

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ НАУКОЕМКИХ ТЕХНОЛОГИЙ И ПЕРЕДОВЫХ МАТЕРИАЛОВ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Физико-химия нанокластеров и наноструктур» Направление подготовки 11.03.04 Электроника и наноэлектроника профиль «Нанотехнологии в электронике» Форма подготовки очная

Содержание

I. 1	Перечень форм оценивания, применяемых на различных этапах	
фор	мирования компетенций в ходе освоения дисциплины «Физико-	
хим	ия нанокластеров и наноструктур»	3
II.	Текущая аттестация по дисциплине «Физико-химия нанокластер	ОВ
и на	аноструктур»	5
III.	Промежуточная аттестация по дисциплине «Физико-химия	
нан	окластеров и наноструктур»	. 31

I. Перечень форм оценивания, применяемых на различных этапах формирования компетенций в ходе освоения дисциплины «Физико-химия нанокластеров и наноструктур»

No	Контролируе-	Код и	Результаты обучения	Оценочные средства *	
п/п	мые разделы / темы дисциплины	наименование индикатора достижения		текущий контроль	Промежу- точная аттестация
1	Разделы 1-4	ПК -1.1 Использует методики построения физических и математически х моделей устройств и установок электроники и наноэлектрони ки	Знает новые научные результаты по электронике и наноэлектронике Умеет правильно ставить задачи по направлению электроники и наноэлектроники, выбирать для исследования необходимые методы, оценивать значимость результатов с точки зрения их результативности и применимости Владеет навыками применения выбранных методов к решению научных задач по электронике и наноэлектронике.	ПР-2 УО-3	УО-3
	Разделы 5-7	ПК-3.3 Проводит подготовку к проведению процесса модификации свойств наноматериа- лов и наноструктур в соответствии с технической и эксплуатацион ной докумен- тацией	Знает принципы модификации свойств наноматериалов и наноструктур. Умеет осуществлять подготовку к процессу модификации свойств наноматериалов и наноструктур Владеет навыками проведения процессов модификации свойств наноматериалов и наноструктур в соответствии с	ПР-2 УО-3	УО-3

		технической и эксплуатационной документацией		
2	Зачет		-	ПР-2

^{*} Формы оценочных средств:

- 1) доклад, сообщение (УО-3);
- 2) контрольная работа (ПР-2).

II. Текущая аттестация по дисциплине «Физико-химия нанокластеров и наноструктур»

Текущая аттестация студентов по дисциплине «Физико-химия нанокластеров и наноструктур» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Текущая аттестация по дисциплине «Физико-химия нанокластеров и наноструктур» проводится в форме контрольных мероприятий (контрольных работ, подготовкой резюме по оригинальным научным статьям и зачета) по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

По каждому объекту дается характеристика процедур оценивания в привязке к используемым оценочным средствам.

Оценочные средства для текущего контроля

1. Комплект типовых заданий для контрольной работы

Контрольная работа состоит из письменных ответов на произвольно выбранные 5 вопросов из 15-25 вопросов по каждой теме. На ответ студенту дается 10 минут.

Студенту лектором также выдается в электронном виде для подготовки резюме по 2 оригинальных англоязычных научных статьи, которые коррелируют по тематике каждой из рассматриваемых разделов. По каждой статье необходимо подготовить резюме и доложить на практических занятиях в течение семестра.

Вопросы к контрольным работам

Тема 1. Базовые концепции нанотехнологии и классификация нанокластеров и наноструктур

- 1. Принцип «сверху-вниз» в микроэлектронике, что это такое?
 - движение от большого к малому
 - возьми камень и отсеки все лишнее
 - уменьшение размеров активных и пассивных элементов в интегральных схемах
 - уменьшение размеров транзисторов и диодов в интегральных схемах (ИС)
- 2. Что на фундаментальном уровне обеспечивает развитие наноэлектроники?
 - уменьшение размеров активных элементов ИС до десятков и единиц нанометров

- уменьшение размеров пассивных элементов ИС до десятков и единиц нанометров
- изменение активных и пассивных элементов ИС до десятков и единиц нанометров
- сохранение физических, электрических и оптических свойств устройств наноэлектроники
- 3. Какие из материалов (объектов) природы (неогранической и органической) и техники можно отнести к наноматериалам?
 - раковины молюсков, скелет глубоководной морской губки
 - минералы
 - сталь углеродистая
 - сталь булатная
- 4. Как можно охарактеризовать принцип «снизу-вверх»?
 - движение от малого к большому
 - неорганический синтез
 - органический синтез
 - принцип самоорганизации
- 5. Как понимали нанотехнологии в 70-ые годы 20 века?
 - приемы создания макроскопических деталей с нанометровыми допусками
 - создание молекулярных устройств
 - наноустройства в виде искусственных белковых молекул
 - электронная просвечивающая микроскопия высокого разрешения
- 6. Что является объектами нанохимии?
 - тела с размерами 10-20 нм
 - объекты, у которых размеры соизмеримы с радиусом действия межатомных сил
 - тела с размерами 0.1-10 нм
 - тела с размерами больше радиуса действия межатомных сил
- 7. Какие конкретные объекты и частицы можно отнести к изучаемым нанохимией?
 - кристаллы
 - наноструктурированные пленки
 - фуллерены, мицеллы
 - гели

- 8. Что из перечисленных нанотел и систем являются физико-химическими наносистемами?
 - наночастицы в матрице
 - нанокристаллы неорганических веществ
 - аэрозоли, коллоидные растворы, золи
 - молекулы белков, тубулены, фуллерены
- 9. В чем заключается сущность нанотехнологии?
 - возможность работать с веществом на атомарном уровне
 - возможность работать с веществом на молекулярном уровне
 - возможность работать с веществом на молекулярном уровне, создавая новую молекулярную организацию
- 10. С какими материалами и системами имеет дело нанотехнология?
 - с материалами и системами, у которых размеры меньше единиц нанометров
 - с материалами и системами, у которых при уменьшении размеров до единиц нанометров появляются новые свойства и новые процессы
 - с материалами и системами, у которых независимо от размеров проявляются новые свойства и новые процессы
 - с принципиально новыми материалами
- 11. Как можно классифицировать нанокластеры и наноструктуры?
 - по способу получения
 - по структуре
 - по типу материалов
 - по типу взаимодействия между элементами кластеров и наноструктур
- 12. Что является основой молекулярных кластеров металлов?
 - атомы металла
 - остов из атомов металл
 - молекулярное ядро
 - металлический остов, окруженный лигандами
- 13. Какой метод применяется для получения газовых безлигандных кластеров с размерами в сотни атомов?
 - ячейка Кнудсена
 - метод газовой агрегации
 - метод сверхзвукового сопла
 - метод агрегации дымов и туманов

- 14. Каким образом можно уменьшить размеры безлигандных кластеров металла в методе испарения в газовым потоком?
 - уменьшить скорость потока аргона
 - увеличить скорость потока аргона
 - пропускание паров металла через охлаждаемое пространство
 - уменьшить поток атомов металла
- 15. Какой из методов эрозии поверхности является наиболее контролируемым?
 - облучение легкими ионами газов
 - облучение тяжелыми ионами газов
 - импульсная лазерная обработка (абляция)
 - высокоинтенсивные лазерные пучки
- 16. За счет чего происходит сепарация кластеров по массам в методе стационарной масс-спектроскопии?
 - за счет ионизации кластеров в электрическом поле
 - за счет ионизации кластеров в продольном электрическом и магнитном полях
 - по отношению массы к заряду при движении по кругу в магнитном поле
 - по отношению массы к заряду при движении по кругу в магнитном и электрических полях
- 17. В чем основное отличие стационарного масс-спектрометра от времяпролетного масс-спектрометра?
 - используется только электрическое поле
 - используется только магнитное поле
 - используются магнитное и электрические поля при линейном движении
 - используется ускорение в электрическом поле при различных скоростях наночастиц и нанокластеров
- 18. Как классифицируются коллоидные кластеры по отношению к жидкой фазе?
 - лиофильные и гидрофобные
 - гидрофильные и лиофобные
 - гидрофильные и гидрофобные
 - лиофильные и лиофобные
- 19. Какие наноструктуры возникают в растворах с участием поверхностно активных веществ (ПАВ) независимо от концентрации ПАВ?
 - мономеры
 - димеры

- ассоциаты (мицеллы)
- ламелярные мицеллы
- 20. Можно ли использовать мицеллы для получения твердых нанокластеров?
 - нельзя
 - можно, используя обратные мицеллы
 - можно, используя прямые мицеллы
 - можно, используя обратные мицеллы с содержанием разных веществ (А и В)
- 21. Какими методами можно синтезировать получение твердых нанокластеров?
 - перемалывание в мельницах
 - кристаллизация из порошков
 - кристаллизация аморфных сплавов
 - фотохимические реакции
- 22. Можно ли в пористой матрице сформировать нанокластеры? И если да, то как?
 - нет, нельзя
 - можно
 - можно, за счет проведения химических реакций в жидкой или газообразной фазах
 - можно, за счет проведения химических реакций в твердой фазе
- 23. Что такое кластерный кристалл?
 - не существует
 - кристаллизуются молекулярные кристалл за счет слабых вандервальсовых сил
 - кристаллизуются молекулярные кристалл за счет слабых вандервальсовых сил и водородных связей
 - кристаллизуются молекулярные кристалл за счет сильной связи
- 24. Какими методами получают компактированные наносистемы и нанокомпозиты?
 - методом прессования порошков
 - магнито-импульсное прессование
 - метод прессования порошков с последующим спеканием
- 25. Какой размерностью обладают тонкие наноструктурированнеы пленки?
 - трехмерной
 - одномерной
 - квазидвумерной

- двумерной
- 26. Что положено в основу реализации метода химического парового осаждения?
 - транспорт газов
 - транспорт газов носителей
 - процессы разложения исходных соединений на подложке
 - процессы разложения исходных соединений на подложке с участием катализатора
- 27. Что является результатом применения технологии Ленгмюра-Блоджет?
 - монослои ПАВ
 - нанопленки
 - организованные нанопленки с регулируемым числом слоев
 - полимерные нанопленки
- 28. Какой из методов приводит к росту ориентированных углеродных нанотрубок?
 - дуговой разряд с графитовыми электродами в среде гелия
 - лазерная абляция графита и осаждение на медный охлаждаемый коллектор
 - каталитическое разложением углеводородов на металлическом катализаторе
 - каталитическое разложением углеводородов на матрице с кластерами металла в порах
- 29. Основные особенности зонной структуры графена нового полупроводника
 - двумерный слой углерода с гексагональной структурой
 - полная симметрия валентной зоны и зоны проводимости с малой шириной запрещенной зоны
 - полная симметрия валентной зоны и зоны проводимости с нулевой шириной запрещенной зоны
 - линейная дисперсия валентной зоны и зоны проводимости с нулевой шириной запрещенной зоны
- 30. Можно ли использовать узкие слои графена для создания полевого транзистора? Да, нет, почему?
 - нельзя, при длине канала менее 10 нм наступает туннелирование электронов
 - можно, если обеспечить ненулевую ширину запрещенной зоны
 - нельзя, потому что при нулевой ширине запрещенной зоны будет большой ток в закрытом состоянии.

Тема 2. Поверхность твердых тел. Микроскопические аспекты

- 1. Что позволяет осуществлять метод молекулярных орбиталей?
 - позволяет конструировать химические связи между молекулами
 - позволяет конструировать из атомов молекулы, нанокластеры, наночастиц
 - позволяет конструировать химические связи и описывать образование молекул, нанокластеров, наночастиц из атомов
 - формирует из атомных орбиталей молекулярные орбитали
- 2. Какие типы орбиталей формируются из атомарных орбиталей?
 - связывающие орбитали
 - несвязывающие и связывающие орбитали
 - разрыхляющие и связывающие орбитали
 - связывающие, несвязывающие и разрыхляющие орбитали
- 3. Какая зависимость наблюдается между координационным числом и энергией связи между атомами на поверхности монокристалла?
 - уменьшается координационное число и уменьшается энергия связи
 - уменьшается координационное число и увеличивается энергия связи
 - нет прямой зависимости
 - увеличивается координационное число и увеличивается энергия связи
- 4. Какие из веществ можно отнести к высокодисперсным или высокопористыми системами?
 - аморфный кремний
 - селикогель
 - пористый кремний
 - корунд
- 5. Какой средний диаметр и объем пор в цеолитах «А» и «В»?
 - $d=1.5 \text{ HM}, V=1.1 \text{ HM}^3$
 - $d=1.14 \text{ HM}, V=0.77 \text{ HM}^3$
 - $d=1.0 \text{ HM}, V=0.93 \text{ HM}^3$
 - $d=0.95 \text{ HM}, V=0.80 \text{ HM}^3$
- 6. Какой из основных параметров поверхности изменяется при адсорбции ионов металла?
 - валентность ионов
 - координация атомов на поверхности
 - оптические свойства системы
 - число кластеров

- 7. В чем проявляются отличия между атомами (кластерами) и слоем (и более) атомов металлов или их оксидов?
 - в структуре
 - в зонной и фононной структурах
 - не отличаются
 - отличаются, но слабо
- 8. К какому виду материалов относятся оксиды и сульфиды металлов?
 - металл
 - полупроводники
 - полуметаллы
 - диэлектрики
- 9. В каком диапазоне энергий ниже уровня Ферми лежат уровни поверхностных состояний для ряда металлов (W, Pt, Rh, Pd, Ir)?
 - $-0.1 0.2 ext{ } ext{9B}$
 - 0.2 0.3 эВ
 - -0.3 0.4 9B
 - -0.4 0.5 3B
- 10. За счет чего возникает магнитное упорядочение в 3d- 4f- металлах?
 - неравномерное заполнение s-, d- и f-орбиталей
 - уровень Ферми при заполнении уровней энергии электронами лежит в области d-(f-) состояний
 - уровень Ферми при заполнении уровней энергии электронами лежит в области s-(p-) состояний
 - упорядочение возникает при полном заполнении d- и f-состояний
- 11. Между какими объектами в твердом теле наблюдается обменное взаимодействие?
 - между атомами
 - между электронами
 - между спинами атомов
 - между спинами электронов
- 12. Как влияет поверхность или отдельные атомы на поверхности на величину обменного взаимодействия (ОВ)?
 - увеличивает ОВ
 - уменьшает ОВ
 - не влияет на ОВ

- снижает до нуля ОВ на поверхности
- 13. Какие типы адсорбции атомов существуют?
 - физическая и механическая
 - физическая и ван-дер-ваальсовая
 - физическая и химическая
 - механическая и химическая
- 14. Что происходит с изобарой адсорбции при увеличении температуры при переходе от физической к химической адсорбции?
 - происходит изменение наклона изобары
 - происходит переход с одной изобары на другую
 - наклон изобары не изменяется
 - происходит возврат к начальной изобаре после понижения температуры
- 15. Что можно определить из вида изотермы адсорбции?
 - физический тип адсорбции
 - образование мономолекулярного слоя
 - точку перехода от монослойной к многослойной адсорбции
 - химический тип адсорбции
- 16. Что происходит при гетерогенном катализе?
 - увеличение потенциального барьера реакции
 - уменьшение потенциального барьера реакции
 - ускорение химической реакции
 - замедление химической реакции

Тема 3. Термодинамика поверхностей и границ раздела

- 1. Что описывает первый закон термодинамики?
 - изменение внутренней энергии системы
 - закон сохранения энергии
 - совершенную работу
 - изменение тепловой работы
- 2. Что описывает второй закон термодинамики,
 - описывает часть энергии, превращаемой в работу при постоянной температуре
 - описывает часть внутренней энергии, превращаемой в работу при постоянном давлении
 - описывает часть внутренней энергии, превращаемой в работу при постоянной температуре

- описывает часть внутренней энергии, превращаемой в работу при постоянном давлении и постоянной температуре
- 3. Что такое свободная энергия Гиббса?
 - изохорно-изобарный потенциал
 - изохорно-изотермический потенциал
 - изобарно-изотермический потенциал
 - изобарно-изохорный потенциал
- 4. Что такое энергия Гельмгольца?
 - изохорно-изобарный потенциал
 - изохорно-изотермический потенциал
 - изотермически-изобарный потенциал
 - изобарно-изотермический потенциал
- 5. Что является критерием самопроизвольно протекающего процесса?
 - увеличение внутренней энергии
 - уменьшение внутренней энергии
 - уменьшение свободной энергии Гиббса
 - увеличение свободной энергии Гиббса
- 6. Какой из методов используется для исследования химических процессов?
 - максимизация свободной энергии Гиббса
 - минимизация свободной энергии Гиббса
 - минимизация свободной энергии Гиббса и Гельмгольца
 - усреднение свободной энергии Гиббса и Гельмгольца
- 7. Какие типы параметров и их комбинаций используют для описания работы системы, включая химические?
 - интенсивные параметры и их произведение
 - интенсивные и экстенсивные параметры и их сумма
 - интенсивные и экстенсивные параметры и их произведение
 - экстенсивные параметры и их произведение
- 8. Как определить химический потенциал индивидуального вещества?
 - определяется мольным изменением свободной энергии Гиббса при постоянном давлении и температуре
 - определяется изменением свободной энергии Гиббса при постоянном давлении
 - определяется изменением свободной энергии Гиббса при постоянном давлении и температуре

- определяется мольным изменением свободной энергии Гельмгольца при постоянном давлении и температуре
- 9. Каким термодинамическим параметром описывается поверхностное натяжения для твердых тел?
 - обратимая работа по созданию новой поверхности
 - работа по деформированию поверхности твердого тела
 - необратимая работа по деформации поверхности твердого тела
 - необратимая работа по созданию новой поверхности
- 10. Как изменяется энергия поверхности оксида кремния и его химическая реакционная способность после скола на воздухе?
 - образуется высокоэнергетическая и реакционноспособная поверхность, чья энергия понижается за счет адсорбции кислород из воздуха
 - образуется реакционноспособная поверхность, чья энергия повышается за счет адсорбции кислород из воздуха
 - образуется низкоэнергетическая поверхность, чья энергия повышается за счет адсорбции кислород из воздуха
 - образуется низкоэнергетическая и реакционноспособная поверхность, чья энергия повышается за счет адсорбции кислород из воздуха
- 11. За счет чего можно уменьшить энергию интерфейса двух различных фаз?
 - энергия интерфейса всегда меньше, чем сумма отдельных энергий двух фаз за счет существования энергии притяжения между фазами
 - путем введения дополнительной смачивающей компоненты в твердой фазе
 - путем введения дополнительной смачивающей компоненты в жидкой фазе
 - путем введения химического взаимодействия межфазных границ
- 12. Возможно ли зарождение и рост нанокластеров из отдельных атомов в пористых матрицах из жидкой фазы и если да, то за счет изменения каких термодинамических параметров?
 - нет
 - да, за счет изменения концентрации и химического потенциала
 - да, за счет изменения температуры и свободной энергии Гиббса
 - да, за счет проведения химической реакции в поре
- 13. Существует ли понятие критический зародыш и, если да, то от чего зависит его минимальный размер?
 - нет
 - да, зависит от температуры жидкости в поре

- да, зависит от концентрации пересыщенного раствора
- да, зависит от размера поры
- 14. От чего зависит предельный размер нанокластера, формирующегося в поре?
 - не зависит ни от чего
 - зависит от концентрации материала в растворе в поре
 - зависит от размера поры
 - зависит от концентрации материала в растворе в поре и угла смачивания в поре
- 15. Возможно ли образование более одного нанокластера в поре, и если да, то от чего это зависит?
 - невозможно
 - возможно, если возрастает размер поры
 - возможно, если возрастает размер поры и пора не смачивается раствором
 - возможно, если возрастает размер поры и пора смачивается раствором
- 16. Возможно ли образование твердотельных кластеров, и если да, то за счет каких процессов?
 - нет
 - -да, за счет химических реакций в твердой фазе
 - да, за счет химических реакций в твердой фазе, за счет механохимических реакций
 - да, за счет химических реакций в твердой фазе, за счет механохимических реакций и путем воздействия высоких давлений со сдвигом
- 17. Какой фактор является ограничением при образовании твердотельных кластеров в маточной среде при разложении солей или комплексов металлов?
 - температура
 - подвижная активная реакционная среда
 - диффузионное ограничение маточной среды
 - концентрация маточной среды
- 18. Какие стадии предшествуют спеканию кластеров при термическом разложении оксалата железа?
 - образование зародышей и их рост
 - образование зародышей, их рост до максимального размера без взаимодействия
- образование зародышей, их рост до максимального размера с последующим началом взаимодействия
- образование зародышей, их рост до максимального размера, спекание и формирование системы сильно взаимодействующих кластеров (нанокомпозита)

- 19. От чего зависит структура границ раздела в компактных наноматериалах?
 - от взаимной ориентации соседних зерен
 - от типа межатомных взаимодействий
 - от структуры дефектов
 - от взаимной ориентации соседних зерен и типа межатомных взаимодействий
- 20. Сколько типов дефектов и каких содержат границы раздела компактных наноматериалов?
 - 2, отдельные дефекты и вакансии
 - 3, отдельные вакансии, агломераты вакансий и большие поры
 - 4, отдельные вакансии, агломераты вакансий, нанопоры и большие поры
 - 3, отдельные вакансии, нанопоры и большие поры

Тема 4. Кластерные модели

- 1. Можно ли использовать для кластеров понятие фононов, определяющих динамику твердого тела (да, нет, почему)?
 - да, потому что кристаллическая решетка в кластере сохраняется
 - нет, потому что в кластере есть поверхность, поэтому нарушается периодичность
 - нет, потому что на поверхности периодичность другая и плоская волна не описывает колебания
 - нет, потому что кластер не является строго периодическим из-за влияния поверхности и фонон нельзя представить плоской волной с заданными энергией и волновым вектором
- 2. Можно ли нанокластер считать гигантской молекулой с 3N степенями свободы, и если да, то, как описать весь спектр колебаний в нем?
 - нет, нельзя
 - можно, если найти все собственные частоты колебаний
 - можно, если найти все собственные частоты колебаний и собственные векторы колебаний
 - можно, если найти все собственные векторы колебаний
- 3. Что позволяет охарактеризовать среднеквадратичное смещение атомов в нанокластере?
 - усредненное число атомных колебаний
 - плотность фононных состояний

- однородность колебаний всех атомов нанокластера
- неоднородность колебаний всех атомов нанокластера
- 4. Как соотносятся связь атомов кластера на поверхности и частота их колебаний?
 - атомы кластера на поверхности сильнее связаны с кристаллической решеткой и поэтому частоты их колебаний больше
 - атомы кластера на поверхности слабее связаны с кристаллической решеткой и поэтому частоты их колебаний меньше
 - атомы кластера на поверхности слабее связаны с кристаллической решеткой и поэтому частоты их колебаний больше
 - атомы кластера на поверхности сильнее связаны с кристаллической решеткой и поэтому частоты их колебаний меньше
- 5. Какие различия в колебательном спектре будут наблюдаться между поверхностным слоем атомов и атомами внутреннего ядра?
 - различия не наблюдаются
 - среднеквадратичное смещение атомов в поверхностном слое будет меньше, чем во внутреннем ядре
 - среднеквадратичное смещение атомов в поверхностном слое будет больше, чем во внутреннем ядре
 - характерная частота колебаний атомов в поверхностном слое будет больше, чем во внутреннем ядре
- 6. Какие параметры связывает критерий Линдеманна для кластеров?
 - частоты колебаний атомов в кластере
 - частоты колебаний атомов в поверхностном слое и во внутреннем ядре
 - предельные среднеквадратичные колебания атомов в кластере с температурой его плавления
 - среднеквадратичные колебания атомов в кластере с максимальным изменением расстояния атомов в расплавленном состоянии
- 7. Что является особенностью плавления нанокластеров?
 - нет различий
 - разные температуры плавления поверхностного слоя и внутреннего ядра кластера
 - наличие промежуточной области, отвечающей существованию одновременно и твердого, и жидкого состояний
 - температура плавления поверхностного слоя больше, чем температура

плавления внутреннего ядра кластера

- 8. В чем заключается основная идея термодинамической модели кластера?
 - в расчете разности свободных энергий кластера в жидком и твердом состояниях
 - в минимизации разности свободных энергий кластера в жидком и твердом состояниях
 - в определении критического размера кластера, отвечающего переходу из твердого состояния в жидкое
 - в определении максимального размера кластера, отвечающего переходу из твердого состояния в жидкое
- 9. Зависит ли температура плавления кластера от его размера, и если как, то поясните?
 - не зависит
 - зависит, но слабо
 - зависит, понижается температура плавления при уменьшении размера кластера
 - зависит, понижается температура плавления при увеличении размера кластера
- 10. Равны ли температуры плавления и замерзания для кластеров (да, нет, почему)?
 - равны, как в объеме
 - не равны, поскольку кластеры обладают повышенной подвижностью в промежуточной области температур
 - не равны, поскольку кластеры обладают пониженной подвижностью в промежуточной области температур
- 11. В чем разница по характерным модам и частотам колебаний между твердым телом и жидкостью?
 - жидкость неупруга, а твердое тело упруго
 - податливость жидкости предполагает наличие мягких мод атомного движения
 - твердое тело обладает упругостью под действием довольно значительных сил до определенного предела
 - Твердое тело обладает плотностью состояний с высокими частотами, а жидкое тело с более низкими частотами между состояниями и мелкими потенциальными ямами.
- 12. Угловые и радиальные корреляционные функции, за что они отвечают для твердых тел и жидкостей?
 - это один из типов химических характеристик

- помогают идентифицировать переход из твердого в жидкое состояние вещества
- характеризуют переход из кристаллического в аморфное состояние
- отвечают за ближайших соседей
- 13. Что такое состояние «слякоти» для нанокластеров?
 - это сосуществование твердого и жидкого состояний нанокластеров
 - температура, при которой одновременно есть твердое и жидкое состояние нанокластера
 - свободная энергия Гельмгольца для жидкого и твердого состояний нанокластеров
 - статический режим существования нанокластеров в двух состояниях
- 14. От чего зависит свободная энергия Гельмгольца в нанокластере?
 - от свободной энергии
 - от свободной энергии и энтропии
 - от изменения свободной энергии и изменения энтропии
 - от изменения свободной энергии и температуры
- 15. Как температуры влияет на свободную энергию и энтропию кластера?
 - при низких температурах внутренняя энергия определяется колебательными и вращательными уровнями твердого тела
 - при низких температурах внутренняя энергия определяется колебательными уровнями твердого тела
 - при высоких температурах определяющую роль играет разупорядоченность движений (энтропийный фактор)
 - при высоких температурах повышается внутренняя энергия и энтропия
- 16. Для изучения динамики кластера вводится ряд параметров статические и динамические. Определите, какие из параметров относятся к динамическим?
 - средняя кинетическая энергия и относительная среднеквадратичная флуктуация длины связей
 - средняя кинетическая энергия, корреляционный спектр и нормализованная автокорреляционная функция скорости
 - относительная среднеквадратичная флуктуация длины связей и среднеквадратичное смещение атомов в кластере
 - среднеквадратичное смещение атомов в кластере, корреляционный спектр и нормализованная автокорреляционная функция скорости

- 17. Какая величина служит в качестве компьютерной характеристики для диагностики поведения кластера в подходе к состоянию плавления?
 - среднеквадратичное отклонение длины связи от средней величины
 - среднеквадратичное смещение атомов в кластере
 - относительная среднеквадратичная флуктуация длины связей
 - средняя кинетическая энергия атомов в кластере
- 18. Что такое фрактальные кластеры, и какое их основное свойство?
 - самоорганизующиеся наноструктуры с упорядоченной структурой
 - самоорганизующиеся наноструктуры с рыхлой надмолекулярной структурой
 - упорядоченные наноструктуры с упорядоченной структурой
 - упорядоченные наноструктуры с рыхлой надмолекулярной структурой
- 19. Чем отличается фрактальная размерность от размерности эвклидова пространства?
 - они одинаковы
 - эвклидова размерность определяется целыми числами, а фрактальная размерность рациональными числами
 - эвклидова размерность определяется целыми числами, а фрактальная размерность иррациональными числами
 - эвклидова размерность определяется целыми числами, а фрактальная размерность – дробными числами
- 20. Какие модели и сколько используются для описания формирования фрактальных кластеров?
 - 2, модели диффузионно-лимитируемой агрегации и кластер-кластерной агрегации
 - 2, модели диффузионно-лимитируемой агрегации и кластерной агрегации с ограничением реакционной способности
 - 3, модели диффузионно-лимитируемой агрегации, кластер-кластерной агрегации и кластерной агрегации с ограничением реакционной способности
 - 2, кластер-кластерной агрегации и кластерной агрегации с ограничением реакционной способности
- 21. Сколько и какие существуют моделей кластера для расчета его электронной структуры?
 - 2, модель квазиатома и кластерная модель по принципу организации нуклонов в ядре

- 2, модель квазиатома и оболочечная модель кластера
- 3, модель квазиатома, кластерная модель по принципу организации нуклонов в ядре и оболочечная модель кластера
- 2, кластерную модель по принципу организации нуклонов в ядре и оболочечная модель кластера
- 22. Как строится структурная модель кластера, и для каких кластеров она применима?
 - на основе структурной формулы для кубической решетки и для молекулярных (лигандных) кластеров металлов
 - на основе структурной формулы для икосаэдра и для металлических кластеров, молекулярных кластеров, а также кластеров инертных газов
 - на основе структурной формулы для икосаэдра и для безлигандных кластеров металлов
 - на основе структурной формулы для кубической решетки и для безлигандных кластеров металлов

Тема 5. Физические и химические свойства неорганических нанообъетов

- 1. Какое суммарное число валентных электронов должно быть в молекулярном кластере металла с одним атомом металла для обеспечения его стабильности?
 - 16
 - 18
 - 24
 - 36
- 2. Что следует ожидать при уменьшении размеров кластера до 1-3 нм в его электронной структуре и как эта особенность проявляется на вольт-амперных характеристиках (ВАХ)?
 - квазидискретные уровни энергий электронов и перегибы на ВАХ
 - дискретные уровни энергий электронов и одноэлетронные переходы
 - делокализованные состояния и отсутствие особенностей на ВАХ
 - дискретные уровни энергий электронов и ступеньки на ВАХ при снижении температуры
- 3. Как магнитная восприимчивость кластеров палладия зависит от четности/нечетности количества электронов в них?
 - для четного количества электронов магнитная восприимчивость растет, а для нечетного падает

- для нечетного количества электронов магнитная восприимчивость растет, а для четного падает
- для четного количества электронов магнитная восприимчивость падает, а для нечетного растет
- магнитная восприимчивость не зависит от четности/нечетности количества электронов
- 4. Зависит ли теплоемкость металлических молекулярных кластеров от размеров, и если зависит, то как
 - не зависит
 - зависит, наблюдается линейная зависимость от уменьшения размера кластера
 - зависит, наблюдается кубическая зависимость от температуры при уменьшении размера кластера
 - зависит, наблюдается квадратичная зависимость от температуры при уменьшении размера кластера
- 5. Что является структурной единицей молекулярных кластеров на основе оксидов металлов?
 - тетраэдры
 - октаэдры
 - полиэдры
 - пентагональные бипирамиды
- 6. Что такое супрамолекулярная организация кластера на основе молибдена и железа?
 - объемная сетчатая структура кластера
 - плоская сетчатая структура кластера
 - объемная кольцеобразная структура кластера
 - плоская кольцеобразная структура кластера
- 7. Что собой представляют гигантские кольцевые кластеры, и какими химическими свойствами они обладают?
 - кластеры обладают супрамолекулярной структурой, оформленной в виде кольца, и обладают гидрофильной поверхностью для каталитических свойств
 - кластеры обладают супрамолекулярной структурой, оформленной в виде кольца со встроенными нанометровыми плоскостями, и обладают гидрофильной поверхностью для каталитических свойств
 - кластеры обладают супрамолекулярной структурой, оформленной в виде кольца, и обладают гидрофобной поверхностью

- кластеры обладают супрамолекулярной структурой, оформленной в виде кольца со встроенными нанометровыми плоскостями, и обладают гидрофильной поверхностью для фотохимических свойств
- 8. Каким образом строятся гигантские сферические кластеры (кеплераты), и что они позволяют осуществлять?
 - молекулярные кластеры оксидов металла с центральной точкой, вокруг которой располагаются атомы кластера
 - молекулярные кластеры оксидов металла с симметрией икосаэдра с 12 вершинами и пентагональными фрагментами
 - молекулярные кластеры оксидов металла с симметрией икосаэдра с 12 вершинами и пентагональными фрагментами, которые служат для образования более крупных наноструктур
 - молекулярные кластеры оксидов металла с симметрией икосаэдра с 12
 вершинами и пентагональными фрагментами, которые служат для проведения каталитических реакций при синтезе
- 9. За счет внедрения каких атомов металла в гигантские кеплератные кластеры можно добиться увеличения магнитной восприимчивости и ферро- или ферримагнитных свойств?
 - меди
 - железа
 - алюминия
 - хрома
- 10. За счет внедрения каких атомов металла в гигантские кеплератные кластеры можно добиться увеличения электрической проводимости?
 - хрома
 - алюминия
 - меди
 - ванадия
- 11. Для каких кластеров существует механизм квантового туннелирования, и в чем заключается его механизм?
 - для металлического молекулярного кластера за счет перехода между
 квантовыми уровнями в сильном магнитном поле при комнатной температуре
 - для оксометаллического молекулярного кластера за счет туннелирования между квантовыми уровнями в сильном магнитном поле при гелиевой температуре

- для супрамолекулярного кластера термоактивированный переход может происходить за счет суперпарамагнетизма при гелиевой температуре
- для кеплератного кластера термоактивированный переход может происходить за счет суперпарамагнетизма при гелиевой температуре
- 12. Какие типы кластеров обладают полупроводниковыми свойствами и в чем они могут проявляться?
 - оксометаллические и халькогенидные кластеры с размерами 1-3 нм обладают полупроводниковыми свойствами, что обеспечивает излучение из них
 - халькогенидные кластеры с размерами 3-5 нм обладают полупроводниковыми свойствами, что обеспечивает излучение из них
 - металлического молекулярного кластера с размерами 1-3 нм обладают полупроводниковыми свойствами, что обеспечивает излучение из них
 - кластеры с супрамолекулярной структурой и размерами 3-5 нм обладают полупроводниковыми свойствами, что обеспечивает излучение из них
- 13. Какое условие должно выполняться для того, чтобы безлигандные металлические кластеры оставались устойчивыми?
 - размер ядра кластера должен составлять от 1 нм до 2 ни
 - количество атомов металла в кластере должно быть более 36
 - число атомов металла в кластере должно определяться магическими цифрами
 - количество атомов металла в кластере должно быть более 66
- 14. Кластеры щелочных металлов, обладающие одним s-электроном в каждом атоме поверх заполненных электронных оболочек, обладают рядом интересных оптических свойств, каковы они?
 - усиление поглощения света
 - усиление резонансного поглощения света
 - усиление излучения света
 - усиление резонансного излучения света
- 15. От чего зависят и чем определяются магнитные свойства безлигандных кластеров переходных металлов?
 - от наличия электронов на d-оболочках кластера и геометрического фактора (плотности упаковки атомов)
 - от наличия электронов на d-оболочках кластера и формирования d-зоны проводимости и обменного взаимодействия

- от способности атомов в кластере находиться в разных окислительных состояний
- от наличия электронов на d-оболочках кластера и величины их магнитного момента в кластере
- 16. Какие последовательности числа атомов в малых углеродных кластерах обеспечивают их устойчивость?
 - 6, 10, 14, 18 и 22
 - 8, 12, 16, 20 и 24
 - 7,11,15,19 и 23
 - 5, 9, 13, 17 и 21
- 17. Какие последовательности числа атомов в кольцевых углеродных кластерах обеспечивают их устойчивость?
 - 6, 10, 14, 18 и 22
 - 11,15,19 и 23
 - 12, 16, 20 и 24
 - 10, 14, 18 и 22
- 18. Сколько атомов углерода входит в минимальный фуллерен, и какое количество атомов углерода входит в наиболее устойчивый и распространенный фуллерен?
 - 22, 60
 - -20,70
 - -20, 60
 - -24,70
- 19. Что собой представляет графен и каковы его уникальные свойства?
 - двойной слой монокристаллического углерода, обладающий малой эффективной массой, высокой подвижностью носителей и нулевой шириной запрещенной зоны
 - монослой монокристаллического углерода, обладающий нулевой эффективной массой, линейной дисперсией зон валентной и проводимости и нулевой шириной запрещенной зоны
 - монослой монокристаллического углерода, обладающий малой эффективной массой, квазилинейной дисперсией зон валентной и проводимости и нулевой шириной запрещенной зоны

- монослой монокристаллического углерода, обладающий малой
 эффективной массой, нелинейной дисперсией зон валентной и проводимости
 и ненулевой шириной запрещенной зоны
- 20. Что представляют собой фуллериты и какие их структуры существуют при разных температурах и давлениях?
 - фуллериты формируются из фуллеренов в твердой фазе и могут кристаллизоваться в две фазы: орторомбическую и тетрагональную
 - фуллериты формируются из фуллеренов в твердой фазе и могут кристаллизоваться в три фазы: димерную, орторомбическую и тетрагональную
 - фуллериты формируются из фуллеренов в твердой фазе и могут кристаллизоваться в две фазы: димерную и тетрагональную
 - фуллериты формируются из фуллеренов в твердой фазе и могут кристаллизоваться в две фазы: димерную и тетрагональную
- 21. Какие типы и сколько углеродных нанотрубок существует?
 - однослойные и многослойные нанотрубки трех типов: кресло, зигзаг и нанотрубка с индексами хиральности
 - многослойные нанотрубки трех типов: кресло, зигзаг и нанотрубка с индексами хиральности
 - однослойные нанотрубки двух типов: кресло и зигзаг
 - однослойные и многослойные нанотрубки двух типов: зигзаг и нанотрубка с индексами хиральности
- 22. Каково сопротивление однослойных углеродных нанотрубок с металлической проводимостью, и какой механизм переноса носителей за него ответственен?
 - 200 Ом и диффузионный механизм переноса носителей
 - 3000 Ом и баллистический механизм переноса заряда
 - 2000 Ом и диффузионный механизм переноса носителей
 - 500 Ом и баллистический механизм переноса заряда
- 23. В каком качестве могут быть использованы вертикальные углеродные нанотрубки
 - в качестве проводящего материала
 - в качестве источников электронной эмиссии
 - в качестве источников оптического излучения
 - в качестве наноантенн

Тема 6. Магнитные свойства наноструктур

- 1. От каких параметров структуры и типов взаимодействия зависят магнитные свойства наностуктур?
 - от размерных эффектов и вклада поверхности
 - от размерных эффектов и межкластерных взаимодействий
 - от вклада поверхности, межкластерного взаимодействия и межкластерной организации
 - от вклада поверхности, размерных эффектов, межкластерного взаимодействия и межкластерной организации
- 2. При каких размерах кластеров начинает проявляться суперпарамагнетизм в магнитных наноструктурах?
 - 1-10 нм
 - 10-20 ни
 - 20-30 нм
 - 30-50 нм
- 3. В чем проявляется явление суперпарамагнетизма?
 - в тепловом движении магнитных кластеров
 - в тепловых флуктуациях кластеров в направлении магнитного момента
 - в движении магнитного момента кластера как целого
 - неизменности магнитного момента кластеров
- 4. Вдоль какого направления происходит ориентация магнитного момента кластера и зависит ли его величина от магнитной анизотропии?
 - вдоль оси трудного намагничивания, не зависит от магнитной анизотропии
 - вдоль оси легкого намагничивания, зависит от магнитной анизотропии
 - вдоль оси трудного намагничивания, зависит от магнитной анизотропии
 - вдоль оси легкого намагничивания, не зависит от магнитной анизотропии
- 5. В чем сходство и в чем разница магнитных характеристик парамагнитного газа молекул и магнитных нанокластеров по отношению к воздействию температуры?
 - в газе в результате тепловых флуктуаций изменяется ориентация самих молекул вместе с магнитными моментами, а магнитные нанокластеры слабо сдвигаются со сменой ориентация их магнитного момента

- в газе в результате тепловых флуктуаций изменяется ориентация самих молекул но магнитные моменты не изменяются, а магнитные нанокластеры остаются неподвижными, но меняется ориентация их магнитного момента в газе в результате тепловых флуктуаций изменяется ориентация самих молекул вместе с магнитными моментами, а магнитные нанокластеры остаются неподвижными, но меняется ориентация их магнитного момента особых различий не наблюдается
- 6. Как влияет внешнее магнитное поле на намагниченность охлаждаемого суперпарамагнетика?
 - усиливает тепловые флуктуации при критической температуре
 - уменьшает тепловые флуктуации при критической температуре
 - прекращает тепловые флуктуации при критической температуре
 - сохраняет ферромагнитное упорядочение

Требования к проведению тестирования и представлению материалов (результатов):

Студенты получают на руки лист с контрольными заданиями, письменно отмечают правильные ответы, подписывают лист и отдают преподавателю. На контрольную работу дается 15 минут. Во время выполнения контрольной работы студент не имеет права пользоваться вспомогательной литературой, электронными устройствами и рабочей тетрадью.

Комплект типовых заданий на зачет

Зачет проводится в виде собеседования. Студент тянет билет. В билете указаны 2 темы из пяти рассмотренных в курсе лекций, к которым можно подготовиться в течение получаса. Также в билете присутствует задача, в виде построения зонной диаграммы для гетероперехода с конкретными параметрами, на решение которой отводится полчаса. Спустя час после получения билетов студентами преподаватель вызывает студентов по списку в таком порядке, каком он посчитает нужным. Если студент не выходит отвечать, ставится оценка «неудовлетворительно» и экзамен для него прекращается. В процессе ответа студент должен максимально подробно рассказать 2 темы в его билете. Преподаватель сам прервет его ответ, если посчитает тему достаточно раскрытой. Затем преподаватель дает 2 темы из перечня на свой выбор, студент должен без подготовки рассказать основные моменты тем.

Вопросы к зачету

- 1. Классификация нанообъектов: Молекулярные кластеры. Газовые безлигандные кластеры. Источники излучения кластеров. Масс-спектрометры и детектирование кластеров.
- 2. Структура поверхности и межфазных границ раздела.
- 3. Классификация нанообъектов: Коллоидные кластеры. Твердотельные нанокластеры и наноструктуры.
- 4. Поверхность твердых тел: Примесные атомы на поверхности.
- 5. Классификация нанообъектов: Матричные нанокластеры и супрамолекулярные наноструктуры.
- 6. Атомные и молекулярные орбитали.
- 7. Классификация нанообъектов: Кластерные кристаллы и фуллериты.
- 8. Роль границ раздела фаз в формировании свойств наноматериалов.
- 9. Классификация нанообъектов: Компактированные наносистемы и нанокомпозиты.
- 10. Поверхность твердых тел: Электронные и магнитные свойства поверхности.
- 11. Классификация нанообъектов: Тонкие наноструктурированные пленки.
- 12. Пористые материалы и фотонные кристаллы.
- 13. Классификация нанообъектов: Углеродные нанотрубки. Графен и его свойства.
- 14. Молекулярные лигандные кластеры металлов. Свойства металлических молекулярных кластеров.
- 15. Поверхность монокристаллов, нанокластеров и пористых сорбентов.
- 16. Кластеры на основе оксидов металлов. Свойства оксометаллических молекулярных кластеров.
- 17. Поверхность твердых тел: Атомные и молекулярные орбитали.
- 18. Фуллериты и углеродные нанотрубки (электронные свойства и приборные применения).
- 19. Химический потенциал. Свободная энергия Гиббса и свободная энергия Гемгольца.
- 20. Малые углеродные кластеры.
- 21. Формирование фуллеренов. Фуллерены и их свойства.
- 22. Термодинамика поверхности и межфазных границ.
- 23. Безлигандные металлические кластеры и их свойства: кластеры щелочных металлов и серебра.
- 24. Твердотельные нанокластеры и наноструктуры (синтез и механические и тепловые свойства).
- 25. Зарождение и рост нанокластеров в нанопорах вещества.

- 26. Поверхность твердых тел: Примесные атомы на поверхности.
- 27. Аморфные неорганические наноструктуры.
- 28. Зарождение и рост кластеров на основе твердотельных реакций.
- 29. Безлигандные металлические кластеры и их свойства: кластеры алюминия, кластеры ртути, кластеры переходных металлов.
- 30. Микроскопическая модель внутрикластерной атомной динамики.
- 31. Термодинамическая модель кластера.
- 32. Квантово-статистическая модель.
- 33. Компьютерные модели кластеров.
- 34. Фрактальные модели кластеров.
- 35. Оболочечные модели кластера.
- 36. Структурная модель кластера.
- 37. Оптические и электрические свойства наноструктур: оптические свойства наносистем, электропроводность наноструктур.
- 38. Магнитные свойства наноструктур: суперпарамагнетизм, намагниченнность нанокластеров и наноструктур,
- 39. Магнитные свойства наноструктур: квантовое магнитное туннелирование.
- 40. Магнитные свойства наноструктур: магнитные фазовые переходы в наносистемах с изолированными кластерами и в наноструктурах.

III. Промежуточная аттестация по дисциплине «Физико-химия нанокластеров и наноструктур»

Промежуточная аттестация студентов по дисциплине «Физико-химия нанокластеров и наноструктур» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

1. Комплект типовых заданий на объединенную контрольную работу

Требования к проведению тестирования и представлению материалов (результатов):

Зачет проводится в виде объединенной контрольной работы. Студенту дается 25 тестовых заданий, каждые 5 из которых составлены из вопросов для текущей аттестации для соответствующего раздела. Студенты получают на руки лист с заданиями, они выбирают правильные варианты, отмечают их, подписывают лист и отдают преподавателю. На тест дается 30 минут. Во время выполнения теста студент не имеет права пользоваться вспомогательной литературой, электронными устройствами и рабочей тетрадью.

Без сдачи 2 резюме по оригинальным научным статьям студент не допускается до сдачи зачета.

Типовые тестовые задания

- 1. Принцип «сверху-вниз» в микроэлектронике, что это такое?
 - движение от большого к малому
 - возьми камень и отсеки все лишнее
 - уменьшение размеров активных и пассивных элементов в интегральных ехемах
 - уменьшение размеров транзисторов и диодов в интегральных схемах (ИС)
- 2. Что на фундаментальном уровне обеспечивает развитие наноэлектроники?
 - уменьшение размеров активных элементов ИС до десятков и единиц нанометров
 - уменьшение размеров пассивных элементов ИС до десятков и единиц нанометров
 - изменение активных и пассивных элементов ИС до десятков и единиц нанометров
 - сохранение физических, электрическихи оптических свойствустройств наноэлектроники
- 3. Какие из материалов (объектов) природы (неогранической и органической) и техники можно отнести к наоматериалам?
 - раковины молюсков, скелет глубоководной морской губки
 - минералы
 - сталь углеродистая
 - сталь булатная
- 4. Как можно охарактеризовать принцип «снизу-вверх»?
 - движение от малого к большому
 - неорганический синтез
 - органический синтез
 - принцип самоорганизации
- 5. Что является объектами нанохимии?
 - тела с размерами 10-20 нм
 - объекты, у которых размеры соизмеримы с радиусом действия межатомных сил

- тела с размерами 0.1-10 нм
- тела с размерами больше радиуса действия межатомных сил
- 6. Какие конкретные объекты и частицы можно отнести к изучаемым нанохимией?
 - кристаллы
 - наноструктурированные пленки
 - фуллерены, мицеллы
 - гели
- 7. Что из перечисленных нанотел и систем являются физико-химическими наносистемами?
 - наночастицы в матрице
 - нанокристаллы неорганических веществ
 - аэрозоли, коллоидные растворы, золи
 - молекулы белков, тубулены, фуллерены
- 8. Как можно классифицировать нанокластеры и наноструктуры?
 - по способу получения
 - по структуре
 - по типу материалов
 - по типу взаимодействия между элементами кластеров и наноструктур
- 9. Что является основой молекулярных кластеров металлов?
 - атомы металла
 - остов из атомов металл
 - молекулярное ядро
 - металлический остов, окруженный лигандами
- 10. Какой метод применяется для получения газовых безлигандных кластеров с размерами в сотни атомов?
 - ячейка Кнудсена
 - метод газовой агрегации
 - метод сверхзвукового сопла
 - метод агрегации дымов и туманов
- 11. За счет чего происходит сепарация кластеров по массам в методе стационарной масс-спектроскопии?
 - за счет ионизации кластеров в электрическом поле
 - за счет ионизации кластеров в продольном электрическом и магнитном полях

- по отношению массы к заряду при движении по кругу в магнитном поле
- по отношению массы к заряду при движении по кругу в магнитном и электрических полях
- 12. В чем основное отличие стационарного масс-спектрометра от времяпролетного масс-спектрометра?
 - используется только электрическое поле
 - используется только магнитное поле
 - используются магнитное и электрические поля при линейном движении
 - используется ускорение в электрическом поле при различных скоростях наночастиц и нанокластеров
- 13. Как классифицируются коллоидные кластеры по отношению к жидкой фазе?
 - лиофильные и гидрофобные
 - гидрофильные и лиофобные
 - гидрофильные и гидрофобные
 - лиофильные и лиофобные
- 14. Какие наноструктуры возникают в растворах с участием поверхностно активных веществ (ПАВ) независимо от концентрации ПАВ?
 - мономеры
 - димеры
 - ассоциаты (мицеллы)
 - ламелярные мицеллы
- 15. Можно ли использовать мицеллы для получения твердых нанокластеров?
 - нельзя
 - можно, используя обратные мицеллы
 - можно, используя прямые мицеллы
 - можно, используя обратные мицеллы с содержанием разных веществ (А и В)
- 16. Можно ли в пористой матрице сформировать нанокластеры? И если да, то как?
 - нет, нельзя
 - можно
 - можно, за счет проведения химических реакций в жидкой или газообразной фазах
 - можно, за счет проведения химических реакций в твердой фазе
- 17. Какими методами получают компактированные наносистемы и нанокомпозиты?

- методом прессования порошков
- магнито-импульсное прессование
- метод прессования порошков с последующим спеканием
- 18. Какой размерностью обладают тонкие наноструктурированнеы пленки?
 - трехмерной
 - одномерной
 - квазидвумерной
 - двумерной
- 19. Какой из методов приводит к росту ориентированных углеродных нанотрубок?
 - дуговой разряд с графитовыми электодами в среде гелия
 - лазерная абляция графита и осаждение на медный охлаждаемый коллектор
 - каталитическое разложением углеводородов на металлическом катализаторе
 - каталитическое разложением углеводородов на матрице с кластерами металла в порах
- 20. Основные особенности зонной структуры графена нового полупроводника
 - двумерный слой углерода с гексагональной структурой
 - полная симметрия валентной зоны и зоны проводимости с малой шириной запрещенной зоны
 - полная симметрия валентной зоны и зоны проводимости с нулевой шириной запрещенной зоны
 - линейная дисперсия валентной зоны и зоны проводимости с нулевой шириной запрещенной зоны
- 21. Что позволяет осуществлять метод молекулярных орбиталей?
 - позволяет конструировать химические связи между молекулами
 - позволяет конструировать из атомов молекулы, нанокластеры, наночастиц
 - позволяет конструировать химические связи и описывать образование молекул, нанокластеров, наночастиц из атомов
 - формирует из атомных орбиталей молекулярные орбитали
- 22. Какие типы орбиталей формируются из атомарных орбиталей?
 - связывающие орбитали
 - несвязывающие и связывающие орбитали
 - разрыхляющие и связывающие орбитали
 - связывающие, несвязывающие и разрыхляющие орбитали

- 23. Какая зависимость наблюдается между координационным числом и энергией связи между атомами на поверхности монокристалла?
 - уменьшается координационное число и увеличивается энергия связи
 - нет прямой зависимости
 - увеличивается координационное число и увеличивается энергия связи
 - уменьшается координационное число и уменьшается энергия связи
- 24. Какие из веществ можно отнести к высокодисперсным или высокопористыми системами?
 - аморфный кремний
 - селикогель
 - пористый кремний

Корунд

- 25. К какому виду материалов относятся оксиды и сульфиды металлов?
 - металл
 - полупроводники
 - полуметаллы
 - диэлектрики
- 26. За счет чего возникает магнитное упорядочение в 3d- 4f- металлах?
 - неравномерное заполнение s-, d- и f-орбиталей
 - уровень Ферми при заполнении уровней энергии электронами лежит в области d-(f-) состояний
 - уровень Ферми при заполнении уровней энергии электронами лежит в области s-(p-) состояний
 - упорядочение возникает при полном заполнении d- и f-состояний
- 27. Между какими объектами в твердом теле наблюдается обменное взаимодействие?
 - между атомами
 - между электронами
 - между спинами атомов
 - между спинами электронов
- 28. Какие типы адсорбции атомов существуют?
 - физическая и механическая
 - физическая и ван-дер-ваальсовая
 - физическая и химическая
 - механическая и химическая

- 29. Что происходит с изобарой адсорбции при увеличении температуры при переходе от физической к химической адсорбции?
 - происходит изменение наклона изобары
 - происходит переход с одной изобары на другую
 - наклон изобары не изменяется
 - происходит возврат к начальной изобаре после понижения температуры
- 30. Что можно определить из вида изотермы адсорбции?
 - физический тип адсорбции
 - образование мономолекулярного слоя
 - точку перехода от монослойной к многослойной адсорбции
 - химический тип адсорбции
- 31. Что происходит при гетерогенном катализе?
 - увеличение потенциального барьера реакции
 - уменьшение потенциального барьера реакции
 - ускорение химической реакции
 - замедление химической реакции
- 32. Что описывает первый закон термодинамики?
- изменение внутренней энергии системы
- закон сохранения энергии
- совершенную работу
- изменение тепловой работы
- 33. Что описывает второй закон термодинамики,
- описывает часть энергии, превращаемой в работу при постоянной температуре
- описывает часть внутренней энергии, превращаемой в работу при постоянном давлении
- описывает часть внутренней энергии, превращаемой в работу при постоянном давлении и постоянной температуре
- 34. Что такое свободная энергия Гиббса?
- изохорно-изобарный потенциал
- изохорно-изотермический потенциал
- изобарно-изотермический потенциал
- изобарно-изохорный потенциал
- 35. Что такое энергия Гельмгольца?
- изохорно-изобарный потенциал
- изохорно-изотермический потенциал

- изотермически-изобарный потенциал
- изобарно-изотермический потенциал
- 36. Что является критерием самопроизвольно протекающего процесса?
- увеличение внутренней энергии
- уменьшение внутренней энергии
- уменьшение свободной энергии Гиббса
- увеличение свободной энергии Гиббса
- 37. Какой из методов используется для исследования химических процессов?
- максимизация свободной энергии Гиббса
- минимизация свободной энергии Гиббса
- минимизация свободной энергии Гиббса и Гельмгольца
- усреднение свободной энергии Гиббса и Гельмгольца
- 38. Какие типы параметров и их комбинаций используют для описания работы системы, включая химические?
- интенсивные параметры и их произведение
- интенсивные и экстенсивные параметры и их сумма
- интенсивные и экстенсивные параметры и их произведение
- экстенсивные параметры и их произведение
- 39. Как определить химический потенциал индивидуального вещества?
- определяется изменением свободной энергии Гиббса при постоянном давлении
- определяется изменением свободной энергии Гиббса при постоянном давлении и температуре
- определяется мольным изменением свободной энергии Гиббса при постоянном давлении и температуре
- определяется мольным изменением свободной энергии Гельмгольца при постоянном давлении и температуре
- 40. Каким термодинамическим параметром описывается поверхностное натяжения для твердых тел?
- обратимая работа по созданию новой поверхности
- работа по деформированию поверхности твердого тела
- необратимая работа по деформации поверхности твердого тела
- необратимая работа по созданию новой поверхности
- 41. От чего зависит предельный размер нанокластера, формирующегося в поре?
- не зависит ни от чего
- зависит от концентрации материала в растворе в поре

- зависит от размера поры
- зависит от концентрации материала в растворе в поре и угла смачивания в поре
- 42. Возможно ли образование твердотельных кластеров, и если да, то за счет каких процессов?
- нет
- -да, за счет химических реакций в твердой фазе
- да, за счет химических реакций в твердой фазе, за счет механохимических реакций
- да, за счет химических реакций в твердой фазе, за счет механохимических реакций и путем воздействия высоких давлений со сдвигом
- 43. От чего зависит структура границ раздела в компактных наноматериалах?
- от взаимной ориентации соседних зерен
- от типа межатомных взаимодействий
- от структуры дефектов
- от взаимной ориентации соседних зерен и типа межатомных взаимодействий
- 44. Сколько типов дефектов и каких содержат границы раздела компактных наноматериалов?
- 2, отдельные дефекты и вакансии
- 3, отдельные вакансии, агломераты вакансий и большие поры
- 4, отдельные вакансии, агломераты вакансий, нанопоры и большие поры
- 3, отдельные вакансии, нанопоры и большие поры
- 45. Можно ли использовать для кластеров понятие фононов, определяющих динамику твердого тела (да, нет, почему)?
 - да, потому что кристаллическая решетка в кластере сохраняется
 - нет, потому что в кластере есть поверхность, поэтому нарушается периодичность
 - нет, потому что на поверхности периодичность другая и плоская волна не описывает колебания
 - нет, потому что кластер не является строго периодическим из-за влияния поверхности и фонон нельзя представить плоской волной с заданными энергией и волновым вектором
- 46. Что позволяет охарактеризовать среднеквадратичное смещение атомов в нанокластере?
 - усредненное число атомных колебаний

- плотность фононных состояний
- однородность колебаний всех атомов нанокластера
- неоднородность колебаний всех атомов нанокластера
- 47. Какие различия в колебательном спектре будут наблюдаться между поверхностным слоем атомов и атомами внутреннего ядра?
 - различия не наблюдаются
 - среднеквадратичное смещение атомов в поверхностном слое будет меньше, чем во внутреннем ядре
 - среднеквадратичное смещение атомов в поверхностном слое будет больше, чем во внутреннем ядре
 - характерная частота колебаний атомов в поверхностном слое будет больше, чем во внутреннем ядре
- 48. Какие параметры связывает критерий Линдеманна для кластеров?
 - частоты колебаний атомов в кластере
 - частоты колебаний атомов в поверхностном слое и во внутреннем ядре
 - предельные среднеквадратичные колебания атомов в кластере с температурой его плавления
 - среднеквадратичные колебания атомов в кластере с максимальным изменением расстояния атомов в расплавленном состоянии
- 49. Что является особенностью плавления нанокластеров?
 - нет различий
 - разные температуры плавления поверхностного слоя и внутреннего ядра кластера
 - наличие промежуточной области, отвечающей существованию одновременно и твердого, и жидкого состояний
 - температура плавления поверхностного слоя больше, чем температура плавления внутреннего ядра кластера
- 50. Зависит ли температура плавления кластера от его размера, и если как, то поясните?
 - не зависит
 - зависит, но слабо
 - зависит, понижается температура плавления при уменьшении размера кластера
 - зависит, понижается температура плавления при увеличении размера кластера
- 51. В чем разница по характерным модам и частотам колебаний между твердым

телом и жидкостью?

- жидкость неупруга, а твердое тело упруго
- податливость жидкости предполагает наличие мягких мод атомного движения
- твердое тело обладает упругостью под действием довольно значительных сил до определенного предела
- Твердое тело обладает плотностью состояний с высокими частотами, а жидкое тело с более низкими частотами между состояниями и мелкими потенциальными ямами.
- 52. Угловые и радиальные корреляционные функции, за что они отвечают для твердых тел и жидкостей?
 - это один из типов химических характеристик
 - помогают идентифицировать переход из твердого в жидкое состояние вещества
 - характеризуют переход из кристаллического в аморфное состояние
 - отвечают за ближайших соседей
- 53. Что такое состояние «слякоти» для нанокластеров?
 - это сосуществование твердого и жидкого состояний нанокластеров
 - температура, при которой одновременно есть твердое и жидкое состояние нанокластера
 - свободная энергия Гельмгольца для жидкого и твердого состояний нанокластеров
 - статический режим существования нанокластеров в двух состояниях
- 54. Как температуры влияет на свободную энергию и энтропию кластера?
 - при низких температурах внутренняя энергия определяется колебательными и вращательными уровнями твердого тела
 - при низких температурах внутренняя энергия определяется колебательными уровнями твердого тела
 - при высоких температурах определяющую роль играет разупорядоченность движений (энтропийный фактор)
 - при высоких температурах повышается внутренняя энергия и энтропия
- 55. Для изучения динамики кластера вводится ряд параметров статические и динамические. Определите, какие из параметров относятся к динамическим?
 - средняя кинетическая энергия и относительная среднеквадратичная флуктуация длины связей

- средняя кинетическая энергия, корреляционный спектр и нормализованная автокорреляционная функция скорости
- относительная среднеквадратичная флуктуация длины связей и среднеквадратичное смещение атомов в кластере
- среднеквадратичное смещение атомов в кластере, корреляционный спектр и нормализованная автокорреляционная функция скорости
- 56. Что такое фрактальные кластеры, и какое их основное свойство?
 - самоорганизующиеся наноструктуры с упорядоченной структурой
 - самоорганизующиеся наноструктуры с рыхлой надмолекулярной структурой
 - упорядоченные наноструктуры с упорядоченной структурой
 - упорядоченные наноструктуры с рыхлой надмолекулярной структурой
- 57. Какие модели и сколько используются для описания формирования фрактальных кластеров?
 - 2, модели диффузионно-лимитируемой агрегации и кластер-кластерной агрегации
 - 2, модели диффузионно-лимитируемой агрегации и кластерной агрегации с ограничением реакционной способности
 - 3, модели диффузионно-лимитируемой агрегации, кластер-кластерной агрегации и кластерной агрегации с ограничением реакционной способности
 - 2, кластер-кластерной агрегации и кластерной агрегации с ограничением реакционной способности
- 58. Как строится структурная модель кластера, и для каких кластеров она применима?
 - на основе структурной формулы для кубической решетки и для молекулярных (лигандных) кластеров металлов
 - на основе структурной формулы для икосаэдра и для молекулярных (лигандных) кластеров металлов
 - на основе структурной формулы для икосаэдра и для безлигандных кластеров металлов
 - на основе структурной формулы для кубической решетки и для безлигандных кластеров металлов
- 59. Какое суммарное число валентных электронов должно быть в молекулярном кластере металла с одним атомом металла для обеспечения его стабильности?
 - 16

- 36
- 60. Что следует ожидать при уменьшении размеров кластера до 1-3 нм в ео электронной структуре и как эта особенность проявляется на вольт-амперных характеристиках (ВАХ)?
 - квазидискретные уровни энергий электронов и перегибы на ВАХ
 - дискретные уровни энергий электронов и одноэлетронные переходы
 - делокализованные состояния и отсутствие особенностей на ВАХ
 - дискретные уровни энергий электронов и ступеньки на BAX при снижении температуры
- 61. Как магнитная восприимчивость кластеров палладия зависит от четности/нечетности количества электронов в них?
 - для четного количества электронов магнитная восприимчивость растет, а для нечетного падает
 - для нечетного количества электронов магнитная восприимчивость растет, а
 для четного падает
 - для четного количества электронов магнитная восприимчивость падает, а для нечетного – растет
 - магнитная восприимчивость не зависит от четности/нечетности количества электронов
- 62. Зависит ли теплоемкость металлических молекулярных кластеров от размеров, и если зависит, то как
 - не зависит
 - зависит, наблюдается линейная зависимость от уменьшения размера кластера
 - зависит, наблюдается кубическая зависимость от температуры при уменьшении размера кластера
 - зависит, наблюдается квадратичная зависимость от температуры при уменьшении размера кластера
- 63. Что собой представляют гигантские кольцевые кластеры, и какими химическими свойствами они обладают?
 - кластеры обладают супрамолекулярной структурой, оформленной в виде кольца, и обладают гидрофильной поверхностью для каталитических свойств
 - кластеры обладают супрамолекулярной структурой, оформленной в виде кольца со встроенными нанометровыми плоскостями, и обладают гидрофильной поверхностью для каталитических свойств

- кластеры обладают супрамолекулярной структурой, оформленной в виде кольца, и обладают гидрофобной поверхностью
- кластеры обладают супрамолекулярной структурой, оформленной в виде кольца со встроенными нанометровыми плоскостями, и обладают гидрофильной поверхностью для фотохимических свойств
- 64. Каким образом строятся гигантские сферические кластеры (кеплераты), и что они позволяют осуществлять?
 - молекулярные кластеры оксидов металла с центральной точкой, вокруг которой располагаются атомы кластера
 - молекулярные кластеры оксидов металла с симметрией икосаэдра с 12 вершинами и пентагональными фрагментами
 - молекулярные кластеры оксидов металла с симметрией икосаэдра с 12 вершинами и пентагональными фрагментами, которые служат для образования более крупных наноструктур
 - молекулярные кластеры оксидов металла с симметрией икосаэдра с 12
 вершинами и пентагональными фрагментами, которые служат для проведения каталитических реакций при синтезе
- 65. За счет внедрения каких атомов металла в гигантские кеплератные кластеры можно добиться увеличения магнитной восприимчивости и ферро- или ферримагнитных свойств?
 - меди
 - железа
 - никеля
 - хрома
- 66. За счет внедрения каких атомов металла в гигантские кеплератные кластеры можно добиться увеличения электрической проводимости?
 - хрома
 - алюминия
 - меди
 - ванадия
- 67. Для каких кластеров существует механизм квантового туннелирования, и в чем заключается его механизм?
 - для металлического молекулярного кластера за счет перехода между квантовыми уровнями в сильном магнитном поле при комнатной температуре

- для оксометаллического молекулярного кластера за счет туннелирования между квантовыми уровнями в сильном магнитном поле при гелиевой температуре
- для супрамолекулярного кластера термоактивированный переход может происходить за счет суперпарамагнетизма при гелиевой температуре
- для кеплератного кластера термоактивированный переход может происходить за счет суперпарамагнетизма при гелиевой температуре
- 68. Какие типы кластеров обладают полупроводниковыми свойствами и в чем они могут проявляться?
 - оксометаллические и халькогенидные кластеры с размерами 1-3 нм обладают полупроводниковыми свойствами, что обеспечивает излучение из них
 - халькогенидные кластеры с размерами 3-5 нм обладают полупроводниковыми свойствами, что обеспечивает излучение из них
 - металлического молекулярного кластера с размерами 1-3 нм обладают полупроводниковыми свойствами, что обеспечивает излучение из них
 - кластеры с супрамолекулярной структурой и размерами 3-5 нм обладают полупроводниковыми свойствами, что обеспечивает излучение из них
- 69. Кластеры щелочных металлов, обладающие одним s-электроном в каждом атоме поверх заполненных электронных оболочек, обладают рядом интересных оптических свойств, каковы они?
 - усиление поглощения света
 - усиление резонансного поглощения света
 - усиление излучения света
 - усиление резонансного излучения света
- 70. От чего зависят и чем определяются магнитные свойства безлигандных кластеров переходных металлов?
 - от наличия электронов на d- и f-оболочках кластера и геометрического фактора (плотности упаковки атомов)
 - от наличия электронов на d- и f-оболочках кластера и формирования d-зоны проводимости и обменного взаимодействия
 - от способности атомов в кластере находиться в разных окислительных состояний
 - от наличия электронов на d- и f-оболочках кластера и величины их магнитного момента в кластере

- 71. Какие типы и сколько углеродных нанотрубок существует?
 - однослойные и многослойные нанотрубки трех типов: кресло, зигзаг и нанотрубка с индексами хиральности
 - многослойные нанотрубки трех типов: кресло, зигзаг и нанотрубка с индексами хиральности
 - однослойные нанотрубки двух типов: кресло и зигзаг
 - однослойные и многослойные нанотрубки двух типов: зигзаг и нанотрубка с индексами хиральности
- 72. Каково сопротивление однослойных углеродных нанотрубок с металлической проводимостью, и какой механизм переноса носителей за него ответственен?
 - 200 Ом и диффузионный механизм переноса носителей
 - 3000 Ом и баллистический механизм переноса заряда
 - 2000 Ом и диффузионный механизм переноса носителей
 - 500 Ом и баллистический механизм переноса заряда
- 73. В каком качестве могут быть использованы вертикальные углеродные нанотрубки
 - в качестве проводящего материала
 - в качестве источников электронной эмиссии
 - в качестве источников оптического излучения
 - в качестве наноантенн
- 74. От каких параметров структуры и типов взаимодействия зависят магнитные свойства наностуктур?
 - от размерных эффектов и вклада поверхности
 - от размерных эффектов и межкластерных взаимодействий
 - от вклада поверхности, межкластерного взаимодействия и межкластерной организации
 - от вклада поверхности, размерных эффектов, межкластерного взаимодействия и межкластерной организации
- 75. При каких размерах кластеров начинает проявляться суперпарамагнетизм в магнитных наноструктурах?
 - 1-10 нм
 - 10-20 ни
 - 20-30 нм
 - 30-50 нм

- 76. В чем проявляется явление суперпарамагнетизма?
 - в тепловом движении магнитных кластеров
 - в тепловых флуктуациях кластеров в направлении магнитного момента
 - в движении магнитного момента кластера как целого
 - неизменности магнитного момента кластеров
- 77. Вдоль какого направления происходит ориентация магнитного момента кластера и зависит ли его величина от магнитной анизотропии?
 - вдоль оси трудного намагничивания, не зависит от магнитной анизотропии
 - вдоль оси легкого намагничивания, зависит от магнитной анизотропии
 - вдоль оси трудного намагничивания, зависит от магнитной анизотропии
 - вдоль оси легкого намагничивания, не зависит от магнитной анизотропии
- 78. В чем сходство и в чем разница магнитных характеристик парамагнитного газа молекул и магнитных нанокластеров по отношению к воздействию температуры?
 - в газе в результате тепловых флуктуаций изменяется ориентация самих молекул вместе с магнитными моментами, а магнитные нанокластеры остаются неподвижными, но меняется ориентация их магнитного момента
 - в газе в результате тепловых флуктуаций изменяется ориентация самих молекул вместе с магнитными моментами, а магнитные нанокластеры слабо сдвигаются со сменой ориентация их магнитного момента
 - в газе в результате тепловых флуктуаций изменяется ориентация самих молекул но магнитные моменты не изменяются, а магнитные нанокластеры остаются неподвижными, но меняется ориентация их магнитного момента
 - особых различий не наблюдается
- 79. Как влияет внешнее магнитное поле на намагниченность охлаждаемого суперпарамагнетика?
 - усиливает тепловые флуктуации при критической температуре
 - уменьшает тепловые флуктуации при критической температуре
 - прекращает тепловые флуктуации при критической температуре
 - сохраняет ферромагнитное упорядочение