

## МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

## «Дальневосточный федеральный университет» (ДВФУ)

#### ИНСТИТУТ НАУКОЕМКИХ ТЕХНОЛОГИЙ И ПЕРЕДОВЫХ МАТЕРИАЛОВ (ШКОЛА)

СОГЛАСОВАНО Руководитель ОП

Патрушева О.В.

(подпись) (ФИО)

**УТВЕРЖДАЮ** 

мректор Департамента ядерных технологий

Патрушева О.В. (И.О. Фамилия)

5» февраля 2023 г.

### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Зонная структура полупроводников: методы определения и управления Направление подготовки 22.03.01 Материаловедение и технологии материалов, профиль «Материаловедение и управление свойствами материалов» Форма подготовки: очная

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки 22.03.01 «Материаловедение и технологии материалов» утвержденного приказом Министерства науки и высшего образования РФ от 02 июня 2020 г. № 701.

И.о. директора Департамента ядерных технологий к.х.н. О.В. Патрушева. Составитель: к.ф.-м.н. Штарев Д.С.

Владивосток 2023

## Оборотная сторона титульного листа РПД

Рабочая программа рассмотрена и утверждена на заседании Департамента ядерных технологий, протокол от «11» февраля 2023 г. № 06.

| 1. Рабочая программа пересмотрена на заседании Департамента/кафедры/отделения (реализующего                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| дисциплину) и утверждена на заседании Департамента/кафедры/отделения (выпускающего структурного                                                                                                                           |
| подразделения), протокол от «» 202 г. №                                                                                                                                                                                   |
| 2.Рабочая программа пересмотрена на заседании Департамента/кафедры/отделения (реализующего дисциплину) и утверждена на заседании Департамента/кафедры/отделения (выпускающего структурного                                |
| подразделения), протокол от «» 202 г. №                                                                                                                                                                                   |
| 3.Рабочая программа пересмотрена на заседании Департамента/кафедры/отделения (реализующего дисциплину) и утверждена на заседании Департамента/кафедры/отделения (выпускающего структурного подразделения), протокол от «» |
| 4. Рабочая программа пересмотрена на заседании Департамента/кафедры/отделения (реализующего дисциплину) и утверждена на заседании Департамента/кафедры/отделения (выпускающего структурного                               |
| подразделения), протокол от «» 202 г. №                                                                                                                                                                                   |
| 5. Рабочая программа пересмотрена на заседании Департамента/кафедры/отделения (реализующего дисциплину) и утверждена на заседании Департамента/кафедры/отделения (выпускающего структурного                               |
| подразделения), протокол от «» 202 г. №                                                                                                                                                                                   |

#### Аннотация дисциплины

Зонная структура полупроводников: методы определения и управления Общая трудоемкость дисциплины составляет 4 зачётные единицы / 144 академических часа. Является дисциплиной обязательной части ОП, формируемой участниками образовательных отношений, изучается на 4 курсе в 7 семестре и завершается экзаменом. Учебным планом предусмотрено проведение лекционных занятий в объеме 32 часов, лабораторных/практических — 18/18 часов, а также выделены часы на самостоятельную работу студента — 49 часа, из которых 45 часов выделено на экзамен

Язык реализации: русский.

**Цель:** освоение современных экспериментальных и теоретических методов определения и управления зоной структурой полупроводниковых материалов.

### Задачи:

- изучить теорию формирования зонной структуры полупроводников;
- освоить методы полуэмпирического расчета зонной структуры полупроводников;
- познакомится с экспериментальными методиками определения зонной структуры полупроводников;
- получить представления о способах управления зонной структурой полупроводников через модификацию их структуры.

Для успешного изучения дисциплины у обучающихся должны быть сформированы следующие предварительные компетенции:

- способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1);

- способен решать задачи профессиональной деятельности, применяя методы моделирования, математического анализа, естественнонаучные и общеинженерные знания (ОПК-1);
- способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии (ОПК-6).

Обучающийся должен быть готов к изучению таких дисциплин, как «Исследовательский проект», формирующих компетенции ПК-1, ПК-2. Полученные навыки при изучении дисциплины могут быть использованиы при выполнении выпускной квалификационной работы.

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы, характеризуют формирование следующих компетенций, индикаторов достижения компетенций:

| Тип задач                        | Код и наименование компетенции (результат освоения)                                                                                                                   | Код и наименование индикатора достижения компетенции                                                                                 | Наименование показателя оценивания (результата обучения по дисциплине)                                                                                                                                                                                                                     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Научно-<br>исследовательс<br>кий | ПК-1 - Способен использовать в исследованиях и расчетах знания о методах исследования, анализа, диагностики и моделирования свойств материалов, физических процессах, | ПК-1.1 Готов проводить исследования структуры и свойств новых материалов, перспективных для использования                            | Знает экспериментальное оборудование для исследования полупроводниковых материалов методами РФЭС, Шоттки и СДО Умеет исследования полупроводниковых материалов методами РФЭС, Шоттки и СДО Владеет методами интерпретации экспериментальных данных, полученных методами РФЭС, Шоттки и СДО |
|                                  | протекающих в материалах при их получении, обработке и модификации                                                                                                    | ПК-1.2 Выбирает современное аналитическое оборудование, технические средства и методы испытаний (из набора имеющихся) для проведения | Знает области применения экспериментального оборудования для исследования полупроводниковых материалов методами РФЭС, Шоттки и СДО Умеет осуществлять пробоподготовку образцов                                                                                                             |

| материаловедческих<br>исследований                                                                                                                                                                                                     | для проведения исследований методами РФЭС, Шоттки и СДО на выбранном оборудовании Владеет практическими навыками анализа РФЭС спектров, графиков Шоттки и Тауца  Знает зонную теорию                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ПК-1-3. Применяет знание закономерностей физических и химических процессов для участия в разработке новых конструкционных и функциональных материалов, полуфабрикатов и изделий с заданным уровнем свойств и структурных характеристик | Знает зонную теорию полупроводников Умеет подбирать экспериментальные методики для определения зонной структуры полупроводников Владеет методами построения зонных структур полупроводников на основе экспериментальных данных |

Для формирования вышеуказанных компетенций в рамках дисциплины «Зонная структура полупроводников: методы определения и управления» применяются следующие дистанционные образовательные технологии и методы / активного / интерактивного обучения: работа в малых группах.

## 1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

**Цель:** освоение современных экспериментальных и теоретических методов определения и управления зоной структурой полупроводниковых материалов.

### Задачи:

- изучить теорию формирования зонной структуры полупроводников;
- освоить методы полуэмпирического расчета зонной структуры полупроводников;
- познакомится с экспериментальными методиками определения зонной структуры полупроводников;
- получить представления о способах управления зонной структурой полупроводников через модификацию их структуры.

Для успешного изучения дисциплины у обучающихся должны быть сформированы следующие предварительные компетенции:

- способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1);
- способен решать задачи профессиональной деятельности, применяя методы моделирования, математического анализа, естественнонаучные и общеинженерные знания (ОПК-1);
- способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии (ОПК-6).

Обучающийся должен быть готов к изучению таких дисциплин, как «Исследовательский проект». Полученные навыки при изучении дисциплины могут быть использованиы при выполнении выпускной квалификационной работы.

В результате изучения данной дисциплины у обучающихся формируются следующие профессиональные компетенции:

| Тип задач | Код и наименование компетенции (результат освоения) | Код и наименование индикатора достижения компетенции | Наименование показателя оценивания (результата обучения по дисциплине) |
|-----------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|
|-----------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|

| Научно-        | ПК-1 -                   |                                     | Знает                                 |
|----------------|--------------------------|-------------------------------------|---------------------------------------|
| исследовательс | Способен                 |                                     | экспериментальное                     |
| кий            | использовать в           |                                     | оборудование для                      |
|                | исследованиях            |                                     | исследования                          |
|                | и расчетах               |                                     | полупроводниковых                     |
|                | знания о                 |                                     | материалов методами                   |
|                | методах<br>исследования, | ПК-1.1 Готов проводить              | РФЭС, Шоттки и СДО                    |
|                | анализа,                 | исследования<br>структуры и свойств | Умеет исследования                    |
|                | диагностики и            | новых материалов,                   | полупроводниковых                     |
|                | моделирования            | перспективных для                   | материалов методами                   |
|                | свойств                  | использования                       | РФЭС, Шоттки и СДО                    |
|                | материалов,              |                                     | Владеет методами                      |
|                | физических и химических  |                                     | интерпретации                         |
|                | процессах,               |                                     | экспериментальных                     |
|                | протекающих в            |                                     | данных, полученных                    |
|                | материалах при           |                                     | методами РФЭС,                        |
|                | их получении,            |                                     | Шоттки и СДО<br>Знает области         |
|                | обработке и              |                                     | применения                            |
|                | модификации              |                                     | экспериментального                    |
|                |                          |                                     | оборудования для                      |
|                |                          |                                     | исследования                          |
|                |                          | ПК-1.2 Выбирает                     | полупроводниковых                     |
|                |                          | современное                         | материалов методами                   |
|                |                          | аналитическое                       | РФЭС, Шоттки и СДО                    |
|                |                          | оборудование,                       | Умеет осуществлять                    |
|                |                          | технические средства                | пробоподготовку                       |
|                |                          | и методы испытаний                  | образцов для                          |
|                |                          | (из набора                          | проведения                            |
|                |                          | имеющихся) для                      | исследований методами                 |
|                |                          | проведения                          | РФЭС, Шоттки и СДО                    |
|                |                          | материаловедческих                  | на выбранном                          |
|                |                          | исследований                        | оборудовании<br>Владеет практическими |
|                |                          |                                     | навыками анализа                      |
|                |                          |                                     | РФЭС спектров,                        |
|                |                          |                                     | графиков Шоттки и                     |
|                |                          |                                     | Тауца                                 |
|                |                          | ПК-1-3. Применяет                   | Знает зонную теорию                   |
|                |                          | знание закономерностей              | полупроводников                       |
|                |                          | физических и                        | Умеет подбирать                       |
|                |                          | химических процессов                | экспериментальные                     |
|                |                          | для участия в разработке новых      | методики для опреде-                  |
|                |                          | конструкционных и                   | ления зонной структуры                |
|                |                          | функциональных                      | полупроводников                       |
|                |                          | материалов,                         | Владеет методами                      |
|                |                          | полуфабрикатов и                    | построения зонных                     |
|                |                          | изделий с заданным                  | структур полупровод-                  |
|                |                          | уровнем свойств и                   | ников на основе                       |
|                |                          | структурных<br>характеристик        | экспериментальных<br>данных           |
|                |                          | ларактеристик                       | данныл                                |

## 2. ТРУДОЁМКОСТЬ ДИСЦИПЛИНЫ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ

Общая трудоемкость дисциплины составляет 4 зачётных единицы 144 академических часа).

### Структура дисциплины:

Форма обучения – очная.

|   |                                                       |         |     |     |    | Соличес<br>учебных<br>об | х заня |          | работі                   |  | Формы |
|---|-------------------------------------------------------|---------|-----|-----|----|--------------------------|--------|----------|--------------------------|--|-------|
| № | Наименование раздела<br>дисциплины                    | Семестр | Лек | Лаб | ďΠ | OK                       | CP     | Контроль | промежуточной аттестации |  |       |
| 1 | Раздел 1. Определение зонной структуры полупроводника | 7       | 20  | 10  | -  | -                        | 40     | 45       | зачет                    |  |       |
| 2 | Раздел 2. Методы анализа данных                       | 7       | 12  | 8   |    |                          | 9      |          |                          |  |       |
|   | Итого:                                                |         | 32  | 18  | -  | -                        | 49     | 45       |                          |  |       |

## 3. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Лекционные занятия (32 час.)

# Раздел 1. Определение зонной структуры полупроводника Тема 1. Зонная структура полупроводников (4 час.)

Энергетический спектр атома. Уширение спектральных линий атомов при их объединении в молекулы и кристаллы. Электроотрицательность химических элементов и ее влияние на зонную структуру. Формирование валентной зоны и зоны проводимости полупроводника. Уровень Ферми. Связь между зонной структурой и локализацией носителей заряда в кристаллах. Типы полупроводников.

# **Тема 2.** Полуэмпирический метод расчета зонной структуры полупроводника Баттлера - Гинли (4 час.)

Теория Баттлера — Гинли. Применение понятия среднего геометрического для расчета общей электроотрицательности элементарной ячейки. Учет влияния легирования в модели Баттлера - Гинли на положение валентной зоны и зоны проводимости. Нормирование расчетной зонной структуры относительно различных электродов (HSE, RHE, NHE и др.).

**Тема 3.** Инструментальные средства определения зонной структуры полупроводника: рентгеновская фотоэлектронная

### спектроскопия (4 час.)

Физические принципы рентгеновской фотоэлектронной спектроскопии. Техническая реализация и варианты компоновки рфэс-спектрометров. Ультрафиолетовая фотоэлектронная спектроскопия и границы ее применимости. Методы анализа рфэс- и увфэс-спектров.

## Тема 4. Инструментальные средства определения зонной структуры полупроводника: электрохимическая ячейка (4 час.)

Физические процессы, протекающие на границе полупроводникэлектролит. Основные принципиальные схеме измерения полупроводников в электрохимических ячейках. Технология изготовления электродов из полупроводниковых материалов. Методы измерения основных электрических величин в электрохимической ячейке.

# Тема 5. Инструментальные средства определения зонной структуры полупроводника: спектроскопия диффузного отражения (4 час.)

Физические основы и техническая реализация спектрофотометров диффузного отражения. Преобразование спектральных коэффициентов кубелки-мунка. Границы применимости метода спектроскопии диффузного отражения.

## Раздел 2. Методы анализа данных

# Тема 6. Методы анализа экспериментальных данных: определение потенциала потолка валентной зоны по данным рентгеновской фотоэлектронной спектроскопии (4 час.)

Анализ линий рентгеновских и ультрафиолетовых фотоэлектронных спектров для определения потенциала потолка валентной зоны. Учет энергии ферми. Нормирование потенциала потолка валентной зоны.

# **Тема 7.** Методы анализа экспериментальных данных: определение потенциала дна зоны проводимости методом шоттки (4 час.)

Методы построения графиков шоттки. Определение типа проводимости полупроводника по графикам шоттки. Определение потенциала плоских зон. Особенности потенциала дна зоны проводимости полупроводника.

# **Тема 8.** Методы анализа экспериментальных данных: определение ширины запрещенной зоны методом Тауца (4 час.)

Метод Тауца. Построение графика Тауца. Определение области собственного поглощения полупроводника. Определение ширины запрещенной зоны полупроводника по графикам Тауца. Учет типа полупроводника

## 4. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

# Лабораторная работа 1-2. Расчет зонной структуры полупроводника методом Баттлера-Гинли (4 час.)

Расчет валентной зоны и зоны проводимости полупроводника. Расчет зонной структуры номинально чистого полупроводника методом Баттлера-Гинли. Расчет зонной структуры легированного полупроводника методом Баттлера-Гинлпределение связи между зонной структурой и локализацией носителей заряда в кристаллах.

## Лабораторная работа 3. Измерение основных электрических величин в электрохимической ячейке (4 час.)

Физические процессы, протекающие на границе полупроводникэлектролит. Основные принципиальные схеме измерения полупроводников в электрохимических ячейках. Технология изготовления электродов из полупроводниковых материалов. Методы измерения основных электрических величин в электрохимической ячейке.

# Лабораторная работа 4-5. Анализ РФЭС-спектра полупроводника (4 час.)

Анализ РФЭС-спектром валентной области полупроводника и вычисление потенциала потолка валентной зоны полупроводника.

# Лабораторная работа 6-8. Спектроскопия диффузного отражения полупроводника (6 час.)

Получение спектра образца. Обработка спектров диффузного отражения: выполнение преобразования Кубелки-Мунка, построение графика Тауца, вычисление ширины запрещенной зоны.

## 5. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

| №           | Контролируем                       | Код и наименование                                                                       | Результаты обучения                                                                                            | Оценочн             | ные средства *               |
|-------------|------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|
| П<br>/<br>П | ые разделы /<br>темы<br>дисциплины | индикатора<br>достижения                                                                 |                                                                                                                | текущий<br>контроль | промежуточна<br>я аттестация |
| 1           | Разделы 1-5                        | ПК-1-1. готов проводить исследования структуры и свойств новых материалов, перспективных | Знает экспериментальное оборудование для исследования полупроводниковых материалов методами РФЭС, Шоттки и СДО | УО-1<br>ПР-6        | -                            |

|   |          | 776                                                                                                                                       | VMOOT MOOTOWOT                                                                                                                                             |              |   |
|---|----------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|
|   |          | для<br>использования                                                                                                                      | Умеет исследования полупроводниковых материалов методами РФЭС, Шоттки и СДО                                                                                | УО-1<br>ПР-6 |   |
|   |          |                                                                                                                                           | Владеет методами интерпретации экспериментальных данных, полученных методами РФЭС, Шоттки и СДО                                                            | УО-1<br>ПР-6 |   |
|   |          | ПК-1-2. Выбирает современное аналитическое                                                                                                | Знает области<br>применения<br>экспериментального<br>оборудования для<br>исследования<br>полупроводниковых<br>материалов методами<br>РФЭС, Шоттки и<br>СДО | УО-1<br>ПР-6 |   |
|   |          | аналитическое оборудование, технические средства и методы испытаний (из набора имеющихся) для проведения материаловедческ их исследований | Умеет осуществлять пробоподготовку образцов для проведения исследований методами РФЭС, Шоттки и СДО на выбранном оборудовании                              | УО-1<br>ПР-6 | - |
|   |          |                                                                                                                                           | Владеет практическими навыками анализа РФЭС спектров, графиков Шоттки и Тауца                                                                              | УО-1<br>ПР-6 |   |
|   |          | ПК-1-3. Применяет знание закономерностей                                                                                                  | Знает зонную теорию полупроводников                                                                                                                        | УО-1<br>ПР-6 |   |
|   |          | физических и химических процессов для участия в разработке новых конструкционных                                                          | Умеет подбирать экспериментальные методики для определения зонной структуры полупроводников                                                                | УО-1<br>ПР-6 |   |
|   |          | и функциональных материалов, полуфабрикатов и изделий с заданным уровнем свойств и структурных                                            | Владеет методами построения зонных структур полупроводников на основе экспериментальных                                                                    | УО-1<br>ПР-6 |   |
| 2 | Экзамен  | характеристик                                                                                                                             | данных                                                                                                                                                     |              |   |
|   | ONSAMUCH | <u> </u>                                                                                                                                  |                                                                                                                                                            |              |   |

# 6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа определяется как индивидуальная или коллективная учебная деятельность, осуществляемая без непосредственного руководства педагога, но по его заданиям и под его контролем. Самостоятельная работа — это познавательная учебная деятельность, когда последовательность мышления студента, его умственных и практических операций и действий зависит и определяется самим студентом.

Самостоятельная работа студентов способствует развитию самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровня, что в итоге приводит к развитию навыка самостоятельного планирования и реализации деятельности.

Целью самостоятельной работы студентов является овладение необходимыми компетенциями по своему направлению подготовки, опытом творческой и исследовательской деятельности.

Формы самостоятельной работы студентов:

- работа с основной и дополнительной литературой, Интернет ресурсами;
- самостоятельное ознакомление с лекционным материалом, представленным на электронных носителях, в библиотеке образовательного учреждения;
  - выполнение лабораторных работ;
  - подготовка к экзамену;
- другие виды деятельности, организуемые и осуществляемые образовательным учреждением и органами студенческого самоуправления.

## 8. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

## Основная литература

(электронные и печатные издания)

- 1. Матухин, В. Л. Физика твердого тела : учебное пособие / В. Л. Матухин, В. Л. Ермаков. Санкт-Петербург : Лань, 2022. ISBN 978-5-8114-0923-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/210305
- 3. Микушин, А. В. Физические основы электроники / А. В. Микушин. Санкт-Петербург : Лань, 2023. ISBN 978-5-507-45544-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/311846
- 4. Кульков, В. Г. Физика конденсированного состояния в электротехническом материаловедении : учебное пособие / В. Г. Кульков. Санкт-Петербург : Лань, 2022. ISBN 978-5-8114-2379-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/209711

## Дополнительная литература

(электронные и печатные издания)

1. Прянишников, В.А. Электроника: полный курс лекций / В.А. Прянишников. – СПб.: Корона принт, 2006. - 415 с.

ЭК НБ ДВФУ:

https://lib.dvfu.ru:8443/lib/item?id=chamo:236768&theme=FEFU

2. Электротехника: Учебное пособие / И.С. Рыбков. - М.: ИЦ РИОР: НИЦ Инфра-М, 2013. - 160 с.

ЭБС «Znanium.com»:

http://znanium.com/go.php?id=369499

## Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Лань. Электронно-библиотечная система. Сайт ЭБС «Elanbook.com»: http://e.lanbook.com/
- 2. ЭБС «Консультант студента». Электронная библиотека технического вуза. Сайт ЭБС «Консультант студента»: <a href="http://www.studentlibrary.ru/">http://www.studentlibrary.ru/</a>
- 3. Электронно-библиотечная система Znanium. Com! Сайт ЭБС «Znanium.com» : <a href="http://znanium.com/">http://znanium.com/</a>

4. НЭЛБУК. Электронная библиотека. Сайт электронной библиотеки НЭЛБУК: http://www.nelbook.ru/

# 9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Успешное освоение дисциплины предполагает активную работу студентов на всех занятиях аудиторной формы: лекциях и лабораторных занятиях, выполнение аттестационных мероприятий. В процессе изучения дисциплины студенту необходимо ориентироваться на проработку лекционного материала, подготовку к лабораторным занятиям.

Освоение дисциплины «Зонная структура полупроводников: методы определения и управления» предполагает рейтинговую систему оценки знаний студентов и предусматривает со стороны преподавателя текущий контроль за посещением студентами лекций, лабораторных занятий, выполнением всех видов заданий и самостоятельной работы.

Промежуточной аттестацией по дисциплине «Зонная структура полупроводников: методы определения и управления» является экзамен в 7 семестре.

Студент считается аттестованным по дисциплине при условии выполнения всех видов текущего контроля и самостоятельной работы, предусмотренных учебной программой.

Шкала оценивания сформированности образовательных результатов по дисциплине представлена в фонде оценочных средств (ФОС).

# 10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебные занятия по дисциплине проводятся в помещениях, оснащенных соответствующим оборудованием и программным обеспечением.

Перечень материально-технического и программного обеспечения дисциплины приведен в таблице.

Перечень материально-технического и программного обеспечения дисциплины приведен в таблице.

| Наименование специальных помещений и помещений для самостоятельной работы 1 | Оснащенность специальных помещений и помещений для проведения учебных занятий, для самостоятельной работы | Перечень лицензионного<br>программного обеспечения.<br>Реквизиты подтверждающего<br>документа |  |  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| Учебные аудитории для проведения учебных занятий:                           |                                                                                                           |                                                                                               |  |  |  |
| L607, L608, L561a,                                                          | Лекционная аудитория оборудована                                                                          |                                                                                               |  |  |  |
| L566                                                                        | маркерной доской,                                                                                         |                                                                                               |  |  |  |

<sup>&</sup>lt;sup>1</sup> В соответствии с п.4.3. ФГОС

\_

| аудитория для лекционных, практических занятий                         | Мультимедийное оборудование: ЖК-<br>панель 47"", Full HD, LG M4716 CCBA - 1<br>шт. Парты и стулья                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L560, L632, L633, аудитория для лекционных, практических занятий       | Мультимедийная аудитория: экран проекционный SENSSCREEN ES-431150 150* настенно-потолочный моторизированный, покрытие Matte White, 4:3, размер рабочей поверхности 305*229, проектор BenQ MW 526 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L 323. Лаборатория электронной микроскопии и обработки изображени ДВФУ | Растровый электронный микроскоп, установка быстрой закалки из жидкого состояния, дифференциальный сканирующий калориметр                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ПО, позволяющее выполнять лабораторные работы на лабораторных установках                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L551<br>Компьютерный класс                                             | Моноблок Lenovo C360G-<br>i34164G500UDK – 14 шт.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Microsoft Windows 7 Pro MAGic 12.0<br>Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Помещения для самост                                                   | оятельной работы:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| А1042 аудитория для самостоятельной работы студентов                   | Моноблок Lenovo C360G- i34164G500UDK — 115 шт.; Интегрированный сенсорный дисплей Polymedia FlipBox; Копир-принтер- цветной сканер в e-mail с 4 лотками Xerox WorkCentre 5330 (WC5330C; Полноцветный копир-принтер-сканер Xerox WorkCentre 7530 (WC7530CPS Оборудование для инвалидов и лиц с ограниченными возможностями здоровья: Дисплей Брайля Focus-40 Blue — 3 шт.; Дисплей Брайля Focus-80 Blue; Рабочая станция Lenovo ThinkCentre E73z — 3 шт.; Видео увеличитель ONYX Swing- Arm PC edition; Маркер-диктофон Touch Мето цифровой; Устройство портативное для чтения плоскопечатных текстов PEarl; Сканирующая и читающая машина для незрячих и слабовидящих пользователей SARA; Принтер Брайля Emprint SpotDot - 2 шт.; Принтер Брайля Everest - D V4; Видео увеличитель ONYX Swing-Arm PC edition; Видео увеличитель Тораг 24" XL стационарный электронный; Обучающая система для детей тактильно-речевая, либо для людей с ограниченными возможностями здоровья; Увеличитель ручной видео RUBY портативный — 2 шт.; Экран Samsung S23C200B; Маркер-диктофон Тоисh Мето цифровой. | Місгоsoft Windows 7 Pro MAGic 12.0 Pro, Jaws for Windows 15.0 Pro, Open book 9.0, Duxbury BrailleTranslator, Dolphin Guide (контракт № A238-14/2); Неисключительные права на использование ПО Місгоsoft рабочих станций пользователей (контракт ЭА-261-18 от 02.08.2018): - лицензия на клиентскую операционную систему; - лицензия на пакет офисных продуктов для работы с документами включая формат.docx , .xlsx , .vsd , .ptt.; - лицензия па право подключения пользователя к серверным операционным системам , используемым в ДВФУ : Microsoft Windows Server 2008/2012; - лицензия на право подключения к серверу Місгоsoft Exchange Server Enterprise; - лицензия па право подключения к внутренней информационной системе документооборота и порталу с возможностью поиска информации во множестве удаленных и локальных хранилищах, ресурсах, библиотеках информации, включая портальные хранилища, используемой в ДВФУ: Місгоsoft SharePoint; - лицензия на право подключения к системе централизованного управления рабочими станциями, используемой в ДВФУ: Місгоsoft System Center. |