответствии со следующими требованиями:

- ✓ печать на одной стороне листа белой бумаги формата A4 (размер 210 на 297 мм.);
 - ✓ интервал межстрочный полуторный;
 - ✓ шрифт TimesNewRoman;
- ✓ размер шрифта 14 пт., в том числе в заголовках (в таблицах допускается 10-12 пт.);
 - ✓ выравнивание текста «по ширине»;
- \checkmark поля страницы -левое 25-30 мм., правое 10 мм., верхнее и нижнее 20 мм.;
- ✓ нумерация страниц в правом нижнем углу страницы (для страниц с книжной ориентацией), сквозная, от титульного листа до последней страницы, арабскими цифрами (первой страницей считается титульный лист,

на котором номер не ставиться, на следующей странице проставляется цифра «2» и т. д.).

✓ режим автоматического переноса слов, за исключением титульного листа и заголовков всех уровней (перенос слов для отдельного абзаца блокируется средствами MSWord с помощью команды «Формат» – абзац при выборе опции «запретить автоматический перенос слов»).

Рекомендации по подготовке к контрольной работе

Для успешного написания контрольных работ необходимо глубокое понимание основ рассматриваемых процессов, явлений, что обеспечивается систематической работой как на лабораторных занятиях, так и самостоятельно. Самостоятельная работа не менее важна, чем аудиторная.

Также в процессе подготовки к контрольным работам рекомендуется пользоваться литературой из списка основной и дополнительной литературы, Интернет-источниками.

Кроме того, теоретический материал можно почерпнуть из методических указаний в процессе выполнения лабораторных работ.

Критерии оценки выполнения самостоятельной работы

Оценивание лабораторных работ проводится по критериям:

- полнота и качество выполненных заданий;
- качество оформления отчета, использование правил и стандартов оформления текстовых и электронных документов;
- отсутствие фактических ошибок, связанных с пониманием проблемы.

Оценивание контрольных работ проводится по критериям:

- полнота и качество ответов на теоретические вопросы;

- отсутствие логических ошибок, связанных с пониманием материала;
- отсутствие ошибок в формулах, выражениях, характеризующих рассматриваемый процесс, явление;
- отсутствие значительных ошибок в приводимых количественных характеристиках.