

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ	НАУКОЁМКИХ ТЕХІ	нологий и передовых материалов
«СОГЛАСОВАНО»		«УТВЕРЖДУЮ»Щ
Руковедитель ОП	F	Директор департамента до 2
(подпись)	Голик С.С. (Ф.И.О.)	(nonuncia) Koponeinte B.B.
		10 3 Min 30 00 5
« <u>12</u> » 02	2021 г.	« <u>12</u> » (де (де 2021 г.
		РАММА ДИСЦИПЛИНЫ
		ядра и элементарных частиц
	-	дготовки 03.03.02 Физика
	•	ная и прикладная физика
	Форма 1	подготовки очная
всего часов аудиторной в том числе с использо самостоятельная работ в том числе на подгото контрольные работы (курсовая работа / курсовая работа / курсовачет 6 семестр экзамен 6 семестр	ванием МАО лек	ас. <u>отрены</u> <u>отрен</u>
образовательного стан	дарта по направлению	твии с требованиями Федерального государственного подготовки 03.03.02 Физика, утвержденного приказом Российской Федерации от 07 августа 2020 г. №891.
Рабочая программа об	суждена на заседании д	департамента общей и экспериментальной физики
протокол № <u>1</u> от «	05 » 02	г.
Директор департамент	а к.х.н., доцент, Кор	очениев В В
Составитель (ли):	к.фм.н. доцент Ра	

Владивосток

Оборотная сторона титульного листа РПД

г. Раоочая программа п	ересмотрена на заседани	и кафедры/департамента:
Протокол от «»	20г.	№
Заведующий кафедрой		
	(подпись)	(И.О. Фамилия)
П. Рабочая программа і	пересмотрена на заседан	ии кафедры/департамента
Протокол от «»	20 г.	№
, , , , , , , , , , , , , , , , , , ,	(подпись)	(И.О. Фамилия)
Протокол от «»	20г.	
Заведующий кафедрой _	(подпись)	(H O &
	(подпись)	(и.о. Фамилия)
IV. Рабочая программа	пересмотрена на заседан	нии кафедры/департамента
Протокол от «»	20 г.	№
Заведующий кафедрой		
	(подпись)	(И.О. Фамилия)

Цель курса «Прикладная ядерная физика» заключается в обеспечении подготовки в области методов и средств количественного определения характеристик полей ионизирующих излучений, формируемых различными источниками.

Задачи:

- изучение основных представлений об атомном ядре, его распаде и радиоактивном излучении;
- изучение факторов воздействия ионизирующего излучения на вещество и биоту;
 - ознакомление с основными видами радиационной защиты;
- формирование понимания правил работы с источниками ионизирующего излучения;
 - формирование понимания принципов дозиметрии.

В результате изучения данной дисциплины у обучающихся формируются следующие компетенции (элементы компетенций):

Наименование категории (группы) общепрофессиональных компетенций	Код и наименование общепрофессиональной компетенции (результат освоения)	Код и наименование индикатора достижения компетенции
Научное мышление	ПК-1 Способен использовать специализированные знания в области физики, а также стандартные программные средства компьютерного моделирования для освоения профильных физических дисциплин	ПК -1.1 Анализирует способы определения видов и типов профессиональных задач, структурирования задач различных групп ПК -1.2 Выбирает наиболее эффективные методы решения основных типов задач, встречающихся в физике

Код и наименование индикатора	Наименование показателя оценивания
достижения компетенции	(результата обучения по дисциплине)
ПК -1.1 Анализирует способы определения видов и типов профессиональных задач, структурирования задач различных групп	Знает методы поиска возможных вариантов решения поставленных экспериментальных и теоретических задач. Умеет формулировать в рамках поставленной цели проекта совокупность взаимосвязанных задач, обеспечивающих ее достижение. Владеет методами определения ожидаемых результатов решения выделенных задач, оценивания их достоинств и недостатков.
ПК -1.2	Знает основные методы и средства проведения экспе-
Выбирает наиболее эффектив-	риментальных исследований и измерений, основные

Код и наименование индикатора	Наименование показателя оценивания
достижения компетенции	(результата обучения по дисциплине)
ные методы решения основных	приемы обработки и представления полученных дан-
типов задач, встречающихся в	ных.
физике	Умеет самостоятельно выбирать способы и средства
	измерений и проводить экспериментальные исследо-
	вания.
	Владеет способами обработки и представления полу-
	ченных экспериментальных данных и оценки погреш-
	ности результатов измерений

Для формирования вышеуказанных компетенций в рамках дисциплины «Введение в прикладную ядерную физику» применяются следующие методы активного / интерактивного обучения: работа в малых группах, обсуждение.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Раздел I. Ионизирующее излучение (13 час.)

Тема 1. Явление радиоактивности (1час.)

Открытие радиоактивности. Опыты Беккереля. Работы П. Кюри и М. Склодовской-Кюри.

Тема 2. Закон радиоактивного распада (2 час.)

Опыты Э. Резерфорда. Альфа-, бета-, гамма-излучения. Закон радиоактивного распада (формула Резерфорда), формулировка Швейдлера.

Тема 3. Атомное ядро. Состав ядер (2 час.)

Открытие атомного ядра. Эксперименты Э. Резерфорда – открытие ядра. Опыт Чедвика открытие нейтрона. Протон-нейтронная модель ядра. Изотопы, изобары, изотоны.

Тема 4. Характеристика атомных ядер (2 час.)

Дефект массы, энергия связи атомных ядер. Деление и синтез атомных ядер.

Тема 5. Радиоактивный распад (3 час.)

Альфа-распад, реакция α -распада, характеристики α -распада. Бета-распад, реакция β -распада, условия β -распада, характеристики β -распада. Гамма излучение атомных ядер. Условия γ -распада.

Тема 6. Взаимодействие заряженных частиц (2 час.)

Взаимодействие α-частиц. Кривая Брэгга. Взаимодействие β-частиц. Закон поглощения, слой половинного ослабления

Тема 7. Взаимодействие гамма квантов (1 час.)

Взаимодействие гамма квантов с веществом. Закон поглощения, линейный коэффициент поглощения.

Раздел II. Радиоактивность внешней среды (23 час.)

Тема 8. Естественная радиоактивность (2 час.)

Радиоактивные изотопы естественного происхождения. Источники естественного фонового облучения: радиоактивные семейства, радионуклиды вне пределов семейств, космогенные радионуклиды; космическое излучение.

Естественная радиоактивность горных пород, почвы, атмосферы, гидросферы, биоты, человека. Природный радиационный фон. Спектральные характеристики изотопов естественного происхождения.

Тема 9. Радиоактивные выпадения (2 час.)

Радиоактивные изотопы (РАИ) техногенного происхождения. Основные этапы ядерного топливного цикла и источники радиоактивного загрязнения при нормальной эксплуатации его объектов. Последствия аварийных ситуаций. Основные спектральные характеристики техногенных изотопов.

Тема 10. Распространение РАИ во внешней среде (1 час.)

Специфика распространение радионуклидов во внешней среде. Выпадение радионуклидов на поверхность почвы. Перенос примесей в гидросфере. Процессы миграции радионуклидов в гидросфере. Особенности миграции радионуклидов в морских и пресных водоемах. Перенос примесей в атмосфере.

Тема 11. Получение радиоактивных изотопов (2 час.)

Активационные методы получение радиоактивных изотопов. Уравнение активации. Сечение активации. Время активации и время остывания.

Тема 12. Метод радиоактивных индикаторов (2 час.)

Метод изотопного разбавления. Метод радиоактивных индикаторов.

Тема 13. Отбор проб во внешней среде (1 час.)

Способы отбора проб. Отбор и обработка проб почвы, гидросферы (морская, пресная среда), воздуха.

Тема 14. Методы низкофоновых измерений (2 час.)

Методы защиты – снижения фона радиометрических установок. Пассивные методы защиты. Материалы для пассивной защиты. Расчёт эффективности защиты. Активные методы защиты.

Тема 15. Счётные методы измерения характеристик ионизирующих излучений (2 час.)

Счётчики Гейгера-Мюллера. Измерение активности при помощи счётчиков Гейгера-Мюллера.

Тема 16. Спектрометрические методы измерения характеристик ионизирующих излучений (2 час.)

Сцинтилляционные спектрометры. Измерение энергии излучений при помощи сцинтилляционных спектрометров. Рентгенорадиометрический метод анализа элементного состава проб. Метод промежуточных мишеней.

Тема 17. Биологическое воздействие ионизирующих излучений (3 час.)

Воздействие ионизирующих излучений на биологические объекты. Биохимические механизмы воздействия. Генетические последствия воздействия ионизирующего излучения.

Тема 18. Дозиметрия ионизирующих излучений (4 час.)

Основные понятия дозиметрии. Понятие дозы. Единицы измерения. Методы измерения доз. Дозовые нагрузки: профессиональные, на население. Дозовые нагрузки: категории A, B, на население. Дозовые нагрузки на население при использовании излучений в медицине.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Практические занятия (18 час.)

Занятие 1. Радиоэкология – раздел прикладной ядерной физики (2 час.) Интерактивная форма: *обсуждение*

- 1. Ознакомление с экспериментальными методами регистрации спектров радионуклидов в окружающей среде и оценки дозовых нагрузок на население при выбросах и сбросах радионуклидов.
- 2. Анализ источников радиации в биосфере и радиоактивного загрязнения окружающей среды при использовании искусственных источников радиации.

Занятие 2. Спектрометрия «фантомов» проб внешней среды (4 час.) Активная форма: *работа в малых группах*

1. Приёмы работы на низкофоновых гамма-, бета- спектрометрах.

Занятие 3. Спектрометрия проб внешней среды (6 час.)

- 1. Изучение способов измерения спектров проб внешней среды на низкофоновых гамма-спектрометрах.
- 2. Изучение способов измерения спектров проб внешней среды на низкофоновых бета-спектрометрах.

Занятие 4. Математическая обработка спектров (2 час.) Активная форма: *работа в малых группах*

1. Методы математической обработки спектров.

Занятие 5. Расчёт характеристик спектрометров (2 час.)

Активная форма: работа в малых группах

1. Расчёт калибровок по энергии, эффективности, разрешению.

Занятие 6. Определение и расчёт удельной активности проб (2 час.) Активная форма: работа в малых группах

1. Расчёт удельной активности проб с поправками на самопоглощение.

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Прикладная ядерная физика» представлено в Приложении 1 и включает в себя:

- план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;
- характеристика заданий для самостоятельной работы студентов и методические рекомендации по их выполнению;
- требования к представлению и оформлению результатов самостоятельной работы;
 - критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

No	Контролируемые	Кодн	ы и этапы	Оценочные	средства
Π/Π	разделы / темы	формирования		текущий контроль	промежуточная
	дисциплины	компетенций			аттестация
1	Раздел I. Ионизирующее	ПК -1.1	знает	Собеседование (УО-1)	Вопросы к эк- замену № 1-6.
	излучение		умеет	Собеседование (УО-1)	
			владеет	Контрольная работа (ПР-2)	
2	Раздел II.	ПК -1.1	знает	Собеседование (УО-1)	Вопросы к эк- замену № 7-15.
	Радиоактивность внешней среды		умеет	Собеседование (УО-1)	
			владеет	Контрольная работа (ПР-2)	

	ПК -1.2	знает	Собеседование (УО-1)	Вопросы к эк- замену № 16-
		умеет	Собеседование (УО-1)	19.
		владеет	Контрольная работа (ПР-2)	

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

(электронные и печатные издания)

1. Вартанов, А. 3. Методы и приборы контроля окружающей среды и экологический мониторинг [Электронный ресурс] : учеб.-метод. пособие / Вартанов А. 3., Рубан А. Д., Шкуратник В. Л. – М.: Издательство «Горная книга», 2009. – 640 с.

ЭБС «Elanbook.com»:

https://e.lanbook.com/book/1494

2. Шульгин, Б. В. Новые детекторные материалы и устройства [Электронный ресурс] : монография / Шульгин Б. В., Черепанов А. Н., Шульгин Д. Б. – М.: Физматлит, 2009. – 360 с.

ЭБС «Elanbook.com»:

https://e.lanbook.com/book/59528

3. Алиев, Р. А. Радиоактивность [Электронный ресурс] : учеб. пособие / Алиев Р. А., Калмыков С. Н. – СПб.: Лань, 2013. – 304 с.

ЭБС «Elanbook.com»:

https://e.lanbook.com/book/4973

Дополнительная литература

(печатные и электронные издания)

1. Сивухин, Д. В. Общий курс физики Том 5 Атомная и ядерная физика [Текст] : учеб. пособие / Сивухин Д. В. – М. : Физматлит, 2002. – 784 с.

ЭБС «Elanbook.com»:

https://e.lanbook.com/book/2315

2. Мухин, К. Н. Экспериментальная ядерная физика. В 3-х тт. Т. 1. Физика атомного ядра [Текст] : учеб. / Мухин К. Н. – СПб. : Лань, 2009. – 384 с.

ЭБС «Elanbook.com»:

https://e.lanbook.com/book/277

3. 3. Черняев, А.П. Взаимодействие ионизирующего излучения с веществом [Элекстронный ресурс] : учеб. пособие / Черняев А. П. – М. : Физматлит, 2004. – 152 с.

ЭБС «Elanbook.com»:

https://e.lanbook.com/book/59340

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Не предусмотрены.

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

В рамках данной дисциплины предусмотрено 90 часов самостоятельной работы, которая необходима при проработке материала лекции, выполнения домашних заданий, подготовке к написанию контрольной работы, экзамену.

В самостоятельную работу по дисциплине «Введение в прикладную ядерную физику» включены следующие виды деятельности:

- поиск информации по темам для самостоятельного изучения;
- разбор теоретических аспектов практических работ;
- подготовка к текущему и промежуточному контролю.

Студенту следует тщательно планировать и организовывать время, необходимое для изучения дисциплины. Недопустимо откладывать ознакомление с теоретической частью и выполнение домашних заданий, поскольку это неминуемо приведет к снижению качества освоения материала. Все виды работ по дисциплине рекомендуется выполнять по календарному плану, приведенному в приложении 1.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для осуществления образовательного процесса по дисциплине «Введение в прикладную ядерную физику» на лекциях используется мультимедийное оборудование: ноутбук, проектор, экран.

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения, неделя	Вид самостоятельной работы	Примерные нормы времени на выполнение, час	Форма кон- троля
1	1	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
2	2	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
3	3	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
4	4	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
5	5	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
6	6	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
7	7	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
8	8	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
9	9	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
10	10	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
11	11	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
12	12	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
13	13	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
14	14	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
15	15	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
16	16	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
17	17	Работа с конспектами лекций и литературой.	2,5	Собеседование (УО-1)
18	18	Работа с конспектами лекций и литературой.	2,5	Контрольная работа (ПР-2)
19	15-18	Подготовка к экзамену.	45	Экзамен

Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Самостоятельная работа необходима при проработке материала лекции, подготовке к контрольной работе, экзамену.

В самостоятельную работу по дисциплине «Введение в прикладную ядерную физику» включены следующие виды деятельности:

- поиск информации по темам для самостоятельного изучения;
- подготовка к промежуточному и итоговому контролю.

Для закрепления навыков и знаний студента, ему в течение курса выдаётся домашнее задание.

Студенту следует тщательно планировать и организовывать время, необходимое для изучения дисциплины. Недопустимо откладывать ознакомление с теоретической частью и выполнение домашних заданий, поскольку это неминуемо приведет к снижению качества освоения материала. Все виды работ по дисциплине рекомендуется выполнять по календарному плану, приведенному в Плане-графике выполнения самостоятельной работы по дисциплине.

Домашние задания.

- 1. Явление радиоактивности.
 - 1.1 Основные виды радиоактивности
 - 1.2 Закон радиоактивного распада
- 2. Взаимодействие излучения с веществом
 - 2.1 Альф-излучение
 - 2.2 Бета-излучение
 - 2.3 Гамма-излучение
- 3. Методы прикладной ядерной физики
 - 3.1 Ядерная хронология. Радиоуглерод С14. Масс-спектрометрия.
 - 3.2 Дефектоскопия
 - 3.3 Определение элементарного состава вещества
 - 3.4 Ядерная медицина
 - 3.5 Системы безопасности
 - 3.6 Системы досмотра
 - 3.7 Изотопные источники.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Паспорт ФОС

Код и формулировка компетенции		Этапы формирования компетенции				
ПК -1.1	Знает	природные и искусственные источники радиации и состав излучений; основные экологические проблемы ядернотопливного цикла.				
	Умеет	использовать научно-техническую информацию.				
	Владеет	современными компьютерными технологиями; навыками использования баз данных в своей предметной области.				
	Знает	основные методы теоретического и экспериментального исследования; природные и искусственные источники радиации и состав излучений.				
ПК -1.2	Умеет	использовать основные законы естественнонаучных дисциплин в профессиональной деятельности; рассчитывать действие радиационного излучения на живые организмы.				
	Владеет	методами математического анализа и моделирования; методами спектрального анализа радиационной обстановки.				

No	Контролируемые	Кодь	ы и этапы	Оценочные средства		
п/п	разделы / темы	формирования		текущий контроль	промежуточная	
	дисциплины	КОМІ	тетенций		аттестация	
1	Раздел I.	ПК -1.1	знает	Собеседование	Вопросы к эк- замену № 1-6.	
	Ионизирующее		умеет	(УО-1)		
	излучение	излучение владеет		Контрольная работа (ПР-2)		
2	Раздел II.	ПК -1.1	знает	Собеседование	Вопросы к эк-	
	Радиоактивность		умеет	(УО-1) замен	замену № 7-15.	
	внешней среды		владеет	Контрольная работа (ПР-2)		
		ПК -1.2	знает	Cocoooooooo	Вопросы к эк-	
			умеет	(УO-1)	замену № 16- 19.	
			владеет	Контрольная работа (ПР-2)		

Шкала оценивания уровня сформированности компетенций

Код и формулировка компетенции	Этапы формирования компетенции		критерии	показатели
ПК -1.1	знает (поро- говый уро- вень)	овый уро- ень) нии; основные эко- логические проблемы ядерно- топливного цикла.		Способность перечислить источники радиации, экологические проблемы ЯТЦ
	умеет (про- двинутый)	использовать научно- техническую информацию.	самостоятельно организует поиск информации в области профессиональной деятельности	Способность представить на- учно-техническую информа- цию в области профессио- нальных знаний
	владеет (вы- сокий)	современными компьютер- ными техноло- гиями; навыками использования баз данных в своей предметной области.	способность про- анализировать полученные и об- работанные ре- зультаты собст- венных исследо- ваний	Способность представить самостоятельно полученные и обработанные результаты
ПК -1.2	знает (поро-	основные ме-	понимание окру-	способность объяснять раз-

говый уро- вень)	тоды теоретического и экспериментального исследования; природные и искусственные источники радиации и	жающего мира и явлений природы с точки зрения основных естественнонаучных законов.	личные природные явления на основании знания законов ядерного распада, истоников радиации .
	состав излуче-		
умеет (про- двинутый)	ний. использовать основные законы естественнонаучных дисциплин в профессиональной деятельности; рассчитывать действие радиационного излучения на живые организмы.	понимание окружающего мира и явлений природы с точки зрения основных естественнонаучных законов.	умение объяснять большинство различных явлений природы на основании знания законов естественно научных дисциплин; способность освоить методику расчета интенсиност действия радиационного изучения
владеет (вы- сокий)	методами математического анализа и моделирования; методами спектрального анализа радиационной обстановки.	Проведение расчетов в области радиоактивного распада и интенсивности излучений	Способность провести расчеты с использованием методов математического анализа

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Промежуточная и «Прикладная ядерная физика» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

По результатам выполнения всех проверочных работ, сдачи всех отчетных работ студент получает допуск к экзамену.

Оценочные средства для промежуточной аттестации

1. Вопросы к экзамену

- 1. Процессы и основные закономерности ЯФ.
- 2. Атомное ядро. Состав ядер.
- 3. Основные типы радиоактивного распада.
- 4. Типы радиоактивных превращений.
- 5. Взаимодействие ИИ с веществом.
- 6. Радиоактивность внешней среды.
- 7. Естественная радиоактивность.

- 8. Радиоактивные выпадения.
- 9. Оценка радионуклидного загрязнения окружающей среды при хранении и захоронении ОЯТ и РАО.
- 10. Активационные методы получение радиоактивных изотопов.
- 11. Уравнение активации.
- 12. Сечение активации. Время активации и время остывания.
- 13. Методы низкофоновых измерений.
- 14. Счётные и спектрометрические методы измерения характеристик ионизирующих излучений.
- 15. Воздействия радиации на биоту и человека.
- 16. Понятие дозы. Единицы измерения. Методы измерения доз.
- 17. Дозовые нагрузки: категории А, В, на население.
- 18. Дозовые нагрузки на население при использовании излучений в медицине.

2. Пример экзаменационного билета

Билет №1

Задание 1

Основные типы радиоактивного распада.

Задание 2

Понятие дозы. Единицы измерения. Методы измерения доз.

Критерии оценки к экзамену

Отметка "Отлично"

- 1. Дан полный и правильный ответ на основе самостоятельно изученного материала и проведенных ранее лабораторных и практических работ.
 - 2. Материал понят и изучен.
- 3. Материал изложен в определенной логической последовательности, литературным языком.
 - 4. Ответ самостоятельный.

Отметка "Хорошо"

- 1, 2, 3 аналогично отметке "Отлично".
- 5. Допущены 2-3 несущественные ошибки, исправленные по требованию преподавателя, наблюдалась "шероховатость" в изложении материала.

Отметка "Удовлетворительно"

1. Учебный материал, в основном, изложен полно, но при этом допущены 1-2 существенные ошибки.

2. Ответ неполный, хотя и соответствует требуемой глубине, построен несвязно.

Отметка "Неудовлетворительно"

- 1. Незнание или непонимание большей или наиболее существенной части учебного материала.
- 2. Допущены существенные ошибки, которые не исправляются после уточняющих вопросов, материал изложен несвязно.

Оценочные средства для текущей аттестации

Текущая аттестация по дисциплине «Прикладная ядерная физика» проводится в форме контрольных мероприятий по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Контрольная работа Вариант 1

Активность препарата 32Р равна 2 мкКи. Сколько весит такой препарат?

Вариант2

Сколько ядер урана-235 должно делиться в 1 сек для получения мощсти в 1 Вт?

Критерии оценки контрольных работ

Оценка	Описание схемы оценивания		
5	Демонстрирует полное понимание вопроса. Все требования,		
	предъявляемые к заданию выполнены. Задачи решены		
	полностью, приведены все этапы решения задачи.		
4	Демонстрирует значительное понимание проблемы. Все		
	требования, предъявляемые к заданию выполнены. Задачи		
	решены полностью, не все этапы решения задачи приведены,		
	может содержать незначительные ошибки.		
3	Демонстрирует частичное понимание проблемы.		
	Большинство требований, предъявляемых к заданию		
	выполнены. Задачи в большей степени решены.		
2	Демонстрирует непонимание проблемы. Нет ответа. Не		
	было попытки решить задачу.		

Аннотация рабочей программы дисциплины

«Физика атомного ядра и элементарных частиц»

Рабочая программа учебной дисциплины «Физика атомного ядра и элементарных частиц» разработана для студентов 3 курса очной формы обучения направления подготовки для студентов направления подготовки 03.03.02 «Физика», профиль «Фундаментальная и прикладная физика» в соответствии с требованиями федерального государственного стандарта высшего образования.

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа. Учебным планом предусмотрены лекционные занятия (36 час.) и практические занятия (36 час.), лабораторные работы (18 час.) самостоятельная работа 18 час., 36 часов отведены на подготовку к экзамену). Дисциплина «Физика атомного ядра и элементарных частиц» относится к обязательной части учебного плана, реализуется в 6 семестре 3 курса.

При освоении данной дисциплины необходимы знания, умения обучающегося, приобретенные в результате освоения курсов: «Математика», «Основы математического анализа», «Математический анализ», «Физический практикум», «Механика, электричество и магнетизм».

Дисциплина «Введение в прикладную ядерную физику» охватывает ряд основополагающих вопросов ядерной физики. Рассматриваются строение ядра, учение о радиоактивном распаде, взаимодействие радиоактивных излучений с веществом и основные принципы и методы измерения радиоактивных излучений.

Цель курса «Прикладная ядерная физика» заключается в обеспечении подготовки в области методов и средств количественного определения характеристик полей ионизирующих излучений, формируемых различными источниками.

Задачи:

- изучение основных представлений об атомном ядре, его распаде и радиоактивном излучении;
- изучение факторов воздействия ионизирующего излучения на вещество и биоту;
 - ознакомление с основными видами радиационной защиты;
- формирование понимания правил работы с источниками ионизирующего излучения;
 - формирование понимания принципов дозиметрии.

В результате изучения данной дисциплины у обучающихся формируются следующие компетенции (элементы компетенций):

Наименование категории (группы) общепрофессиональных компетенций	Код и наименование общепрофессиональной компетенции (результат освоения)	Код и наименование индикатора достижения компетенции
Научное мышление	ПК-1 Способен использовать специализированные знания в области физики, а также стандартные программные средства компьютерного моделирования для освоения профильных физических дисциплин	ных групп ПК -1.2 Выбирает наиболее эффективные ме-

Код и наименование индикатора	Наименование показателя оценивания		
достижения компетенции	(результата обучения по дисциплине)		
ПК -1.1 Анализирует способы определения видов и типов профессиональных задач, структурирования задач различных групп	Знает методы поиска возможных вариантов решения поставленных экспериментальных и теоретических задач. Умеет формулировать в рамках поставленной цели проекта совокупность взаимосвязанных задач, обеспечивающих ее достижение. Владеет методами определения ожидаемых результатов решения выделенных задач, оценивания их достоинств и недостатков.		
ПК -1.2 Выбирает наиболее эффективные методы решения основных типов задач, встречающихся в физике	Знает основные методы и средства проведения экспериментальных исследований и измерений, основные приемы обработки и представления полученных данных. Умеет самостоятельно выбирать способы и средства измерений и проводить экспериментальные исследования. Владеет способами обработки и представления полученных экспериментальных данных и оценки погрешности результатов измерений		