

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет»

ИНСТИТУТ НАУКОЕМКИХ ТЕХНОЛОГИЙ И ПЕРЕДОВЫХ МАТЕРИАЛОВ

УТВЕРЖДАЮ

и.о. директора Департамента общей и экспериментальной физики

Короченцев В.В.

(и.о. Фамилия)

«28» февраля 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физика и технология квантовых приборов Направление подготовки 11.03.04 Электроника и наноэлектроника Профиль: нанотехнологии в электронике Форма подготовки: очная

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки 11.03.04 Электроника и наноэлектроника, утвержденного приказом Министерства образования и науки РФ от 19 сентября 2017 г. № 927 (с изменениями и дополнениями).

Рабочая программа обсуждена на заседании Департамента общей и экспериментальной физики, протокол № 5 от «28» февраля 2023 г.

	директора оченцев В.В.	, , .	общей	И	экспериментальной	физики:	канд.	хим.	наук,	доцент
Сост	авитель, д.ф	ом.н., професс	ор			Га	алкин I	Н.Г.		

Оборотная сторона титульного листа РПД

1. Рабочая программа рассмотрена и утверждена на заседании Департамента общей в
экспериментальной физики, протокол от «28» февраля 2023 г. № 5.
2.Рабочая программа пересмотрена на заседании департамента общей и
экспериментальной физики и утверждена на заседании департамента общей и
экспериментальной физики, протокол от «» 202 г. №
3.Рабочая программа пересмотрена на заседании департамента общей и
экспериментальной физики и утверждена на заседании департамента общей и
экспериментальной физики, протокол от «» 202 г. №
4.Рабочая программа пересмотрена на заседании департамента общей и
экспериментальной физики и утверждена на заседании департамента департамента общей
и экспериментальной физики, протокол от « » 202 г. №

АННОТАЦИЯ

Физика и технология квантовых приборов

Учебная дисциплина разработана для студентов 4 курса направления подготовки 11.03.04 «Электроника и наноэлектроника», профиль «Нанотехнологии в электронике» в соответствии с требованиями образовательного стандарта, самостоятельно устанавливаемого ДВФУ.

Общая трудоемкость освоения дисциплины составляет 4 ЗЕ (144 час.). Учебным планом предусмотрены лекции (22 часа), практика (34 часа), самостоятельная работа студента - 88 часов (в том числе 27 часов на подготовку к экзамену). Дисциплина «Физика и технология квантовых приборов» входит в вариативную часть цикла дисциплин образовательной программы (раздел — дисциплины по выбору), реализуется на 4 курсе, в 8 семестре, завершается экзаменом.

Цель. Изучение физических и технологических аспектов разработки и технологического воплощения гетеропереходных транзисторов, включая транзисторы на горячих носителях и транзисторы на квантовых эффектах.

Задачи:

- ознакомить студентов с понятийным аппаратом квантовой механики в приложении к гетеропереходным транзисторам;
- дать представление о взаимосвязи электронной структуры гетеропереходов и условий квантования электронного газа при построении гетероструктурных транзисторов, включая транзисторы на квантовых эффектах;
- сформировать представления об особенностях технологических процессах при создании квантовых приборов.

Обучающийся должен был изучить такие дисциплины, как «Физические основы электроники», «Материалы электронной техники», «Физика конденсированного состояния», «Физика полупроводников» и

«Наноэлектроника», которые способствуют сформированию следующих предварительных компетенций:

ОПК-1 способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики;

ОПК-2 способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико-математический аппарат

ОПК-7 способность учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности.

В результате изучения данной дисциплины у обучающихся формируются следующие компетенции с индикаторами достижения компетенций:

категории (группы) компетенции (результат освоения) индикатора достижения компетенции по дисциплине) Научно- исследова тельский ПК-2 Способен аргументировано выбирать и реализовывать на реализовывать на по дисциплине индикатора достижения (результата обучения по дисциплине) Знает новые научные результаты по электронике и наноэлектронике индикатора достижения (результата обучения по дисциплине) Знает новые научные результаты по электронике и наноэлектронике индикатора достижения по дисциплине) Знает новые научные результаты по электронике индикатора достижения по дисциплине) Умеет правильно ставить задачи по направлению электроники и наноэлектроники индикатора достижения (результата обучения по дисциплине)	Наименование	Код и наименование	Код и наименование	Наименование показателя
(группы) компетенций (результат достижения компетенции по дисциплине) Научно- исследова тельский ПК-2 Способен аргументировано выбирать и реализовывать на реализовывать на править и достижения компетенции по дисциплине) Знает новые научные результаты по электронике и наноэлектронике и наноэлектронике и направильно ставить задачи по направлению электроники и наноэлектроники, выбирать для исследования необходимые методы,	•	компетенции	индикатора	оценивания
Научно- исследова тельский ПК-2 Способен аргументировано выбирать и реализовывать на подисциплине) Знает новые научные результаты по электронике и наноэлектронике ПК-2.1 Выбирает методики проведения исследований параметров и характеристик компетенции по дисциплине) Знает новые научные результаты по электронике и наноэлектронике и направильно ставить задачи по направлению электроники и наноэлектроники и наноэлектроники, выбирать для исследования необходимые методы,		(результат	_	(результата обучения
исследова тельский ПК-2 Способен аргументировано выбирать и реализовывать на поэлектронике и наноэлектронике и наноэлек	компетенции	освоения)	компетенции	~ *
практике	исследова	ПК-2 Способен аргументировано выбирать и реализовывать на практике эффективную методику экспериментальног о исследования параметров и характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального	ПК-2.1 Выбирает методики проведения исследований параметров и характеристик устройств и установок электроники и наноэлектроники ПК-2.2 Проводит экспериментальные исследования характеристик приборов, схем, устройств электроники и	Знает новые научные результаты по электронике и наноэлектронике и наноэлектронике Умеет правильно ставить задачи по направлению электроники и наноэлектроники, выбирать для исследования необходимые методы, оценивать значимость результатов с точки зрения их результативности и применимости Владеет навыками применения выбранных методов к решению научных задач по электронике и наноэлектронике Знает способы простейшие методики проведения исследований параметров и характеристик устройств с квантовыми свойствами и систем на их основе для задач электроники и наноэлектроники. Умеет проводить исследования параметров квантовых приборов, схем, рассчитывать их основные

зонные диаграммы приборов электроники и наноэлектроники
Владеет технологиями и математическим аппаратом для моделирования квантовых приборов, устройств и установок электроники и наноэлектроники

Для формирования вышеуказанных компетенций в рамках дисциплины «Физика и технология квантовых приборов» применяются следующие методы активного/ интерактивного обучения:

- дискуссия;
- анализ современной научной литературы по тематике дисциплины на английском языке;
- обзорные доклады по предлагаемым тематикам и обсуждение их со студентами и преподавателем.

Цель. Изучение физических и технологических аспектов разработки и технологического воплощения гетеропереходных транзисторов, включая транзисторы на горячих носителях и транзисторы на квантовых эффектах.

Задачи:

- ознакомить студентов с понятийным аппаратом квантовой механики в приложении к гетеропереходным транзисторам;
- дать представление о взаимосвязи электронной структуры гетеропереходов и условий квантования электронного газа при построении гетероструктурных транзисторов, включая транзисторы на квантовых эффектах;
- сформировать представления об особенностях технологических процессах при создании квантовых приборов.

Обучающийся должен был изучить такие дисциплины, как «Физические основы электроники», «Материалы электронной техники», «Физика конденсированного состояния», «Физика полупроводников» и «Наноэлектроника», которые способствуют сформированию следующих предварительных компетенций:

- ОПК-1 способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики;
- ОПК-2 способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико-математический аппарат
- ОПК-7 способность учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности.

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы, характеризуют формирование следующих компетенций, индикаторов достижения компетенций:

Наименование категории (группы) компетенций	Код и наименование компетенции (результат освоения)	Код и наименование индикатора достижения компетенции	Наименование показателя оценивания (результата обучения по дисциплине)
Научно- исследова тельский	ПК-2 Способен аргументировано выбирать и реализовывать на практике эффективную	ПК-2.1 Выбирает методики проведения исследований параметров и характеристик устройств и установок электроники и наноэлектроники	Знает новые научные результаты по электронике и наноэлектронике Умеет правильно ставить задачи по направлению электроники и наноэлектроники, выбирать для исследования необходимые методы, оценивать значимость результатов с точки зрения их результативности и применимости Владеет навыками применения выбранных методов к решению научных задач по электронике и
	методику экспериментальног о исследования параметров и характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения	ПК-2.2 Проводит экспериментальные исследования характеристик приборов, схем, устройств электроники и наноэлектроники	наноэлектронике Знает способы простейшие методики проведения исследований параметров и характеристик устройств с квантовыми свойствами и систем на их основе для задач электроники и наноэлектроники. Умеет проводить исследования параметров квантовых приборов, схем, рассчитывать их основные характеристики и строить зонные диаграммы приборов электроники и наноэлектроники Владеет технологиями и математическим аппаратом для моделирования квантовых приборов, устройств и установок электроники и наноэлектроники

II. ТРУДОЁМКОСТЬ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ

Общая трудоемкость дисциплины составляет 4 зачётные единицы (144 академических часа).

Структура дисциплины:

Форма обучения – очная

			С Количество часов по видам учебных е занятий и работы обучающегося						
№	Наименование раздела дисциплины	M e c T	Лек	Лаб	Пр	ОК*	СР	Конт роль	Формы промежуточной аттестации
1	Раздел 1. Полевые и биполярные гетероструктурные транзисторы	8	6	0	10				
2	Раздел 2. Транзисторы на горячих электронах	8	4	0	6				
3	Раздел 3. Аналоговые транзисторы	8	4	0	6	0	57	27	Экзамен
4	Раздел 4. Транзисторы на квантовых эффектах	8	4	0	6				
5	Раздел 5. Транзисторы и интегральные микросхемы с наивысшим быстродействием	8	4	0	6				
	Итого:		22	0	34	0	61	27	

III. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

1. Полевые и биполярные гетероструктурные транзисторы

Гетеропереход. Селективное легирование. Двумерный электронный газ. Гетероструктурные полевые транзисторы. Полевые транзисторы на гетероструктурах AlGaAs/GaAs с селективным легированием. Обратные и

многоканальные структуры. Гетероструктурные биполярные транзисторы (ГСБТ). Гетероэмиттер. База и коллектор. Гетероструктурные биполярные транзисторы на AlGaAs/GaAs. ГСБТ на GaInAs/InP, GaInAsP/InP. Транзисторы с гетеропереходами из GaAs/Si, Ge/Si, α-Si/Si.

2. Транзисторы на горячих электронах. Спектроскопия горячих электронов. Баллистические транзисторы с планарно-легированными барьерами. Баллистические транзисторы с гетероструктурными барьерами. Транзисторы с переносом заряда в пространстве.

3. Аналоговые транзисторы

Транзисторы со статической индукцией. Транзисторы с проницаемой базой. Транзисторы с металлической базой.

4. Транзисторы на квантовых эффектах

Туннелирование и размерное квантование. Резонансное туннелирование через двойной барьер с квантовой ямой и сверхрешетку. Транзисторы с резонансным туннелированием (биполярные и полевые).

5. Транзисторы и интегральные микросхемы с наивысшим быстродействием

Транзисторы с наивысшим быстродействием. Интегральные микросхемы на сверхбыстродействующих транзисторах.

IV. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

Каждое занятие подразумевает собой проработку теоретических аспектов темы задания, работу над моментами, которые не понятны студентам и решение практических задач у доски.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1. Построение гетеропереходов в модели Андерсона и с учетом поверхностных состояний в различных гетеросистемах. Принцип селективного легирования. Двумерный

электронный и дырочный газы. Методы исследования двумерного электронного газа. Построение зонных энергетических диаграмм без и со смещением. Расчет параметров гетероструктурных полевых и гетероструктурных биполярных транзисторов (10 часов).

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 2. Построение зонных энергетических диаграмм без и со смещением. Расчет параметров транзисторов на горячих электронах (6 часа).

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 3. Построение зонных энергетических диаграмм без и со смещением. Расчет параметров аналоговых транзисторов (6 часов)

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 4. Построение зонных энергетических диаграмм без и со смещением. Построение зонных диаграмм транзисторов на квантовых эффектах (6 часов).

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 5. Анализ сверхбыстродействующих микросхем на различных типах транзисторов (6 часов).

V. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№	Контролируе-	Код и	Результаты обучения	Оценочны	е средства *
п/п	мые разделы / темы дисциплины	наименование индикатора достижения		текущий контроль	Промежу- точная аттестация
1	Разделы 1-5	ПК-2.1	Знает новые научные	УО-1	-
		Выбирает	результаты по	ПР-2	
		методики	электронике и		
		проведения	наноэлектронике.		
		исследований			
		параметров и	Умеет правильно		
		характеристик	ставить задачи по		
		устройств и	направлению		
		установок	электроники и		
		электроники и	наноэлектроники,		
		наноэлектрони	выбирать для		
		ки	исследования		
			необходимые методы,		
			оценивать значимость		
			результатов с точки		
			зрения их		
			результативности и		
			применимости.		
			Владеет навыками		

2	Экзамен	электроники и наноэлектрони ки	строить зонные диаграммы приборов электроники и наноэлектроники. Владеет технологиями и математическим аппаратом для моделирования квантовых приборов, устройств и установок электроники и наноэлектроники.	_	ПР-2
		_	диаграммы приборов	УО-1 ПР-2	-

VI. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа определяется как индивидуальная или коллективная учебная деятельность, осуществляемая без непосредственного руководства педагога, но по его заданиям и под его контролем. Самостоятельная работа — это познавательная учебная деятельность, когда последовательность мышления студента, его умственных и практических операций и действий зависит и определяется самим студентом.

Самостоятельная работа студентов способствует развитию самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровня, что в итоге приводит к развитию навыка самостоятельного планирования и реализации деятельности.

Целью самостоятельной работы студентов является овладение необходимыми компетенциями по своему направлению подготовки, опытом творческой и исследовательской деятельности.

Формы самостоятельной работы студентов:

- работа с основной и дополнительной литературой, Интернетресурсами, оригинальными научными статьями на английском языке и подготовка резюме по ним;
- самостоятельное ознакомление с лекционным материалом, представленным на электронных носителях, в библиотеке образовательного учреждения;
 - подготовка к выполнению аудиторных контрольных работ;
 - подготовка к экзамену.

Рекомендуется использовать различные возможности работы с литературой: фонды научной библиотеки ДВФУ (http://www.dvfu.ru/library/) и других ведущих вузов страны, а также доступных для использования научно-библиотечных систем.

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Физика и технология квантовых приборов» представлено ниже и включает в себя:

- план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;
- характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;
- требования к представлению и оформлению результатов самостоятельной работы;
 - критерии оценки выполнения самостоятельной работы.

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	1-3 недели семестра	Подготовка к семинарскому занятию по теме 1 и 2	4 час.	резюме статей по теме
2	4-5 неделя семестра	Подготовка к семинарскому занятию по теме 3	4 час.	контрольн ая работа
3	6-7 неделя семестра	Подготовка к семинарскому занятию по теме 4	4 час.	резюме статей по теме
4	8-9 недели семестра	Подготовка к семинарскому занятию по теме 5	4 час.	контрольн ая работа
5	10-11 недели семестра	Подготовка к семинарскому занятию по теме 6	5час.	резюме статей по теме
6	12-13 недели семестра	Подготовка к семинарскому занятию по теме 7	5 час.	контрольн ая работа
7	14 неделя семестра	Подготовка к семинарскому занятию по теме 8	5 час.	резюме статей по теме
8	15-16 неделя семестра	Подготовка устных докладов в виде презентации с рисунками и выводами на основе подготовленных резюме	5 час.	контрольн ая работа и обзорные доклады по тематике курса

Итого	34 часа	

Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Задания и методические рекомендации для самостоятельной работы обеспечивают подготовку резюме по прочитанным оригинальным статьям, контрольным работам и обзорному докладу по всем статьям в рамках тематике курса лекций «Физика и технология квантовых приборов».

Задания выдаются в виде оригинальных статей по курсу читаемых лекций, которые необходимо разобрать к семинарскому занятию и подготовить короткое резюме (2-3) страницы машинописного текста. В семестре каждому обучающемуся выдается 2 научные статьи для освоения материала и подготовки резюме по ним.

Требования к представлению резюме

Резюме по оригинальным статьям представляет краткую письменную работу с изложением сути рассматриваемой в статье проблемы. Обучаемый самостоятельно проводит анализ этой проблемы и кратко излагает их в резюме в виде выводов и сопоставляет с разобранным в ходе лекций материалов.

Резюме составляется по тематике определенных теоретических вопросов изучаемой дисциплины при использовании научной литературы. Резюме оформляется в соответствии с требованиями Правил оформления письменных работ студентами ДВФУ.

По форме резюме представляет краткое письменное сообщение, имеющее ссылки на источники литературы и краткий терминологический словарь, включающий основные термины и их расшифровку (толкование) по раскрываемой теме (вопросу).

Резюме представляется на проверку в электронном виде, исходя из условий:

- ✓ текстовый документ в формат MS Word;
- ✓ объем -2-3 компьютерные страницы 1 статье;
- ✓ объем словаря не менее 7-10 терминов на одно резюме;
- ✓ набор текста с параметрами шрифт 14, межстрочный интервал 1,5;
- ✓ формат листов текстового документа A4;
- ✓ *титульный лист* (первый лист документа, без номера страницы) по заданной форме;
- ✓ список литературы по использованным при подготовке резюме источникам, наличие ссылок в тексте резюме на источники по списку.

Критерии оценки выполнения самостоятельной работы

Оценивание резюме проводится по критериям:

- использование данных отечественной и зарубежной литературы, источников Интернет и курса лекций;
- владение методами и приемами анализа теоретических и/или практических аспектов изучаемой области;
- отсутствие фактических ошибок, связанных с пониманием проблемы.

Подготовка к контрольным работам

Подготовка к контрольным работам проводится по тематике лекций в рамках рассмотренных тем. Вопросы выносятся на контрольные работы без их предварительного обсуждения. В семестре проводится 4 контрольных работы. Преподаватель оставляет за собой право проводить короткие по времени контрольные работы (до 10 минут) с письменными ответами на 5 коротких вопросов, сформулированных в строгом соответствии с темами лекционных занятий и планом-графиком.

VII. СПИСОК ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

(электронные и печатные издания)

- 1. Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: учебное пособие для ВУЗов 3-е изд., стер. / В.В. Пасынков. СПб.: издательство «Лань», 2023. 480 с. https://lanbook.com/catalog/inzhenerno-tekhnicheskie-nauki/poluprovodnikovye-
- https://lanbook.com/catalog/inzhenerno-tekhnicheskie-nauki/poluprovodnikovye-pribory/
- 2. Щука, А. А. Наноэлектроника: учебное пособие [Электронный ресурс] / А. А. Щука; под ред. А. С. Сигова. 5-е изд., электрон. М.: Лаборатория знаний, 2020. 345 с. (Нанотехнологии). URL: https://znanium.com/catalog/product/1094369 Режим доступа: по подписке.
- 3. Гольдин, Л. Л. Квантовая физика. Вводный курс: учебное пособие [Электронный ресурс] / Л. Л. Гольдин, Г. И. Новикова. 3-е изд. Долгопрудный : Издательский Дом «Интеллект», 2019. 480 с. URL: https://znanium.com/catalog/product/1117881 Режим доступа: по подписке.
- 4. Игнатов, А. Н. Оптоэлектроника и нанофотоника [Электронный ресурс] / А. Н. Игнатов. М.: Издательство «Лань», 2017. 596 с. Режим доступа: https://e.lanbook.com/book/95150
- 5. Ландау, Л. Д. Теоретическая физика: учебное пособие для вузов: в 10 т. Том 9. Статистическая физика. Теория конденсированного состояния. Часть 2 [Электронный ресурс] / Л. Д. Ландау, Е. М. Лифшиц; под. ред. Л. П. Питаевского. 5-е изд., испр. М.: ФИЗМАТЛИТ, 2018. 440 с. URL: https://znanium.com/catalog/product/1223535 Режим доступа: по подписке.
- 6. Барыбин, А. А. Физико-технологические основы макро-, микро- и наноэлектроники: учебное пособие для вузов / А. А. Барыбин, В. И. Томилин, В. И. Шаповалов; под общ. ред. А. А. Барыбина. М.: Физматлит, 2011, -783 c. https://lib.dvfu.ru:8443/lib/item?id=chamo:675441&theme=FEFU

7. Воротынцев, В. М. Базовые технологии микро- и наноэлектроники: учебное пособие / В. М. Воротынцев, В. Д. Скупов. - М.: Проспект, 2018. — 520 с. – Режим доступа: http://biblioclub.ru/index.php?page=book&id=469679

Дополнительная литература

- 1. Бобылев, Ю. Н. Физические основы электроники: Учебное пособие / Ю. Н. Бобылев. М.: Изд-во Московского государственного горного университета, 2005. 290 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:359536&theme=FEFU
- 2. Раков, Э. Г. Неорганические наноматериалы: учебное пособие [Электронный ресурс] / Э. Г. Раков. 3-е изд., электрон. М.: Лаборатория знаний, 2020. 480 с. (Нанотехнологии). URL: https://znanium.com/catalog/product/1094379 Режим доступа: по подписке
- 3. Головин, Ю. И. Основы нанотехнологий / Ю И. Головин. М.: Изд. "Машиностроение", 2012, 656 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=5793
- 4. Гусев, А. И. Наноматериалы, наноструктуры, нанотехнологии / А. И. Гусев. М.: Физматлит, 2009. 416 с. Режим доступа: http://www.iprbookshop.ru/12979.html
- 5. Драгунов, В. П. Микро- и наноэлектроника. Учебное пособие для ВУЗов / В. П. Драгунов, Д. И. Остертак Новосибирск: НГТУ, 2012. 38 с. Режим доступа: http://www.iprbookshop.ru/45107.html
- 6. Метрологическое обеспечение нанотехнологий и продукции наноиндустрии : учебное пособие [Электронный ресурс] / О. Д. Анашина, С. Е. Андрюшечкин, С. И. Аневский [и др.] ; под. ред. В. Н. Крутикова. М.: Логос, 2020. 592 с. URL: https://znanium.com/catalog/product/1212442 Режим доступа: по подписке.

- 7. Основы нано- и функциональной электроники: учебное пособие / Ю. А. Смирнов, С. В. Соколов, Е. В. Титов. Санкт-Петербург: Лань, 2013. 310 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:727638&theme=FEFU
- 8. Суздалев, И. П. Нанотехнология. Физико-химия нанокластеров, наноструктур и наноматериалов / И. П. Суздалев. М.: Либроком, 2013. 592 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:242083&theme=FEFU
- 9. Физика полупроводников и полупроводниковые приборы: Учебное пособие / Н. Н. Панюшкин Воронеж :ВГЛТУ им. Г.Ф. Морозова, 2015. 131 с. Режим доступа: http://znanium.com/catalog/product/858616
- 10. Щелкачёв, Н. М. Электрический ток в наноструктурах: кулоновская блокада и квантовые точечные контакты: Учебно-методическое пособие / Н. М. Щелкачёв, Я. В. Фоминов. М.: МФТИ, 2010. 39 с. Режим доступа: http://window.edu.ru/resource/539/73539

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Нанотехнологии в России http://www.nanonewsnet.ru
- 2. Российский электронный наножурнал http://www.nanorf.ru
- 3. Проект о современной фундаментальной науке «ПостНаука» http://postnauka.ru
- 4. Нанотехнологическое общество «Нанометр» http://www.nanometer.ru

Перечень информационных технологий и программного обеспечения

При осуществлении образовательного процесса студентами и профессорско-преподавательским составом используется следующее программное обеспечение: Microsoft Teams, Microsoft Office (Power Point, Word), Blackboard Learn, программное обеспечение сервисов сайта ДВФУ, включая ЭБС ДВФУ.

Информационно справочные системы и профессиональные базы данных:

- 1. ЭБС ДВФУ https://www.dvfu.ru/library/electronic-resources/
- 2. Электронная библиотечная система «Лань»: https://e.lanbook.com/
- 3. Электронная библиотечная система «Консультант студента»: http://www.studentlibrary.ru
- 4. Электронная библиотечная система «eLIBRARY.RU»: http://www.elibrary.ru/
 - 5. Электронная библиотечная система «Юрайт»: http://www.urait.ru/ebs
 - 6. Электронная библиотечная система «Znanium»: http://znanium.com/
 - 7. Электронная библиотечная система IPRbooks: http://iprbookshop.ru/
- 8. Электронная библиотека диссертаций Российской государственной библиотеки http://diss.rsl.ru/
 - 9. База данных Scopus http://www.scopus.com/home.ur01
 - 10. База данных Web of Science http://apps.webofknowledge.com/
- 11. Информационная система "ЕДИНОЕ ОКНО доступа к образовательным ресурсам" http://window.edu.ru/
- 12. Доступ к электронному заказу книг в библиотеке ДВФУ http://lib.dvfu.ru:8080/search/query?theme=FEFU

VIII. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Успешное освоение дисциплины предполагает активную работу студентов на всех занятиях аудиторной формы: лекциях и практиках, выполнение аттестационных мероприятий. В процессе изучения дисциплины студенту необходимо ориентироваться на проработку лекционного материала, подготовку к практическим занятиям, выполнение контрольных работ и резюме по научным статьям в рамках тематики лекций.

Освоение дисциплины « Физика и технология квантовых приборов»

предполагает рейтинговую систему оценки знаний студентов И предусматривает стороны преподавателя текущий контроль co за студентами лекций, подготовкой выполнением посещением И всех практических заданий, выполнением всех видов самостоятельной работы.

Промежуточной аттестацией по дисциплине « Физика и технология квантовых приборов» является экзамен.

Студент считается аттестованным по дисциплине при условии выполнения всех видов текущего контроля и самостоятельной работы, предусмотренных учебной программой.

Шкала оценивания сформированности образовательных результатов по дисциплине представлена в фонде оценочных средств (ФОС).

IX. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебные занятия по дисциплине проводятся в помещениях, оснащенных соответствующим оборудованием и программным обеспечением.

Перечень материально-технического и программного обеспечения дисциплины приведен в таблице.

Материально-техническое и программное обеспечение дисциплины

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
690922, Приморский край, г. Владивосток, остров Русский, полуостров Саперный, поселок Аякс, 10, корпус А, ауд. — 1042. Аудитория для самостоятельной работы студентов	Моноблок Lenovo C360G- i34164G500UDK — 115 шт.; Интегрированный сенсорный дисплей Polymedia FlipBox; Копир-принтер-цветной сканер в e-mail с 4 лотками Xerox WorkCentre 5330 (WC5330C; Полноцветный копир-принтер-сканер Xerox WorkCentre 7530 (WC7530CPS Оборудование для инвалидов и лиц с ограниченными возможностями здоровья: Дисплей Брайля Focus-40 Blue — 3 шт.; Дисплей Брайля Focus-80 Blue;	Місгоѕоft Windows 7 Pro MAGic 12.0 Pro, Jaws for Windows 15.0 Pro, Open book 9.0, Duxbury BrailleTranslator, Dolphin Guide (контракт № A238-14/2); Неисключительные права на использование ПО Місгоѕоft рабочих станций пользователей (контракт ЭА-261-18 от 02.08.2018): - лицензия на клиентскую операционную систему; - лицензия на пакет офисных продуктов для работы с документами включая формат.docx , .xlsx , .vsd , .ptt.; - лицензия на право подключения пользователя к серверным

	n c i milita	Г
	Рабочая станция Lenovo ThinkCentre	операционным системам,
	E73z-3	используемым в ДВФУ:
	шт.; Видео увеличитель ONYX	Microsoft Windows Server
	Swing-Arm	2008/2012; - лицензия на право
	PC edition; Маркер-диктофон Touch	подключения к серверу Microsoft
	Memo	Exchange Server Enterprise; -
	цифровой; Устройство портативное	лицензия па право подключения к
	для чтения плоскопечатных текстов	внутренней информационной
	PEarl; Сканирующая и читающая	системе документооборота и
	машина для незрячих и	порталу с возможностью поиска
	слабовидящих пользователей SARA;	информации во множестве
	Принтер Брайля Emprint SpotDot - 2	удаленных и локальных
	шт.; Принтер	хранилищах, ресурсах, библиотеках
	Брайля Everest - D V4; Видео	информации, включая портальные
	увеличитель	хранилища, используемой в ДВФУ:
	ONYX Swing-Arm PC edition; Видео	Microsoft SharePoint; - лицензия на
	увеличитель Торах 24" XL	право подключения к системе
	стационарный электронный;	централизованного управления
	Обучающая система для детей	рабочими станциями, используемой
	тактильно-речевая, либо для людей	в ДВФУ: Microsoft System Center.
	с ограниченными возможностями	
	здоровья; Увеличитель ручной	
	видео RUBY портативный – 2	
	шт.; Экран Samsung S23C200B;	
	Маркер-диктофон Touch Memo	
	цифровой.	
690922, Приморский край,	Лекционные аудитории,	
г. Владивосток, остров	оснащенные проектором, экраном	
Русский, полуостров	для проецирования изображения	
1 2	проектора, двусторонней доской для	
Саперный, поселок Аякс,	маркеров и мела.	
10, корпус L,		
аудитории для лекционных		
и практических занятий.		