

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет»

(ДВФУ) институт математики и компьютерных технологий

СОГЛАСОВАНО Руководитель ОП

(подпись) Сущенко А.А. (ФИО)

УТВЕРЖДАЮ/

Заведующий кафедрой

(подпись) «15» июля 2021

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Введение в математический анализ
Направление подготовки 01.03.02 Прикладная математика и информатика
(Программы бакалавриата «Прикладная математика и компьютерные науки»)

Форма подготовки очная

курс <u>1</u> семестр <u>1</u>

лекции <u>68</u> час.

практические занятия 68 час.

лабораторные работы θ час.

в том числе с использованием МАО лек. 16 /пр. час./лаб. час

всего часов аудиторной нагрузки 136 час.

самостоятельная работа 17 час.

в том числе на подготовку к экзамену 27 час.

контрольные работы (количество) не предусмотрены

курсовая работа / курсовой проект не предусмотрены

экзамен 1 семестр

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки 01.03.02 **Прикладная математика и информатика** утвержденного приказом Министерства образования и науки РФ от 10 января 2018 г. № 9 (с изменениями и дополнениями).

Рабочая программа обсуждена на заседании кафедры информатики, математического и компьютерного моделирования протокол № 6 от «5» июля 2021 г.

Заведующий кафедрой

Чеботарев А.Ю.

Составители:

Сущенко А.А

Оборотная сторона титульного листа РПД

I. Рабочая прогр	рамма пере	есмотрена на заседа	ни	и кафедры/департамента:
Протокол от «		20	Γ.	No
Заведующий каф	едрой			
	1	(подпись)		(И.О. Фамилия)
II. Рабочая прог	рамма пер	есмотрена на засед	ані	ии кафедры/департамента:
Протокол от «		20	Γ.	No
Заведующий каф	едрой			
	1	(подпись)		(И.О. Фамилия)
Протокол от «		20	Γ.	
эмээд то <u>щ</u> ин киф		(подпись)		(И.О. Фамилия)
-	-	•		ии кафедры/департамента: м
		20	т.	115
Заведующий <i>каф</i>	едрой	((H O A)
		(подпись)		(И.О. Фамилия)

І. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель: Приобретение у обучающихся необходимого для осуществления профессиональной деятельности уровня компетенций

Задачи:

- развитие логического мышления;
- повышение уровня математической культуры;
- овладение современным математическим аппаратом, необходимым для изучения естественнонаучных, общепрофессиональных и специальных дисциплин;
- освоение методов математического моделирования;
- освоение приемов постановки и решения математических задач.

Общепрофессиональные компетенции выпускников и индикаторы их достижения:

Наименование категории (группы) общепрофессиональных компетенций	Код и наименование общепрофессиональной компетенции (результат освоения)	Код и наименование индикатора достижения компетенции		
Теоретические и	ОПК-1 Способен консультировать и	ОПК-1.1 использует в профессиональной		
практические основы	использовать фундаментальные знания в	деятельности основы математических		
профессиональной	области математического анализа,	дисциплин		
деятельности	комплексного и функционального анализа	ОПК-1.2 решает стандартные		
	алгебры, аналитической геометрии,	профессиональные задачи с применением		
	дифференциальной геометрии и	естественнонаучных и общеинженерных		
	топологии, дифференциальных уравнений,	знаний, методов математического анализа и		
	дискретной математики и математической	математического и компьютерного		
	логики, теории вероятностей,	моделирования		
	математической статистики и случайных	ОПК-1.3 осуществляет теоретическое и		
	процессов, численных методов,	экспериментальное исследование объектов		
	теоретической механики в	профессиональной деятельности		
	профессиональной деятельности			

Код и наименование индикатора	Наименование показателя оценивания			
достижения компетенции	(результата обучения по дисциплине)			
	Знает основные положения теории множеств, теории пределов, теории			
OTIV 1 1 voron average produce voron vor	рядов и других фундаментальных дисциплин			
ОПК-1.1 использует в профессиональной	Умеет вычислять пределы, производные и интегралы от элементарных			
деятельности основы математических	функций, решать аналитически дифференциальные уравнения			
дисциплин	Владеет методами построения простейших математических моделей			
	типовых профессиональных задач			
ОПК-1.2 решает стандартные	Знает основные положения дифференциального, интегрального			
профессиональные задачи с применением	исчисления, методы исследования функций			
естественнонаучных и общеинженерных	<u>Умеет</u> проводить исследование функций методами математического,			
знаний, методов математического анализа и	комплексного и функционального анализов			
математического и компьютерного	Владеет методами построения физических, математических и			
моделирования	компьютерных моделей стандартных профессиональных задач			
	Знает методы обработки и интерпретации данных современных научных			
ОПК-1.3 осуществляет теоретическое и	исследований			
экспериментальное исследование объектов	<u>Умеет</u> собирать, обрабатывать и интерпретировать данные современных			
профессиональной деятельности	научных исследований			
профессиональной деятельности	Владеет навыками применения, интерпретирования данных			
	современных научных исследований			

Для формирования вышеуказанных компетенций в рамках дисциплины «Введение в математический анализ» применяются следующие методы активного/ интерактивного обучения:

- презентации с использованием доски, книг, видео, слайдов, компьютеров и т.п., с последующим обсуждением материалов,
- обратная связь с формированием общего представления об уровне владения знаниями студентов, актуальными для занятия,
- разминка с вопросами, ориентированными на выстраивание логической цепочки из полученных знаний (конструирование нового знания).
- работа в малых группах (дает всем студентам возможность участвовать в работе, практиковать навыки сотрудничества, межличностного общения).

II. ТРУДОЁМКОСТЬ ДИСЦИПЛИНЫ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ

Общая трудоемкость дисциплины составляет 8 зачётных единиц (288 академических часа).

(1 зачетная единица соответствует 36 академическим часам)

Видами учебных занятий и работы обучающегося по дисциплине могут являться:

Обозначение	Виды учебных занятий и работы обучающегося
Лек	Лекции
Лаб	Лабораторные работы
Пр	Практические занятия
ОК	Онлайн курс
CP	Самостоятельная работа обучающегося в период теоретического обучения
Контроль	Самостоятельная работа обучающегося и контактная работа обучающегося с преподавателем в период промежуточной аттестации

Структура дисциплины:

Форма обучения – очная.

№ Наименование раздела дисциплины			Количество часов по видам учебных занятий и работы обучающегося						
		Семестр	Лек	Лаб	ďΠ	OK	CP	Контроль	Формы промежуточной аттестации
1	Раздел I. Теория пределов		34						
2	Раздел II. Дифференциальное		34	0	68		17	27	экзамен
Итого:			68	0	68		17	27	

III. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

1 семестр.

Раздел I. Теория пределов (16 час).

- **Тема 1. Вводные математические понятия (2 часа).** Предмет математического анализа. Элементы математической логики и теории множеств. Операции над множествами. Определение функции и отношения. Отношения эквивалентности и порядка.
- **Тема 2.** Действительные числа (2 часа). Действительные числа. Аксиомы действительных чисел и их следствия. Свойство полноты и Архимеда. Множества на числовой прямой. Ограниченные множества в R. Существование точных граней.
- **Тема 3. Предел последовательности (6 часов).** Предел числовой последовательности. Примеры. Теоремы о пределах. Монотонные последовательности. Существование предела у монотонных последовательностей. Число е. Критерий Коши о существовании конечного предела у последовательности. Предельные точки. Лемма Больцано Вейерштрасса. Теорема Кантора о вложенных отрезках.
- **Тема 4. Предел функции (6 часа).** Функции действительной переменой. Возрастающие и убывающие функции. Обзор элементарных функций. Предел функции по Коши, по Гейне. Существование односторонних пределов у монотонных функций. Теоремы о пределах. Определение верхнего и нижнего пределов. Эквивалентные функции. Осимволика. Основные неопределенности. Техника вычисления пределов.

Раздел II. Дифференциальное исчисление функции одной переменной (16 часов)

- Тема 5. Непрерывность (6 часов). Непрерывность функций. Различные определения. Классификация точек разрыва. Теоремы непрерывных функциях. Непрерывность элементарных функций. Непрерывность функций на множестве. Теоремы Вейерштрасса. Теорема Кантора о равномерной непрерывности.
- (10 Тема Дифференцируемость часов). Производная; геометрический механический смысл. Теоремы вычислении o производных. Производные высших порядков. Формула Лейбница. Дифференциал функции, его вычисление. Инвариантность формы I- го дифференциала. Применение дифференциала к приближенным вычислениям. Теоремы Дарбу, Ролля, Лагранжа и Коши. Вычисление пределов функций. Правило Лопиталя. Дифференциалы высших порядков. Формула Тейлора. Разложение элементарных функций. Исследование графиков функций.

Условия монотонности, выпуклости. Точки экстремума и перегиба. Асимптоты.

IV. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА И САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Занятие 1. Вводные математические понятия (2 часа). Предмет математического анализа. Законы математической логики, используемые в математическом анализе. Элементы теории множеств. Операции над множествами.

Занятие 2. Действительные числа (10 часов). Действительные числа. Аксиомы действительных чисел. Множества на числовой прямой. Ограниченные множества в R. Существование точных граней.

Занятие 3. Предел последовательности (10 часов). Предел числовой последовательности. Примеры. Теоремы о пределах. Монотонные последовательности. Существование предела у монотонных последовательностей. Число е. Критерий Коши о существовании конечного предела у последовательности. Предельные точки. Лемма Больцано — Вейерштрасса. Теорема Кантора о вложенных отрезках.

Занятие 4. Предел функции (10 часов). Отображения множеств. Функции действительной переменой. Обзор элементарных функций. Предел функции по Коши, по Гейне. Существование односторонних пределов у монотонных функций. Теоремы о пределах. Определение верхнего и нижнего пределов. Эквивалентные функции. О-символика. Основные неопределенности. Техника вычисления пределов.

Занятие 5. Непрерывность (10 часов). Непрерывность функций. Различные определения. Классификация точек разрыва. Теоремы о непрерывных функциях. Непрерывность элементарных функций. Непрерывность функций на множестве. Теоремы Вейерштрасса. Теорема Кантора о равномерной непрерывности.

Занятие Дифференцируемость (10)часов). Производная; геометрический механический смысл. Теоремы вычислении производных. Производные высших порядков. Формула Лейбница. Дифференциал функции, его вычисление. Инвариантность формы I- го Дифференциалы Применение дифференциала. высших порядков. дифференциала к приближенным вычислениям. Теоремы Дарбу, Ролля, Лагранжа и Коши. Вычисление пределов функций. Правило Лопиталя. Формула Тейлора. Разложение элементарных функций. Исследование графиков функций. Условия монотонности, выпуклости. Точки экстремума и перегиба. Асимптоты.

V. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ (И ОНЛАЙН КУРСА ПРИ НАЛИЧИИ)

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Введение в математический анализ» включает в себя:

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	После раздела 1 в 1 семестре	Индивидуальные домашние задания	В 1 семестре 20 часов	Защита
2	В 1 семестре к занятиям 3, 6	Подготовка к контрольным работам	В 1 семестре 20 часов	Контрольные работы
3	В 1 семестре – 28	Подготовка к сдаче экзамена в 1 семестре	В 1 семестре – 28	Экзамен в 1 семестре

Самостоятельная работа студентов по дисциплине состоит из выполнения расчетно-графических заданий, подготовки к контрольным работам и итоговому зачету или экзамену.

VI. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

Nº	Контролируем	К	од и наименование индикатора достижения	Оценочные средства		
п/п	ые разделы / темы дисциплины			текущий контроль	промежут очная аттестац ия	
1.	Все разделы в 1 семестре	ОПК-1	ОПК-1.1 использует в профессиональной деятельности основы математических дисциплин ОПК-1.2 решает стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и математического и компьютерного моделирования ОПК-1.3 осуществляет теоретическое и экспериментальное исследование объектов профессиональной деятельности	Индивидуальные домашние задания, контрольные работы, тестирование остаточных знаний	Экзамен	

VII. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература (электронные и печатные издания)

- 1. Клевчихин Ю.А. Лекции по математическому анализу. Владивосток. ДВФУ 2015.
- 2. Кудрявцев Л.Д. Курс математического анализа : учебник для бакалавров по естественно-научным и техническим направлениям и

специальностям. [в 3 т.], 6 изд. Москва. Юрайт. 2014. 351 с.

- 3. Письменный Д.Т., Конспект лекций по высшей математике: полный курс, 7-ое изд.: Москва, Айрис-пресс, 2008. 603 стр.
- 4. П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. Высшая математика в упражнениях и задачах. Часть 1. М.: Оникс; Мир и Образование, 2006, 304 с.
- 5. А. П. Рябушко, В. В. Бархатов, В. В. Державец и др. Сборник индивидуальных заданий по высшей математике: учебное пособие для инженерно-технических специальностей вузов. В 3 ч. Минск: Академкнига, 2013г.

Дополнительная литература

- 1. А.А. Гусак. Высшая математика. В 2-х томах. Мн.: ТетраСистемс, 2002.
- 2. В.С. Шипачев. Высшая математика : учебник для вузов. М.: Высшая школа. 2005. 479 с.

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. mathportal.net
- 2. webmath.ru
- 3. mathprofi.ru
- 4. stu.sernam.ru
- 5. alleng.ru/edu/math9.htm

VIII. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Для успешного освоения дисциплиной студентам необходимо посещать лекции и практические занятия, фиксируя изучаемый на них материал и выполнять требуемые задания. Если в процессе обучения возникают вопросы, то студенты могут получить консультацию в выделенное время на каждой учебной недели или воспользоваться математической литературой, ресурсами Интернета.

IX. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

1. Лекционная аудитория: мультимедийный проектор OptimaEX542I -1 шт.; аудио усилитель QVC RMX 850-1 шт.; колонки -1 шт.; ноутбук; ИБП -1 шт.; настенный экран; микрофон -1 шт.

- 2. Компьютерные классы ДВФУ (кампус на о. Русском, Аякс 10, корпус D, ауд. 733, 733а) по 15 персональных компьютеров ExtremeDOUE 8500/500 GB/ DVD+RW.
 - 3. Системное и прикладное обеспечение ПЭВМ.

х. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Комплекты контрольных работ Контрольная работа №1

Вид контроля – промежуточный

Вид теста – на бумажном носителе.

Контингент проверки: – студенты 1 курса (1 семестр).

Цель проверки — выявление уровня усвоения основных теоретических знаний и практических навыков по дисциплине Введение в математический анализ

Количество условных вариантов – 10

Количество заданий в варианте - 5-6.

Комплектование задания в варианте – методом свободной выборки.

Стоимость одного задания – 1 балл.

Время выполнения:

- всего теста не более 90 мин.
- одного задания не более 15 мин.

Шкала и правила оценки результатов тестирования

При подведении общих итогов тестирования предлагается следующая методика оценивания по пятибалльной шкале:

Количество правильных ответов (% выполнения)	Оценка		
90–100	"Отлично"		
70–89	"Хорошо"		
50–69	"Удовлетворительно"		
менее 50	"Неудовлетворительно"		

Вариант 1

- 1. Найти область определения функции $f(x) = \sqrt{x-4} + \sqrt{8-x}$.
- 2. Дана функция $f(x) = \frac{1+x}{1-x}$. Найдите f[f(x)]. Вычислите 2f[f(2)].

Найти пределы последовательностей:

3.
$$\lim_{n\to\infty}\frac{6n^4-n+5}{2n^4+5n-1}.$$

4.
$$\lim_{n\to\infty} \frac{(\sqrt{n^4+2n}-n^2)n^2}{3n+4}.$$

Найти пределы функций:

5.
$$\lim_{x\to\infty} (3x+1)\sin\frac{5}{x+1}$$
.

6.
$$\lim_{x\to 0} \frac{3^{\frac{1}{x}}-1}{4^{\frac{1}{x}}-1}$$

7.
$$\lim_{x \to \infty} \left(\frac{x^2 + x + 1}{x^2 + 1} \right)^{3x + 1}$$

8.
$$\lim_{x \to 1} \frac{5^x + 5}{(x^2 - 1) \ln 5}$$

- 9. Выделить главную часть вида $c(x+1)^k$ бесконечно малой $\alpha(x) = \frac{\sin^2(x^2-1)}{\sqrt{x^2+3}-2}$ при $x \to -1$. В ответ ввести сначала c, затем k.
- 10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:

a)
$$f_1(x) = \frac{\sin(x-2)}{x^2-4} + arctg \frac{2}{x}$$
;

б)
$$f_2(x) = \begin{cases} \frac{x+3}{x^2-9} & x < 0\\ \frac{x-1}{x^2-4} & \text{при} \\ & x > 0 \end{cases}$$
.

Вариант 2

1. Найти область определения функции

$$f(x) = \sqrt{x^2 - 3x + 2} + \frac{1}{\sqrt{x^2 - 7x + 12}}.$$

2. Даны функции $f(x) = \sin x, \varphi(x) = x^2$. Найдите $f[\varphi(x)]$ и $\varphi[f(x)]$. Вычислите $2\varphi \left[f(\frac{\pi}{4}) \right]$.

Найти пределы последовательностей:

3.
$$\lim_{n\to\infty}\frac{4+n-3n^4}{1+n-n^4}.$$

4.
$$\lim_{n\to\infty} (\sqrt{9n^4+3n^2+1}-3n^2)$$

Найти пределы функций:

5.
$$\lim_{x \to -\infty} \frac{6x - \sqrt{4x^2 + 1}}{2x + 1}.$$

6.
$$\lim_{x\to 0} \frac{\sin(7x) - \sin(3x)}{tg(2x)}$$
.

7.
$$\lim_{x\to\infty} (\frac{x^4+5}{x^4+3})^{x^4}.$$

8.
$$\lim_{x\to 1} \frac{7^{x^2}-7}{(x-1)\ln 7}$$
.

9. Выделить главную часть вида $c(x-3)^k$ бесконечно малой $\alpha(x) = \frac{(e^{x-3}-1)\sin(x-3)}{\sqrt{x+1}-2}$ при $x \to 3$. В ответ ввести сначала c, затем k.

10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:

a)
$$f_1(x) = \frac{\sin(x-3)}{|x^2-9|} + \frac{e^x-1}{5x}$$
;

б)
$$f_2(x) = \begin{cases} \frac{x+4}{x^2-16} & x \le 0 \\ \frac{\sin x}{x^2-9} & \text{при} \\ & x > 0 \end{cases}$$
.

Вариант 3

1. Найти область определения функции

$$f(x) = \frac{x}{\sqrt{x^2 - 3x + 2}}.$$

2. Даны функции $f(x) = \log_2 x, \varphi(x) = \sqrt{x}$. Найдите $\psi(x) = f[\varphi(x)], \phi(x) = \varphi[f(x)], f[f(x)], \varphi[\varphi(x)]$. Вычислите $\varphi(16)$.

Найти пределы последовательностей:

3.
$$\lim_{n\to\infty} \frac{n+n^2}{3+n+n^5}$$
.

$$4. \quad \lim_{n\to\infty} (\sqrt{n^2+8n}-n)$$

Найти пределы функций:

5.
$$\lim_{x\to -2} \left(\frac{1}{x+2} + \frac{4}{x^2-4}\right)$$
.

6.
$$\lim_{x\to\infty} x\sin(\frac{5}{x+3}).$$

7.
$$\lim_{x\to\infty} \left(\frac{x^2+x}{x^2+4}\right)^{3x-1}.$$

8.
$$\lim_{x \to 4} \frac{e^{2x-8} - 1}{x^2 - 7x + 12}.$$

- 9. Выделить главную часть вида $c(x-3)^k$ бесконечно малой $\alpha(x) = \frac{(x-3)\ln(4-x)}{e^{x-3}-1}$ при $x \to 3$. В ответ ввести сначала c, затем k.
- 10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:

a)
$$f_1(x) = x \sin \frac{3}{x} - \frac{1}{x-1} arctg \frac{1}{x-2}$$
;

б)
$$f_2(x) = \begin{cases} \frac{x^2 + x}{x^2 - 1} & x \le 0 \\ \frac{\sin^2 x}{x^3 - 2x^2} & \text{при} \end{cases}$$

Вариант 4

1. Найти область определения функции $f(x) = \sqrt{\lg \frac{3x - x^2}{2}}$.

2. Дана функция $f(x) = x^2 + \frac{1}{x^2}$. Вычислите значения этой функции в тех точках, в которых $\frac{1}{x} + x = 3$.

Найти пределы последовательностей:

3.
$$\lim_{n\to\infty} \frac{4+n-n^2}{3+n^2} \, .$$

4.
$$\lim_{n\to\infty} (\sqrt{9n^4-6n^2+1}-3n^2)$$

Найти пределы функций:

5.
$$\lim_{x \to -\infty} \frac{3^x + 4}{5^x + 2}.$$

6.
$$\lim_{x \to 2} \frac{\sin(x^2 - 4)}{x^2 - 3x + 2}$$

7.
$$\lim_{x\to 0} (1+3\sin x)^{\frac{1}{x}}$$
.

8.
$$\lim_{x \to -\infty} (2x-1) \ln \frac{x+1}{x+3}$$
.

- 9. Выделить главную часть вида $c(x-1)^k$ бесконечно малой $\alpha(x) = (x^3-1)\sin(x^2-1)$ при $x \to 1$. В ответ ввести сначала c, затем k.
- 10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:

a)
$$f_1(x) = \frac{|x+2|}{x^2-4} + \frac{\sin 3x}{x}$$
;

$$f_2(x) = \begin{cases} \frac{\sin(x-2)}{x^2-4} & x < 2\\ \frac{\sin(x-3)}{x^2-9} & \text{при} \\ & x \ge 2 \end{cases}.$$

Вариант 5

- 1. Найти область определения функции $f(x) = \arcsin \frac{x-4}{3} + \lg(5-x)$.
- 2. Дана функция $f(x+2) = x^2 5x + 4$. Найти f(x). Вычислите f(0). Найти пределы последовательностей:

3.
$$\lim_{n\to\infty} \frac{3+5n^3}{n+n^4}$$
.

4.
$$\lim_{n\to\infty} (\sqrt{4n^4 + 8n} - 2n)$$

Найти пределы функций:

5.
$$\lim_{x \to 0} \frac{3^{\frac{1}{x}}}{5^{\frac{1}{x}} + 4}.$$

6.
$$\lim_{x\to 2} \frac{\arcsin(x^2-4)}{x^2-3x+2}$$
.

7.
$$\lim_{x\to 1} \left(\frac{x^2+3}{3x^2+1}\right)^{\frac{1}{x-1}}$$
.

8.
$$\lim_{x\to 1} \frac{5^{x-1}-1}{(x^2-1)\ln 5}$$
.

- 9. Выделить главную часть вида $\frac{c}{x^k}$ бесконечно малой $\alpha(x) = \frac{\sqrt{x^4 + 4x} x^2}{x^2 + 4}$ при $x \to +\infty$. В ответ ввести сначала c, затем k.
- 10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:

a)
$$f_1(x) = arctg \frac{1}{x-1} + \frac{\sin(x-2)}{x^2-4}$$
;

6)
$$f_2(x) = \begin{cases} \frac{\sin(x+5)}{x^2 - 25} & x \le 0 \\ \frac{x}{x^2 - 1} & \text{при} \\ x > 0 \end{cases}$$
.

Вариант 6

- 1. Найти область определения функции $f(x) = \sqrt{\arcsin(\log_4 x)}$.
- 2. Вычислить значение функции $f(x) = x^4 + \frac{1}{x^4}$ в тех точках, в которых $\frac{1}{x} + x = 4$.

Найти пределы последовательностей:

3.
$$\lim_{n \to \infty} \frac{5 + n + 4n^4}{3 - 2n^4}$$

$$\lim_{n\to\infty} (\sqrt[3]{n^3 - 6n^2 + 7} - n)$$

Найти пределы функций:

5.
$$\lim_{x \to 1} \frac{4^{\frac{1}{x-1}}}{5^{\frac{1}{x-1}} + 5}.$$

6.
$$\lim_{x \to 1} \frac{tg(x-1)}{x^2 - 3x + 2}.$$

7.
$$\lim_{x \to -\infty} \left(\frac{x^2 + x + 1}{x^2 - x + 1} \right)^x$$
.

8.
$$\lim_{x\to 3} \frac{e^{2x-6}-1}{x^2-2x-3}$$
.

9. Выделить главную часть вида $c(x+1)^k$ бесконечно малой $\alpha(x) = \frac{\sqrt[3]{\sin^4(x+1)}}{\sqrt[3]{x^2+10x+9}}$ при $x \to -1$. В ответ ввести сначала c, затем k.

- 10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:
- a) $f_1(x) = \frac{|x^2 1|}{x^2 + 3x + 2} + \frac{\sin(x 3)}{x 3}$;

б)
$$f_2(x) = \begin{cases} \frac{\sin(x+2)}{x^2 - 4} & x \le 1 \\ \frac{x}{x^2 - 9} & \text{при} \\ x > 1 \end{cases}$$
.

Вариант 7

- 1. Найти область определения функции $f(x) = \lg(9 x^2)$.
- 2. Дано, что $f(x+2) = \frac{x-4}{x+5}$. Найдите $\varphi(x) = (x+3)f(x)$. Вычислите f(0).

Найти пределы последовательностей:

- 3. $\lim_{n\to\infty}\frac{6n^4+n-1}{3n^4+5}.$
- 4. $\lim_{n \to \infty} (\sqrt[3]{n^2 + 6n 1} n)$

Найти пределы функций:

- 5. $\lim_{x\to +\infty} \frac{(0.5)^x + 3}{(0.5)^x + 7}$.
- 6. $\lim_{x\to 0} (\sqrt{1+x} 1)ctg 2x$
- 7. $\lim_{x\to 2} e^{\left(\frac{x^2+2}{x^3-2}\right)^{\frac{3}{x^2-4}}}$.
- 8. $\lim_{x\to 1} \frac{\ln(3x-2)-\ln(2x-1)}{x^2-1}$.
- 9. Выделить главную часть вида $c(x-2)^k$ бесконечно малой $\alpha(x) = \frac{\sin^2(4-x^2)}{\ln(3-x)} + (x-2)^5$ при $x \to 2$. В ответ ввести сначала c, затем k.
- 10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:

a)
$$f_1(x) = \frac{\sin(2x)}{\sqrt{x^2}} + \frac{x+1}{x^2-1}$$
;

6)
$$f_2(x) = \begin{cases} \frac{x+2}{x^2-4} & x \le 0\\ \frac{x^2-x}{x^2-5x+4} & \text{при}\\ x > 0 \end{cases}$$
.

Вариант 8

- 1. Найти область определения функции $f(x) = \frac{1}{\sqrt{x}} + 4^{\arcsin(x-2)} + \frac{1}{\sqrt{x-2}}$.
- 2. Даны функции $f(x) = x + 1, \varphi(x) = x 2$. Решить уравнение $f[\varphi(x)] + \varphi[f(x)] = 10$.

Найти пределы последовательностей:

3.
$$\lim_{n\to\infty}\frac{1+3n+n^3}{4+n+4n^3}.$$

4.
$$\lim_{n\to\infty} (\sqrt[3]{n^2+6n^2-1}-n)$$

Найти пределы функций:

5.
$$\lim_{x \to -1} \frac{\ln(x-2) - \ln(x^2 - x)}{\sin(x+1)}$$
.

6.
$$\lim_{x\to 0} \frac{arctg6x}{\sin(2x)}.$$

7.
$$\lim_{x \to -\infty} e(\frac{x^2 + 3}{x^2 + 4x + 3})^x$$
.

8.
$$\lim_{x \to 0} \frac{4^{\frac{1}{x}}}{5^{\frac{1}{x}} + 2}.$$

- 9. Выделить главную часть вида $\frac{c}{x^k}$ бесконечно малой $\alpha(x) = \frac{e^{\frac{a}{x}} 1}{\sqrt{x^2 + 1} x}$ при $x \to -\infty$. В ответ ввести сначала c, затем k.
- 10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:

a)
$$f_1(x) = arctg \frac{1}{x+3} + \frac{\sin(x-2)}{x^2-4}$$
;

б)
$$f_2(x) = \begin{cases} \frac{x}{x^2 - 9} & x \le 0 \\ \frac{x \sin(x^3 - 1)}{x - 1} & \text{при} \\ x > 0 \end{cases}$$
.

Вариант 9

- 1. Найти область определения функции $f(x) = \lg(\arcsin \frac{6x x^2}{8}$.
- 2. Даны функции $f(x) = x^2 1$, $\varphi(x) = x^2 + 4$. Найдите корни уравнения $f[\varphi(x)] \varphi[f(x)] = 20$

Найти пределы последовательностей:

3.
$$\lim_{n\to\infty} \frac{n+\sqrt{n^8+5}}{n^4+3}$$
.

4.
$$\lim_{n\to\infty} (\sqrt[3]{n^6-6n^4+1}-n^2)$$

Найти пределы функций:

5.
$$\lim_{x \to -\infty} \frac{5^x - 4^x}{5^x + 4^{x+1}}.$$

6.
$$\lim_{x\to 0} \frac{xtg\,4x}{1-\cos(2x)}$$
.

7.
$$\lim_{x \to -\infty} \left(\frac{3x^2 + 1}{3x^2 - x + 1} \right)^{3x + 4}.$$

8.
$$\lim_{x\to 1} \frac{e^{x^2-1}-1}{1-\sqrt{x}}$$
.

- 9. Выделить главную часть вида $c(x-2)^k$ бесконечно малой $\alpha(x) = \frac{\ln (3-x)}{\sin(x-2)}$ при $x \to 2$. В ответ ввести сначала c, затем k.
- 10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:

a)
$$f_1(x) = \frac{\sin(x+3)}{\sqrt{(x+3)^2}} + \frac{\sin(x-3)}{x^2 - 4x + 3}$$
;

б)
$$f_2(x) = \begin{cases} \frac{x+2}{x^2-4} & x \le 0 \\ \frac{|x-1|}{x^2-4x+3} & \text{при} \\ x > 0 \end{cases}$$
.

Вариант 10

- 1. Найти область определения функции $f(x) = \lg(|x| x)$.
- 2. Дано, что $f(x+1) = \frac{x^2+3}{x^2+5}$. Найдите f(x). Вычислите f(0).

Найти пределы последовательностей:

3.
$$\lim_{n\to\infty}\frac{6n^5+n^2-4}{3n^5+n+1}.$$

4.
$$\lim_{n \to \infty} (\sqrt[3]{n^3 - 6n + 9} - n)$$

Найти пределы функций:

5.
$$\lim_{x\to 0-0} \frac{\sqrt{4x^2}-x}{x}.$$

6.
$$\lim_{x \to -3} \frac{x^2 + x - 6}{x^2 - 9}.$$

7.
$$\lim_{x \to -1} \frac{\sin 3(x^2 - 1)}{x^2 - x - 2}$$
.

8.
$$\lim_{x\to\infty} (3x+1)\ln\frac{x+1}{x+3}$$
.

- 9. Выделить главную часть вида cx^k бесконечно малой $\alpha(x) = \frac{e^{x^3} 1}{\sqrt{x+1} 1}$ при $x \to 0$. В ответ ввести сначала c, затем k.
- 10.Записать все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;у) для функций:

a)
$$f_1(x) = \frac{\sin(x+3)}{|x^2-9|} + \frac{e^{3x}-1}{x}$$
;

6)
$$f_2(x) = \begin{cases} \frac{x^2 - 4}{x^2 - x - 6} & x \le 1\\ \frac{x}{x^2 - 4} & \text{при} \\ x > 1 \end{cases}$$

Контрольная работа № 2.

Вид контроля – промежуточный

Вид теста – на бумажном носителе.

Контингент проверки: – студенты 1 курса (1 семестр).

Цель проверки — выявление уровня усвоения основных теоретических знаний и практических навыков по дисциплине Введение в математический анализ

Количество условных вариантов – 10

Количество заданий в варианте - 5-6.

Комплектование задания в варианте – методом свободной выборки.

Стоимость одного задания – 1 балл.

Время выполнения:

- всего теста не более 90 мин.
- одного задания не более 15 мин.

Шкала и правила оценки результатов тестирования

При подведении общих итогов тестирования предлагается следующая методика оценивания по пятибалльной шкале:

Колличество правильных ответов (% выполнения)	Оценка		
90–100	"Отлично"		
70–89	"Хорошо"		
50–69	"Удовлетворительно"		
менее 50	"Неудовлетворительно"		

Вариант 1

1. Найти производную f'(x)

a)
$$f(x) = x^3 + 2\sqrt[3]{x^2 - 1}$$

$$6) f(x) = \frac{\sin^2(3x+5)}{4x+1}$$

B)
$$f(x) = e^{3x+5}tg(7x^2+5)$$

$$\Gamma) f(x) = \arcsin 4x + \sqrt{x^5 + \cos 4x} B TOYKE x = 0$$

Д)
$$f(x) = x^{tgx}$$

2. Найти наибольшее и наименьшее значения функции на отрезке

$$f(x) = \frac{x+6}{x^2+13}$$
 Ha $[-5;5]$

3. Найти промежутки монотонности, точки экстремума,

промежутки выпуклости и точки перегиба $f(x) = \frac{x^2 + 4}{x^2}$

Вариант 2.

1. Найти производную f'(x)

a)
$$f(x) = \frac{x^3}{\sqrt{x}} + \sqrt[3]{x^5 - 1}$$

6)
$$f(x) = \frac{\cos(3x+5)}{4x^5+3}$$

B)
$$f(x) = e^{3x} tg(7x^2 + \cos \pi)$$

$$\Gamma$$
) $f(x) = \arccos 4x + \sqrt{x^5 + \sin 4x}$ B TOUKE $x = 0$

Д)
$$f(x) = x^{\ln x}$$

2. Найти наибольшее и наименьшее значения функции на отрезке

$$f(x) = \frac{x-4}{x^2+9}$$
 Ha $[-4;6]$

- 3. Найти промежутки монотонности, точки экстремума, промежутки выпуклости и точки перегиба $f(x) = (x-2)e^{3-x}$ Вариант 3.
- 1. Найти производную f'(x)

a)
$$f(x) = \frac{x^4}{\sqrt{x}} + \sqrt[4]{x^2 - 3x}$$

$$6) f(x) = \frac{\ln(3x+5)}{3x+5}$$

B)
$$f(x) = e^x arctg7x^3$$

$$f(x) = \cos^2 4x + \sqrt{x^5 + 4x}$$
 B TOYKE $x = 0$

$$\Pi$$
) $f(x) = tgx^{\ln x}$

2. Найти наибольшее и наименьшее значения функции на отрезке

$$f(x) = \frac{x+3}{x^2+7}$$
 Ha [-3;7]

3. Найти промежутки монотонности, точки экстремума, промежутки выпуклости и точки перегиба

$$f(x) = \frac{x}{1 + x^2}$$

Вариант 4.

1. Найти производную f'(x)

a)
$$f(x) = \frac{x^4}{\sqrt{x}} + \sqrt[4]{x^2 - 4x}$$

$$6) f(x) = \frac{\ln(2x+1)}{2x+1}$$

B)
$$f(x) = \cos 6x \cdot arctg(x+1)$$

Γ)
$$f(x) = \cos^3 x + ctg \sqrt{e+4}$$
 B TOUKE $x = \frac{\pi}{2}$

Π) $f(x) = tgx^{\cos x}$

- 2. Найти наибольшее и наименьшее значения функции на отрезке $f(x) = \frac{x-1}{x+1}$ на [0;4]
- 3. Найти промежутки монотонности, точки экстремума, промежутки выпуклости и точки перегиба $f(x) = \frac{x-1}{(x+1)^2}$

Вариант 5.

1. Найти производную f'(x)

a)
$$f(x) = 2x^3 + 2\sqrt[3]{x-1}$$

$$6) f(x) = \frac{\sin^2(4x+1)}{4x+1}$$

B)
$$f(x) = e^{3x+1}ctg5$$

$$f(x) = \arcsin 6x + \sqrt{x^3 + \cos x}$$
 B TOΨKE $x = 0$

$$\Pi \int f(x) = x^{2tgx}$$

3. Найти промежутки монотонности, точки экстремума, промежутки выпуклости и точки перегиба $f(x) = \frac{3x-2}{x^3}$

Вариант 6.

1. Найти производную f'(x)

a)
$$f(x) = \frac{x^3}{\sqrt{x}} + \sqrt[3]{7x^5 - 2x}$$

6)
$$f(x) = \frac{\cos(4x+6)}{4x^7+3}$$

B)
$$f(x) = e^{3x} \ln(7x^2 + \cos \pi)$$

$$\Gamma$$
) $f(x) = arctg 2x + \sqrt{x^5 + \sin 4x}$ B TOUKE $x = 0$

2. Найти наибольшее и наименьшее значения функции на отрезке $f(x) = x - 4\sqrt{x} + 5$ на [1;9]

3. Найти промежутки монотонности, точки экстремума, промежутки выпуклости и точки перегиба

$$f(x) = \left(1 + \frac{1}{x}\right)^2$$

Вариант 7.

1. Найти производную f'(x)

a)
$$f(x) = \frac{x^5}{\sqrt{x}} + \sqrt[4]{x^2 - 3x}$$

$$6) f(x) = \frac{\ln(x+1)}{3x}$$

B)
$$f(x) = e^x arctgx^3$$

$$f(x) = \cos^3 4x + \sqrt{x^5 + 4x}$$
 B TOYKE $x = 0$

$$\Pi$$
) $f(x) = ctgx^{\ln x}$

2. Найти наибольшее и наименьшее значения функции на отрезке

$$f(x) = \sin 2x - x$$
 Ha $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$

3. Найти промежутки монотонности, точки экстремума, промежутки выпуклости и точки перегиба $f(x) = \frac{-8x}{x^2 + 4}$

Вариант 8.

1. Найти производную f'(x)

a)
$$f(x) = \frac{6x^4}{\sqrt{x}} + \sqrt[4]{2x^2 - 4x}$$

6)
$$f(x) = \frac{\ln(2x+1)}{3x+4}$$

B)
$$f(x) = \cos 7x \cdot arctg(2x+5)$$

$$\Gamma$$
) $f(x) = 3\cos^3 x + ctg\sqrt{e+4}$ B TOUKE $x = \frac{\pi}{2}$

2. Найти наибольшее и наименьшее значения функции на отрезке

$$f(x) = \frac{10x}{1+x^2}$$
 Ha [0;3]

3. Найти промежутки монотонности, точки экстремума,

промежутки выпуклости и точки перегиба $f(x) = \frac{1}{x^4 - 1}$

Вариант 9.

1. Найти производную f'(x)

a)
$$f(x) = 2x^3 + 2\sqrt[3]{x^2 - 1}$$

$$6) f(x) = \frac{\sin^2(3x+5)}{4x+1}$$

B)
$$f(x) = e^{3x+5}tg(5x^2+5)$$

$$f(x) = arctg 6x + \sqrt{x^5 + \cos 4x}$$
 B TOUKE $x = 0$

Д)
$$f(x) = \sin x^{tgx}$$

2. Найти наибольшее и наименьшее значения функции на отрезке

$$f(x) = \frac{10x + 10}{2 + 2x + x^2}$$
 Ha [0;3]

3. Найти промежутки монотонности, точки экстремума, промежутки выпуклости и точки перегиба $f(x) = \frac{3}{x^2 + 4}$

Комплект индивидуальных домашних заданий по дисциплине <u>Введение в математический анализ</u>

(наименование дисциплины)

Индивидуальные домашние задания №1.

Вариант 1

- 1. Изобразить на плоскости декартово произведение $A \times (B \setminus C)$, если A = [0;3], B = [0;4], C = [1;2]
- 2. Доказать по индукции, что $n \le 2^n$.
- 3. Определить ОДЗ $y = \arccos \frac{2x}{3x-1}$.
- 4. Построить график с помощью преобразования $y = 2^{3x+2}$.
- 5. Построить график в полярной системе координат $r = 2(1 + \sin \varphi)$
- 6. Построить график

$$\begin{cases} x = 5^t + 5^{-t} \\ y = 5^t - 5^{-t} \end{cases}$$

Вариант 2

- 1. Изобразить на плоскости декартово произведение $A \times (B \setminus C)$, если A = [-2;4], B = [0;5], C = [1;2]
- 2. Доказать по индукции, что $1+5+\cdots ...+5^{n-1}=\frac{5^{n-1}}{4}$.
- 3. Определить ОДЗ $y = \ln(|x-3|-2)$
- 4. Построить график с помощью преобразования $y = \ln(5x 2)$.
- 5. Построить график в полярной системе координат $r = 3 \sin 2 \varphi$.
- 6. Построить график

$$\begin{cases} x = t + 1 \\ y = 5^t \end{cases}$$

Вариант 3

- 1. Изобразить на плоскости декартово произведение $A \times (B \cup C)$, если A = [1;3], B = [2;4], C = [1;2]
- 2. Доказать по индукции, что $2n \le 3^n$.
- 3. Определить ОДЗ $y = arcsin \frac{4x}{x-1}$.
- 4. Построить график с помощью преобразования $y = 5^{4x+2}$.
- 5. Построить график в полярной системе координат $r = 2(1 + \sin 3\varphi)$
- 6. Построить график $\begin{cases} x = 5^t \\ y = 5^t 5^{-t} \end{cases}$

Вариант 4

- 1. Изобразить на плоскости декартово произведение $(A\backslash B) \times C$, если $A = [-2;4], \quad B = [0;5], \quad C = [1;2]$
- 2. Доказать по индукции, что $1+4+\cdots ...+4^{n-1}=\frac{4^n-1}{3}$.
- 3. Определить ОДЗ $y = \ln(|x-1| 5)$
- 4. Построить график с помощью преобразования $y = \ln(3x 5)$.
- 5. Построить график в полярной системе координат $r = \sin\left(\varphi + \frac{\pi}{3}\right)$.
- 6. Построить график $\begin{cases} x = t 2 \\ y = 2^t \end{cases}$

Вариант 5

- 1. Изобразить на плоскости декартово произведение $A \times (B \setminus C)$, если $A = [0;3], \quad B = [0;7], \quad C = [1;8]$
- 2. Доказать по индукции, что $n \le 5^n$.
- 3. Определить ОДЗ $y = \arccos \frac{x}{3x+1}$.
- 4. Построить график с помощью преобразования $y = 5^{3x+2}$.
- 5. Построить график в полярной системе координат $r=2+\sin\varphi$
- 6. Построить график $\begin{cases} x = 5^t + 5^{-t} \\ y = 5^t 5^{-t} \end{cases}$

Вариант 6

- 1. Изобразить на плоскости декартово произведение $A \times (B \setminus C)$, если A = [-1;4], B = [0;5], C = [1;3]
- 2. Доказать по индукции, что $1 + 5 + \dots + 5^{n-1} = \frac{5^{n-1}}{4}$.
- 3. Определить ОДЗ $y = \ln(|x-3|-6)$
- 4. Построить график с помощью преобразования $y = \ln(6x 2)$.
- 5. Построить график в полярной системе координат $r = 2 + \sin 2\varphi$.
- 6. Построить график $\begin{cases} x = t 2 \\ y = 2^t \end{cases}$

Вариант 7

- 1. Изобразить на плоскости декартово произведение $A \times (B \cup C)$, если A = [1;3], B = [1;4], C = [1;7]
- 2. Доказать по индукции, что $2n \le 4^n$.
- 3. Определить ОДЗ $y = arcsin \frac{4x}{x-5}$.
- 4. Построить график с помощью преобразования $y = 3^{2x+5}$.

- 5. Построить график в полярной системе координат $r = 2(1 + \sin 3\varphi)$
- 6. Построить график

$$\begin{cases} x = 2^t \\ y = 2^t - 2^{-t} \end{cases}$$

Вариант 8

- 1. Изобразить на плоскости декартово произведение $(A \setminus B) \times C$, если A = [-2; 4], B = [0; 8], C = [1; 2]
- 2. Доказать по индукции, что $1+4+\cdots ...+4^{n-1}=\frac{4^n-1}{3}$.
- 3. Определить ОДЗ $y = \ln(|2x-1|-5)$
- 4. Построить график с помощью преобразования $y = \cos(3x + 2)$.
- 5. Построить график в полярной системе координат $r = \sin\left(\varphi \frac{2\pi}{3}\right)$.
- 6. Построить график

$$\begin{cases} x = t - 2 \\ y = 3^t \end{cases}$$

Индивидуальные домашние задания №3

Продифференцировать данные функции.

1.1.
$$y = 3x^6 - \frac{4}{x^6} + \frac{7}{x} + 3\sqrt{x}$$
.

1.2.
$$y = \frac{13}{x} + \sqrt[5]{x^9} - 4x^5 + \frac{9}{x^4}$$
.

1.3.
$$y = 11x^5 + \sqrt[3]{x^5} - \frac{8}{x} - \frac{7}{x^2}$$
.

1.4.
$$y = \sqrt{x} - \frac{8}{x^5} - 3x^8 + \frac{4}{x}$$
.

1.5.
$$y = 7 + \frac{5}{x^9} - \sqrt[7]{x^5} + \frac{3}{x} + x^4$$
.

1.6.
$$y = 10x^4 - \sqrt[7]{x^4} + \frac{4}{x^3} - \frac{5}{x}$$
.

1.7.
$$y = 3x^{15} - \frac{3}{x^5} - \sqrt{x^5} + \frac{1}{x^5}$$

1.8.
$$y = \sqrt[3]{x^8} + \frac{7}{x} - 3x^6 + \frac{4}{x^5}$$
.

1.9.
$$y = 18x^5 + \sqrt[11]{x^4} - \frac{2}{x} - \frac{5}{x^3}$$
.

1.10.
$$y = 4x^{10} + \frac{5}{x} - \sqrt[3]{x^7} - \frac{3}{x^6} + 1.$$

1.11.
$$y = 2\sqrt{x^{13}} - \frac{1}{x} + 3x^2 - \frac{2}{x^{15}}$$
.

1.12.
$$y = 4x^7 - \frac{3}{x^5} - \sqrt[5]{x^3} + \frac{2}{x^2}$$
.

1.13.
$$y = x^3 - \frac{7}{x^2} + \sqrt{x} + \frac{2}{x}$$
.

1.14.
$$y = \frac{9}{x^3} + \sqrt[3]{x^4} - \frac{2}{x} + 5x^4$$
.

1.15.
$$y = \frac{10}{x^5} - \frac{1}{x} + \sqrt[5]{x^9} - x^3$$
.

1.16.
$$y = \frac{1}{x^3} + \frac{2}{x} - 5\sqrt{x} + x^7$$
.

1.17.
$$y = x^2 + \frac{1}{x} - \sqrt[3]{x} - 8x^6 + 3$$
.

1.18.
$$y = x^2 + 5\sqrt{x^4} - \frac{11}{x} - \frac{8}{x^4}$$
.

1.19.
$$y = \sqrt{x^4} - \frac{10}{x} + \frac{2}{x^3} - 5x^3$$
.

1.20.
$$y = x^3 + \frac{15}{x} - \frac{7}{x^4} + \sqrt[3]{x^5}$$
.

1.21.
$$y = 3\sqrt{x} + \frac{11}{x^7} + \sqrt[3]{x^3} - \frac{7}{x}$$
.

1.22.
$$y = \sqrt{x^3} + \frac{11}{x} - \frac{14}{x^5} - x^4$$
.

1.23.
$$y = 10x^2 + \frac{3}{x} - \sqrt[7]{x^4} + \frac{7}{x^3}$$
.

1.24.
$$y = x^5 - \frac{4}{x} - \frac{7}{x^6} + \sqrt[9]{x^2}$$
.

1.25.
$$y = x - \frac{5}{x^9} + \frac{1}{x} - 2\sqrt[5]{x^4}$$
.

1.26.
$$y = \sqrt[4]{x^7} - \frac{1}{x} + \frac{10}{x^5} + x$$
.

1.27.
$$y = 10x^4 + \frac{3}{x} - \sqrt[8]{x^5} - \frac{2}{x^{10}}$$
.

1.28.
$$y = 4x - \frac{11}{x} - \sqrt{x^6} + \frac{2}{x^3}$$
.

1.29.
$$y = \frac{2}{x} + \frac{5}{x^3} - \sqrt[5]{x^4} - 2x^7$$
.

1.30.
$$y = \frac{6}{x^7} - \frac{3}{x} + 9x^3 - \sqrt{x^8}$$
.

2.1.
$$y = \sqrt[3]{3x^2 + x - 5} + \frac{4}{(x - 2)^6}$$
.

2.2.
$$y = \sqrt[3]{(x-3)^4} - \frac{9}{2x^5 - 3x + 1}$$
.

2.3.
$$y = \sqrt{(x-2)^5} + \frac{1}{(3x^2 + x - 1)^3}$$
.

2.4.
$$y = \sqrt[7]{x^2 - x + 5} - \frac{10}{(x-4)^3}$$
.

2.5.
$$y = \sqrt[9]{3x^3 - x + 5} - \frac{2}{(x-3)^4}$$
.

2.6.
$$y = \sqrt{5x^3 - 4x^2 + x} - \frac{6}{(x+2)^3}$$
.

2.7.
$$y = \sqrt[3]{(x-4)^7} + \frac{8}{x^2 + 3x - 5}$$
.

2.8.
$$y = \sqrt[5]{(x+10)^7} - \frac{1}{2x^3 - x + 7}$$
.

2.9.
$$y = \frac{1}{(x-4)^8} - \sqrt{x^2 - 4x + 5}$$
.

2.10.
$$y = \sqrt[3]{4x^3 - 3x - 5} - \frac{5}{(x - 6)^7}$$
.

2.11.
$$y = \frac{1}{(x+1)^3} + \sqrt{x-5+x^2}$$
.

2.12.
$$y = \sqrt[5]{3x^4 + x - 5} + \frac{2}{(x+4)^4}$$
.

2.13.
$$y = \sqrt[3]{5x^3 - 10x - 1} + \frac{2}{(x+5)^2}$$
.

2.14.
$$y = \frac{7}{(x+2)^5} - \sqrt[7]{8x - x^2 + 3}$$
.

2.15.
$$y = \sqrt[4]{(x+1)^5} - \frac{7}{7x^2 - 3x + 2}$$
.

2.16.
$$y = \sqrt[5]{(x-2)^7} - \frac{10}{x^3 + x^2 - 4}$$
.

2.17.
$$y = \frac{10}{(x-4)^2} - \sqrt[3]{1+x-x^5}$$
.

2.18.
$$y = \frac{11}{(x+3)^3} - \frac{5}{x^2 + 3x - 4}$$
.

2.19.
$$y = \sqrt{x+5-2x^3} + \frac{4}{(x+3)^4}$$
.

2.20.
$$y = \sqrt[3]{2 + x - 3x^2} - \frac{4}{(x+1)^5}$$
.

2.21.
$$y = \sqrt[4]{x^2 - 10x + 1} - \frac{11}{(x-5)^2}$$
.

2.22.
$$y = \sqrt[5]{11 - 7x + x^7} - \frac{10}{(x+7)^3}$$
.

2.23.
$$y = \sqrt{(x-3)^3} + \frac{11}{7x^2 - x - 8}$$
.

2.24.
$$y = \sqrt[3]{(x+8)^5} - \frac{11}{1+3x-x^2}$$
.

2.25.
$$y = \frac{10}{4x - 3x^3 + 1} + \sqrt{(x+2)^4}$$
.

2.26.
$$y = \frac{3}{x-2} + \sqrt[4]{(2x^{10} - 3x + 1)^3}$$
.

2.27.
$$y = \frac{1}{(x-7)^4} - \sqrt[5]{(3x^4 - x + 5)^3}$$
.

2.28.
$$y = \sqrt{(x-4)^3} + \frac{7}{(8x^2 + x + 5)}$$
.

2.29.
$$y = \frac{1}{(3x+2)^8} - \sqrt{8+5x+x^2}$$
.

2.30.
$$y = \sqrt[3]{(x+3)^7} + \frac{10}{2x^2 + x + 7}$$
.

3.1.
$$y = \sin^5 8x + \cos 3x^5$$
.

3.2.
$$y = \cos^4 7x + tg(9x+1)^6$$
.

3.3.
$$y = tg^7 x + \arcsin 3x^7$$
.

3.4.
$$y = \arcsin^5 x + tg8x^9$$
.

3.5.
$$y = ctg5x + arccos 2x^3$$
.

3.6.
$$y = \arccos^3 2x + \ln(2x - 5)$$
.

3.7.
$$y = \ln^6 x + arctg5x^4$$
.

3.8.
$$y = arctg^7 2x + 5^{\sin x}$$
.

3.9.
$$y = 2^{\sin x} + arcctg10x^3$$
.

3.10.
$$y = 4^{-\sin x} + \ln^7(x+2)$$
.

3.11.
$$y = 2^{ctgx} + \arcsin 2x$$
.

3.12.
$$y = 6^{x^2} + \arccos 7x^7$$
.

3.13.
$$y = \sin^6 3x + arctg5x^7$$
.

3.14.
$$y = \cos^4 3x + arctg\sqrt{x}$$
.

3.15.
$$y = tg^5 3x + \arcsin x^7$$
.

3.16.
$$y = ctg^2 x + \arccos 12x^4$$
.

3.17.
$$y = 4^{-\sin x} + tg8x^6$$
.

3.18.
$$y = e^{\cos x} + ctg10x^5$$
.

3.19.
$$y = \cos^2 x + \arccos 5x$$
.

3.20.
$$y = \sin^2 6x + arcctg 10x^3$$
.

3.21.
$$y = \sin^6 2x + arcctg11x^{12}$$
.

3.22.
$$y = \cos \sqrt[10]{x} + \arccos x^5$$
.

3.23.
$$y = tg^7 2x + \cos 5x^2$$
.

3.24.
$$y = ctg^5 4x + \arccos \sqrt{x}$$
.

3.25.
$$y = tg \frac{1}{x} + \arccos x^3$$
.

3.26.
$$y = ctg^7 10x + arcctg^3 \sqrt{x}$$
.

3.27.
$$y = tg^4 5x + \arccos 5x^7$$
.

3.28.
$$y = 2^{ctgx} + arctg^5 7x$$
.

3.29.
$$y = \sin^7 3x + arcctg 2\sqrt{x}$$
.

3.30.
$$y = \cos^5 2x + \arcsin 2x^3$$
.

4.1.
$$y = arcctg^5 5x + \ln(2x - 4)$$
.

4.2.
$$y = arctg^8 7x + \ln(2x+1)$$
.

4.3.
$$y = \arccos^6 x + \ln(3x^2 - 2x + 1)$$

4.4.
$$y = \sqrt{\arccos 5x} + 2^{-x}$$
.

4.5.
$$y = tg^2 10x + arctg 6x^7$$
.

4.6.
$$y = 2^{-x^2} + \arcsin 4x^5$$
.

4.7.
$$y = arctg^8 x + \log_5(x + 23)$$
.

4.8.
$$y = \log_5(x+15) + \arccos 6x$$
.

4.9.
$$y = e^{-5x} + \arcsin^2 x$$
.

4.10.
$$y = \log_7(x+1) + \arcsin^5 x$$
.

4.11.
$$y = (x-2)^7 + arcctg2x^3$$
.

4.12.
$$y = ctg^2 4x + arctg 3x^7$$
.

4.13.
$$y = e^{-3\cos x} + arctg2x^5$$
.

4.14.
$$y = (x+2)\arccos x^4$$
.

4.15.
$$y = 2^{\sin x} + arcctgx^9$$
.

4.16.
$$y = 9^{-x^3} arcctgx^5$$
.

4.17.
$$y = 5^{\cos x} \arcsin^2 5x$$
.

4.18.
$$y = \ln(3x - 10) + \arccos^2 7x$$
.

4.19.
$$y = \lg(x+2) + \arcsin x^3$$
.

4.20.
$$y = \log(3x+1) + arctg^7 2x$$
.

4.21.
$$y = \ln(3x+9) + arcctg^5 x$$
.

4.22.
$$y = \lg(2x+7) + \arcsin 9x$$
.

4.23.
$$y = 5^{-\sin 5x} arctg8x$$
.

4.24.
$$y = 7^{\cos x} \operatorname{arcctg} 8x$$
.

4.25.
$$y = \lg(x^2 - 8) + \arcsin^2 6x$$
.

4.26.
$$y = \log_4(5x + 3) + \arccos^2 5x$$
.

4.27.
$$y = 5^{-x} arctg^3 9x$$
.

4.28.
$$y = \sin(x-4) + arcctg^4 7x$$
.

4.29.
$$y = \cos(3x+2) + arcctg^2 5x$$
.

4.30.
$$y = \log_2(3x+1) + arctg^2x^7$$
.

5.1.
$$y = tg^5 3x + \arcsin 7x^3$$
.

5.2.
$$y = (x+2)^3 + arctg5x^4$$
.

5.3.
$$y = 3^{-x^3} arctg 4x^4$$
.

5.4.
$$y = (x+7)^5 \operatorname{arcctg} 7x^5$$
.

5.5.
$$y = 5^{\cos x} \ln(x^{22} - x + 7)$$
.

5.6.
$$y = \log_4(3x - 8) + arctg\sqrt{2x}$$
.

5.7.
$$y = \arccos 5x + ctgx^6$$
.

5.8.
$$y = (x+4)^7 arcctg 5x^7$$
.

5.9.
$$y = \arccos 3x^2 + tg7x^3$$
.

5.10.
$$y = 5^{-3x^2} \arccos x^4$$
.

5.11.
$$y = arctg^4 x + \cos x^9$$
.

5.12.
$$y = 4(x-9)^4 \arcsin 9x^5$$
.

5.13.
$$y = (x+5)^{11} \arccos^2 10x$$
.

5.14.
$$y = 2^{-\sin 2x} \arcsin^5 12x$$
.

5.15.
$$y = (3x + 12)^7 \arccos \sqrt{x}$$
.

5.16.
$$y = (2x - 4)^5 \arcsin 7x^9$$
.

5.17.
$$y = \ln(3x-1) + \arccos 2x^4$$
.

5.18.
$$y = \log_{12}(x+4) + tg^3 4x$$
.

5.19.
$$y = (x-7)^8 \operatorname{arcctg}^2 10x$$
.

5.20.
$$y = \sqrt[3]{2x - 3} \arccos^4 3x$$
.

5.21.
$$y = \sqrt[3]{3x-1} \arcsin^6 5x$$
.

5.22.
$$y = (x-2)^5 \arccos x^7$$
.

5.23.
$$y = \sqrt{2(x+3)^5} \arcsin 3x^3$$
.

5.24.
$$y = \sqrt[3]{3(x+1)^2} \arccos 5x$$
.

5.25.
$$y = \sqrt[3]{4(x+1)^2}$$
 arccos 7x.

5.26.
$$y = \sqrt{(x-2)^3} ctg(8x-9)$$
.

5.27.
$$y = \sqrt[5]{(x+4)^6} \arcsin 11x^2$$
.

5.28.
$$y = 2\arcsin^5 4x + tg3x$$
.

5.29.
$$y = e^{-\cos 2x} \arcsin 5x$$
.

5.30.
$$y = \sqrt{(x+10)^7} \arccos^{10} x$$
.

6.1.
$$y = (2x-3)^6 \arccos x^3$$
.

6.2.
$$y = (x-14)^3 \arccos 2x^2$$
.

6.3.
$$y = ch^{13} 4x + arctg\sqrt{x}$$
.

6.4.
$$y = th\sqrt[2]{x} + arcctgx^2$$
.

6.5.
$$y = cth^7 15x + \arcsin x^2$$
.

6.6.
$$y = sh \frac{3}{x} + arcctg(7x+1)$$
.

6.7.
$$y = ch^{13}x + \arcsin 3x^2$$
.

6.8.
$$y = sh^3 8x + arcctgx^2$$
.

6.9.
$$y = th^5 (10x + 1) + \arcsin \sqrt{x}$$
.

6.10.
$$y = th^2(x+3) + \arccos \frac{21}{x}$$
.

6.11.
$$y = sh^4x + \arcsin x^2$$
.

6.12.
$$y = cth^4 11x + \arcsin 2\sqrt{x}$$
.

6.13.
$$y = th^{11}14x + arcctg2x^4$$
.

6.14.
$$y = cth^{10} 7x + \arcsin \sqrt{x}$$
.

6.15.
$$y = sh^{13}5x + \arcsin 8x^2$$
.

6.16.
$$y = th^5 (3x+1) + \arccos 3x^4$$
.

6.17.
$$y = 5ch^{12}5x + arcctg\sqrt{x}$$
.

6.18.
$$y = cth^{14} 3x + arctgx^{13}$$
.

6.19.
$$y = sh^{11}2x + \arccos 5x^2$$
.

6.20.
$$y = ch^{13}9x + arctg(2x-1)$$
.

6.21.
$$y = th^{11}x + arcctg\frac{2}{x}$$
.

6.22.
$$y = cth^7 2x + \arcsin(5x + 11)$$
.

6.23.
$$y = ch^{11} 7x + arctgx^3$$
.

6.24.
$$y = th^{14}8x + \arccos x^{10}$$
.

6.25.
$$y = cth4x^{15} + \arccos 5x$$
.

6.26.
$$y = cth10x + \arcsin^{14} x$$
.

6.27.
$$y = th^{15} 3x + arctg \sqrt{2x}$$
.

6.28.
$$y = sh^{14} 3x + \arccos 11x^4$$
.

6.29.
$$y = cth^{12} 4x + \arcsin 2x^3$$
.

6.30.
$$y = th^{13}5x + arcctg(x-5)$$
.

7.1.
$$y = \frac{e^{\arccos^3 x}}{\sqrt{x^2 + 5x - 1}}$$
.

7.2.
$$y = \frac{\sqrt{x+5}}{e^{arcctgx}}$$
.

7.3.
$$y = \frac{2e^{-ctg5x}}{(3x^2 - 4x + 2)}$$
.

7.4.
$$y = \frac{e^{-ctg6x}}{(3x^2 - x + 2)}$$

7.5.
$$y = \frac{\sqrt{7x^{11} - 3x + 2}}{e^{2\cos x}}$$
.

7.6.
$$y = \frac{e^{2tg3x}}{\sqrt{x^3 - x + 4}}$$
.

7.7.
$$y = \frac{e^{tgx}}{(x-5)^4}$$
.

7.8.
$$y = \frac{\sqrt[3]{x^2 - 5x + 2}}{e^{-x}}$$
.

7.9.
$$y = \frac{\sqrt{x^3 + 4x - 5}}{2e^x}$$
.

7.10.
$$y = \frac{e^{ctgx}}{3(x+4)^5}$$
.

7.11.
$$y = \frac{\sqrt{5 + x - x^2}}{e^x}$$
.

7.12.
$$y = \frac{e^{15x}}{\sqrt{x^2 - 5x - 7}}$$
.

7.13.
$$y = \frac{e^{-\sin x}}{(2x+15)^4}$$
.

7.14.
$$y = \frac{e^{\cos 3x}}{\sqrt{2x^2 - 6x - 12}}$$
.

7.15.
$$y = \frac{(x+5)^{13}}{e^{tgx}}$$
.

7.16.
$$y = \frac{e^{-tg3x}}{x^2 - 7}$$
.

7.17.
$$y = \frac{e^{-ar\sin 4x}}{(x-15)^5}$$
.

7.18.
$$y = \frac{2x^2 - 5x + 10}{e^{3x}}$$
.

7.19.
$$y = \frac{e^{-2x}}{(2x^2 - 3x + 14)^2}$$
.

7.20.
$$y = \frac{e^{14x}}{(2x+5)^3}$$
.

7.21.
$$y = \frac{e^{ctg15x}}{(x-5)^4}$$
.

7.22.
$$y = \frac{(12x-15)^6}{e^{-2x}}$$
.

7.23.
$$y = \frac{(x+10)^{14}}{e^{4x}}$$
.

7.24.
$$y = \frac{15x^2 + x - 12}{e^{-x}}$$
.

7.25.
$$y = \frac{\sqrt{12x^2 - 3x + 1}}{e^{2x}}$$
.

7.26.
$$y = \frac{e^{-2x^2}}{(12x-5)^{11}}$$
.

7.27.
$$y = \frac{e^{\cos 5x}}{(3x+4)^5}$$
.

7.28.
$$y = \frac{e^{\sin 15x}}{(2x-1)^2}$$
.

7.29.
$$y = \frac{\sqrt{12x^2 - x - 11}}{e^{-x^5}}$$
.

7.30.
$$y = \frac{e^{-ctgx}}{4x^3 + 17x - 15}$$
.

8.1.
$$y = \frac{\log_2(x-1)}{ctgx^3}$$
.

8.2.
$$y = \frac{\ln(15x-3)}{tg3x^4}$$
.

8.3.
$$y = \frac{\ln(3x+1)}{\cos 2x}$$
.

8.4.
$$y = \frac{\sin^{10} x}{\ln(x+3)}$$
.

8.5.
$$y = \frac{\cos 2x}{\lg(x-4)}$$

8.6.
$$y = \frac{tg^4 3x}{\lg(5x+9)}$$
.

8.7.
$$y = \frac{\log_7(2x+3)}{3ctg\sqrt{x}}$$
.

8.8.
$$y = \frac{\ln(x+3)}{2tg^2 5x}$$
.

8.9.
$$y = \frac{\lg(9x+9)}{\cos^2 6x}$$
.

8.10.
$$y = \frac{ctg^{11} 2x}{\ln(x-2)}$$
.

8.11.
$$y = \frac{tg^{11}(x-2)}{\lg(2x+3)}$$
.

8.12.
$$y = \frac{\sin^3(x+4)}{\lg(x-3)}$$
.

8.13.
$$y = \frac{\cos^5(9x-3)}{\lg(x+1)}$$
.

8.14.
$$y = \frac{\sin^2(x+7)}{\ln(2x+3)}$$
.

8.15.
$$y = \frac{ctg^3(4x-10)}{\log_3(2x+2)}$$
.

8.16.
$$y = \frac{\lg^3 2x}{\sin x^2}$$
.

8.17.
$$y = \frac{\ln^2(3x+2)}{\cos 3x^4}$$
.

8.18.
$$y = \frac{\log_2(5x - 10)}{tg\sqrt{x}}$$
.

8.19.
$$y = \frac{\log_3(2x-3)}{ctg3x}$$
.

8.20.
$$y = \frac{\ln^{10}(2x-3)}{ctg(1/x)}$$
.

8.21.
$$y = \frac{\lg(3x+12)}{\sin x^5}$$
.

8.22.
$$y = \frac{ctg^57x}{\ln(x+3)}$$

8.23.
$$y = \frac{ctg\sqrt{2x-1}}{\lg(4x+3)}$$
.

8.24.
$$y = \frac{tg(x-1)}{\ln^2(3x+1)}$$
.

8.25.
$$y = \frac{\cos^{11} x}{\lg(3x^2 - x + 2)}$$
.

8.26.
$$y = \frac{\log_2(2x+6)}{tg7x}$$
.

8.27.
$$y = \frac{\ln^2 x}{ctg(3x-3)}$$
.

8.28.
$$y = \frac{tg^4 2x}{\ln(3x+7)}$$
.

8.29.
$$y = \frac{\log_4(3x+4)}{\cos^7 x}$$
.

8.30.
$$y = \frac{tg^5 2x}{\lg(3x^2 - x + 4)}$$
.

9.1.
$$y = \frac{arcctg^5 2x}{sh\sqrt{2x}}$$
.

9.3.
$$y = \frac{\arccos 2x^4}{th^3x}$$
.

9.5.
$$y = \frac{cth^5(x+7)}{\arccos x}$$
.

9.7.
$$y = \frac{\arccos^7 5x}{cthx^5}$$
.

9.2.
$$y = \frac{arctg^3 3x}{sh(1/x)}$$
.

9.4.
$$y = \frac{\arcsin 2x^3}{\sinh \sqrt{x}}$$
.

9.6.
$$y = \frac{th4x^5}{arctg^5 3x}$$

9.8.
$$y = \frac{\arcsin^8 2x}{sh(2x+1)}$$

9.9.
$$y = \frac{cth^4(3x+5)}{\arccos 5x}$$
.

9.11.
$$y = \frac{\arcsin^2 2x}{th(2x-5)}$$
.

9.13.
$$y = \frac{\arcsin x^5}{th^2 3x}$$
.

9.15.
$$y = \frac{\arccos 2x^3}{sh^5x}$$

9.17.
$$y = \frac{th^5(2x+3)}{\arcsin 3x}$$
.

9.19.
$$y = \frac{sh^{11}3x}{\arccos 5x}$$
.

9.21.
$$y = \frac{th^2(2x+10)}{arcctg\sqrt{2x}}$$
.

9.23.
$$y = \frac{arcctg^{10} 2x}{ch(x-10)}$$
.

9.25.
$$y = \frac{\sqrt{\arccos 2x}}{sh^3 2x}$$
.

9.27.
$$y = \frac{arctg^5 3x}{\sqrt[3]{cth2x}}$$
.

9.29.
$$y = \frac{\sqrt{ch^3 3x}}{arcctg 4x}$$
.

10.1.
$$y = \frac{9arctg(2x+1)}{(3x-1)^2}$$
.

10.3.
$$y = \frac{6\arccos(5x-1)}{(3x+2)^4}$$
.

10.5.
$$y = \frac{3arcctg(5x-1)}{(2x+3)^5}$$
.

10.7.
$$y = \frac{5\arccos 2x}{(x+3)^7}$$
.

10.9.
$$y = \frac{8arctg(2x+1)}{(3x-5)^2}$$
.

10.11.
$$y = \frac{3\lg(2x+1)}{(3x+10)^5}$$
.

10.13.
$$y = \frac{2\log_3(5x+2)}{(3x+1)^2}$$
.

10.15.
$$y = \frac{\ln(2x+3)}{(3x-6)^4}$$
.

9.10.
$$y = \frac{\sqrt[5]{arctgx}}{ch^2x}$$
.

9.12.
$$y = \frac{arctg^2(4x+2)}{arctgx^3}$$
.

9.14.
$$y = \frac{arctg^3(5x+1)}{ch\sqrt{2x}}$$
.

9.16.
$$y = \frac{cth^5(3x-5)}{\arccos 2x}$$
.

9.18.
$$y = \frac{cth^4(2x-1)}{\arccos x^3}$$
.

9.20.
$$y = \frac{\sqrt{ch^3 x}}{arctg10x}$$
.

9.22.
$$y = \frac{\arcsin^2 2x}{ch(3x-5)}$$
.

9.24.
$$y = \frac{\arccos^{10} 10x}{cth(3x-1)}$$

9.26.
$$y = \frac{\arcsin^3 2x}{\sqrt{cthx}}$$
.

9.28.
$$y = \frac{arctg^{10} 2x}{th(2x+3)}$$
.

9.30.
$$y = \frac{\sqrt[5]{ch7x}}{arctg(3x+1)}$$
.

10.2.
$$y = \frac{3arctg(5x+4)}{(2x+1)^5}$$
.

10.4.
$$y = \frac{2\arcsin(3x+1)}{2(x+2)^5}$$
.

10.6.
$$y = \frac{3arctg(5x+3)}{(2x-3)^3}$$
.

10.8.
$$y = \frac{\arcsin(2x+10)}{(3x-5)^4}$$

10.10.
$$y = \frac{2\arcsin(4x-3)}{(3x+2)^4}$$
.

10.12.
$$y = \frac{2\ln(3x+1)}{(3x-1)^2}$$
.

10.14.
$$y = \frac{2\log_4(3x-5)}{3(x-1)^5}$$
.

10.16.
$$y = \frac{2\lg(5x+8)}{(3x+1)^7}$$
.

10.17.
$$y = \frac{2\log_2(3x^2 + 1)}{(4x - 3)^4}$$
.
10.18. $y = \frac{2\log_5(3x + 11)}{(2x + 4)^2}$.
10.19. $y = \frac{4\log_2(3x - 5)}{(2x - 5)^5}$.
10.20. $y = \frac{10\log_5(3x^2 + 2x)}{(2x + 3)^3}$.
10.21. $y = \frac{\log_7(3x^2 + 6)}{(2x - 5)^2}$.
10.22. $y = \frac{\ln(2x - 11)}{(2x + 3)^7}$.
10.24. $y = \frac{2\log_3(2x - 1)}{(3x + 5)^4}$.
10.25. $y = \frac{2\log_4(3x + 9)}{(2x - 7)^2}$.
10.26. $y = \frac{\lg(3x^2 + x)}{(2x + 1)^4}$.
10.27. $y = \frac{3\ln(2x^2 + 10)}{(3x - 1)^5}$.
10.28. $y = \frac{\log_2(2x - 5)}{(3x - 5)^3}$.
10.30. $y = \frac{5\lg(2x + 6)}{(3x - 7)^2}$.

Список вопросов к экзамену. 1 семестр.

- 1. Определение высказывания
- 2. Парадокс Брадобрея
- 3. Операции над высказываниями
- 4. Операции над множествами
- 5. Логические законы
- **6.** Определение отношения. Отношение эквивалентности (рефлексивность, симметричность, транзитивность)
- 7. Определение функции. Классификация.
- 8. Равномощные множества. Счетные множества.
- 9. Утверждение о счетности объединения счетных множеств (док-во)
- 10.Доказательство неэквивалентности булеана и самого множества.
- 11. Доказательство иррациональности корня из двух.
- 12. Определение вещественных чисел и их свойства.
- 13. Аксиома Архимеда
- 14. Утверждение о представлении натуральных чисел.
- 15. Неравенство треугольника (док-во)
- **16.** Утверждение о представлении вещественного числа в виде десятичной дроби.
- 17. Определение целой т дробной части числа. Неравенство для них.
- 18. Правило сравнения действительных чисел.
- 19. Определение окрестностей
- 20. Определение ограниченных множеств
- 21. Определение супремума и инфимума. Запись в математической форме.

- 22. Теорема о существовании супремума и инфимума.
- 23. Доказательство теоремы о плотности рациональных чисел.
- 24. Определения системы вложенных отрезков, стягивыающихся отрезков.
- 25. Лемма об отделимости множеств (док-во)
- 26. Лемма о вложенных отрезках (док-во)
- 27. Лемма о стягивающихся отрезках (док-во)
- 28. Определение предела функции по Гейне.
- **29.**Свойства пределов функции. Единственность, арифметические операции, предельный переход в неравенствах, теорема о двух милиционерах.
- 30. Определение предела по Коши.
- 31. Эквивалентность предела по Коши по Гейне.
- 32. Определение базы. Примеры баз. Определение предела по базе.
- 33. Критерий Коши существования предела.
- 34. Теорема о пределе сложной функции.
- 35. Определение непрерывности в точке.
- 36. Классификация разрывов. Примеры.
- 37. Арифметические операции над непрерывными функции.
- 38. Функция Дирихле.
- 39. Непрерывность сложной функции.
- 40. Первый замечательный предел.
- 41. Второй замечательный предел.
- 42. Теорема о точках разрыва монотонной функции.
- 43. Теорема о нуле непрерывной функции.
- 44. Теорема о промежуточном значении.
- 45. Первая теорема Вейерштрасса.
- 46. Теорема о сохранении знака непрерывной функции.
- 47.В чем заключается метод Больцано доказательства теорем?
- 48. Вторая теорема Вейерштрасса.
- 49. Определение равномерной непрерывности.
- 50. Теорема Кантора.
- 51. О символика. Определение о-малой, ее свойства.
- 52. Определение О-большой.
- 53. Эквивалентные функции. Таблица эквивалентностей.
- 54. Вычисление пределов по таблице.
- **55.** Техника вычисления пределов, виды неопределенностей. Приемы: умножение на сопряженное, таблица эквивалентностей, сведение одной неопределенности к другой, замена переменной. "Скорость возрастания" Ln n, p(n), a^n, n!.
- 56. Определение производной, ее геометрический и физический смысл.

- 57. Уравнение касательной и нормали. Вывод.
- 58. Определение дифференцируемости в точке.
- 59. Чем дифференциал отличается от производной?
- 60. Связь между непрерывностью и дифференцируемостью.
- 61. Дифференцирование сложной функции.
- 62. Правила дифференцирования.
- 63. Таблица производных.
- 64. Теорема о производной обратной функции.
- 65. Инвариантность формы 1-го дифференциала.
- 66. Правила дифференцирования в дифференциалах.
- 67. Производные высших порядков. Формула Лейбница.
- **68.** Изменение формы второго дифференциала. Частный случай инвариантности.
- 69. Условие возрастания и убывания в точке.
- 70. Условие возрастания и убывания на интервале.
- 71. Теорема Ролля.
- 72. Теорема Коши.
- **73.** Формула конечных приращений (Лагранжа). Теорема о разрыве монотонной функции (док-во)
- 74. Теорема о нуле непрерывной функции (док-во)
- 75. Первая теорема Вейерштрасса (док-во)
- 76. Теорема о промежуточном значении (док-во)
- 77. Теорема об обратной функции
- 78.Вторая теорема Вейерштрасса (док-во)
- 79. Определение равномерной непрерывности
- **80.**Пример функции, непрерывной на множестве, но не являющейся равномерно непрерывной на нем. Док-во.
- 81. Теорема Кантора
- **82.**Определение производной и ее геометрический смысл. Уравнения касательной и нормали.
- 83. Определение дифференцируемости и дифференциала
- 84. Геометрический смысл дифференциала
- 85.Правила дифференцирования (док-во)
- 86. Правило дифференцирования сложной функции (док-во)
- 87. Утверждение о связи дифференцируемости и непрерывности (док-во)
- 88.Производная обратной функции (док-во)
- 89. Производная параметрически заданной функции (док-во)
- 90. Таблица производной с доказательством
- 91. Определение возрастания, убывания в точке. Теорема о связи

монотонности и производной.

- 92. Определение локального максимума и минимума.
- 93. Необходимое условие экстремума. Доказательство. Геометрический смысл.
- 94. Теорема Ролля. Док-во
- 95. Теорема Коши. Док-во
- 96. Теорема Лагранжа. Док-во
- 97. Первое правило Лопиталя. Доказательство.
- 98. Второе правило Лопиталя.
- 99. Формула Тейлора с остатком в форме Пеано. Док-во.
- 100. Производные и дифференциалы высших порядков.
- 101. Формула Лейбница. Док-во
- 102. Инвариантность формы первого дифференциала и неинвариантность высших дифференциалов. Частный случай инвариантности высших дифференциалов.
- 103. Формула Тейлора в диференциальной форме

ТЕСТОВЫЕ ЗАДАНИЯ

по модулю 1. Введение в математический анализ

Вопрос 1.

Функция $y = \sqrt{x - x^2}$ отображает множество (0;1) на множество?

- *1*. (0; 1/2]
- 2. (0; 1/2)
- *3*. □ *4*. (-1/2; 1/2)
- *5*. 5) {0}

Вопрос 2.

Найдите предел $\lim_{x\to 1} \frac{5x^2-5}{x^2+3x+2}$.

- 1. -2
- 2. <u>-10</u>
- *3*. 2
- 4. 4
- 5. 1

Вопрос 3.

Последовательность $a_n = \frac{(-1)^n(n+1)}{2n+3}$ является.

- 1. сходящейся
- 2. ограниченной
- 3. неограниченной

4. возрастающей

Вопрос 4.

Последовательность $a_n = \frac{n+1}{2n+3}$ является.

- 1. сходящейся
- 2. ограниченной
- 3. неограниченной
- 4. возрастающей

Вопрос 5.

Определение предела функции по Коши использует язык.

- 1. последовательностей
- 2. функциональный
- 3. «эпсилон-дельта»
- 4. рекурсий

Вопрос 6.

Предел функции $f(x) = \frac{|x-2|}{x-2}$ в точке x=2.

- 1. равен единице
- 2. не существует
- 3. равен минус единице
- 4. равен бесконечности

Вопрос 7.

Левый предел функции $f(x) = \frac{|x-2|}{x-2}$ в точке x=2.

- 1. равен единице
- 2. не существует
- 3. равен минус единице
- 4. равен бесконечности

Вопрос 8.

Правый предел функции $f(x) = \frac{|x-2|}{x-2}$ в точке x=2.

- 1. равен единице
- 2. не существует
- 3. равен минус единице
- 4. равен бесконечности

Вопрос 9.

Функция, непрерывная на отрезке.

- 1. обязательно имеет ноль на этом отрезке
- 2. ограничена на этом отрезке
- 3. возрастает на этом отрезке
- 4. обязательно имеет производную на этом отрезке

Вопрос 10.

Предел $\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n$ равен?

- 1. e
- 2. e^3
- 3. <u>e</u>²
- 4. 2e5. $\frac{1}{2e}$

Вопрос 11.

Предел $\lim_{n\to\infty} \left(\frac{3n+2}{2n-1}\right)^n$ равен?

- 1,5 1.
- 2. <u>∞</u>
 3. 3
- 4. 1
- 5. 0

Вопрос 12.

Предел $\lim_{x\to 0} \frac{x-x^2}{\sin 2x}$ равен?

- 1.
- 2. 0
- 3. -2
- 0,5 4.
- 5. -1,2

Вопрос 13.

На отрезке [-1;1] функция f(x) = 1/2x имеет

- 1. разрыв
- 2. производную
- точку максимума
- 4. точку минимума

Вопрос 14.

Предел $\lim_{x\to 0}\frac{x-x^2}{\sin 2x}$ имеет дело с неопределенностью типа.

- $0/_{\infty}$ 1.
- 2. $\frac{1}{\infty}$
- 3. ∞/∞
- $^{0}/_{0}$ 4.

Вопрос 15.

При $x \to 0$ фукция $f(x) = 1 - \cos x$ эквивалентна

- 1. x
- 2. x^2
- 3. $-x^2$
- 4. $x^2/2$

Вопрос 16.

Функция $y = x^3 + 1$ отображает множество (0;1) на множество?

- *1*. (0; 1]
- 2. (0; 1)
- *3*. □
- *4*. (1; 2)
- *5*. (-1; 2)

Вопрос 17.

Найдите предел $\lim_{x\to 1} \frac{2x^2-2}{x^2+3x+2}$.

- *1*. -2
- 2. <u>-4</u>
- *3*. 2
- *4*. 4
- *5*. 1

Вопрос 18.

Последовательность $a_n = \frac{(-2)^n(n+1)}{2n+3}$ является.

- 1. сходящейся
- 2. ограниченной
- 3. неограниченной
- 4. возрастающей

Вопрос 19.

Последовательность $a_n = \frac{2n+1}{2n+3}$ является.

- 1. сходящейся
- 2. ограниченной
- 3. неограниченной
- 4. возрастающей

Вопрос 20.

Определение предела функции по Гейне использует язык.

- 1. последовательностей
- 2. функциональный
- 3. «эпсилон-дельта»
- 4. рекурсий

Вопрос 21.

Предел функции $f(x) = \frac{|x-1|}{x-1}$ в точке x=1.

- 1. равен единице
- 2. не существует
- 3. равен минус единице
- равен бесконечности

Вопрос 22.

Левый предел функции $f(x) = \frac{|x-1|}{x-1}$ в точке x=1.

- 1. равен единице
- 2. не существует
- равен минус единице
- равен бесконечности

Вопрос 23.

Правый предел функции $f(x) = \frac{|x-1|}{x-1}$ в точке x=1.

- равен единице
- 2. не существует
- равен минус единице 3.
- 4. равен бесконечности

Вопрос 24.

Функция $f(x) = \frac{|x-1|}{x-1}$ в точке x=1 имеет.

- 1. разрыв первого рода (скачок)
- 2. разрыв второго рода
- 3. устранимый разрыв
- существенный разрыв

Вопрос 25.

Функция, непрерывная на отрезке.

- 1. обязательно имеет ноль на этом отрезке
- 2. достигает минимума на этом отрезке
- *3*. возрастает на этом отрезке
- обязательно имеет производную на этом отрезке

Вопрос 26.

Предел $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^n$ равен?

- 1. e

- 2. $\frac{e^3}{3}$ 3. e^2 4. 3e5. $\frac{1}{2e}$

Вопрос 27.

Предел $\lim_{n\to\infty} \left(\frac{2n+2}{3n-1}\right)^n$ равен?

- 1. 1,5
- 2. ∞
- 3. 3
- 4. 1
- 5. <u>0</u>

Вопрос 28.

Предел $\lim_{x\to 0} \frac{2x-x^2}{\sin 2x}$ равен?

- 1. <u>1</u>
- 2. 0
- 3. -2
- 4. 0,5
- 5. -1,2

Вопрос 29.

На отрезке [-1;1] функция f(x) = 1/3x имеет

- 1. разрыв первого рода (скачок)
- 2. разрыв второго рода
- 3. устранимый разрыв
- 4. разрыв слева
- 5. разрыв справа

Вопрос 30.

Предел $\lim_{x\to 0}\frac{x}{\sin 2x}$ имеет дело с неопределенностью типа.

- *1.* 0/∞
- 2. ¹/∞
- *3*. ∞/∞
- 4. $^{0}/_{0}$

Вопрос 31.

При $x \to 0$ фукция $f(x) = 1 - \cos 2x$ эквивалентна

- *1*. x
- 2. $2x^2$
- 3. $-x^2$
- 4. $x^2/2$

Вопрос 32.

Найдите предел $\lim_{x\to -1} \frac{3x^2-3}{x^2+4x+3}$.

- 1. -2
- 2. -12
- 3. 2
- 4. 4
- 5. -3

Вопрос 33.

Последовательность $a_n = \frac{(-3)^n(2n+1)}{2n+3}$ является.

- 1. сходящейся
- 2. ограниченной
- 3. неограниченной
- 4. возрастающей

Вопрос 34.

Последовательность $a_n = \frac{5n+1}{2n+3}$ является.

- 1. сходящейся
- 2. ограниченной
- 3. неограниченной
- 4. возрастающей

Вопрос 35.

Определение правого предела функции по Гейне использует язык.

- 1. последовательностей
- 2. функциональный
- 3. «эпсилон-дельта»
- 4. рекурсий

Вопрос 36.

Предел функции $f(x) = \frac{|x-3|}{x-3}$ в точке x=3.

- 1. равен единице
- 2. не существует
- 3. равен минус единице
- 4. равен бесконечности

Вопрос 37.

Левый предел функции $f(x) = \frac{|x-3|}{x-3}$ в точке x=31.

- 1. равен единице
- 2. не существует
- 3. равен минус единице
- 4. равен бесконечности

Вопрос 38.

Правый предел функции $f(x) = \frac{|x-3|}{x-3}$ в точке x=3.

- 1. равен единице
- 2. не существует
- 3. равен минус единице
- 4. равен бесконечности

Вопрос 39.

Функция $f(x) = \frac{|x-4|}{x-4}$ в точке x=4 имеет.

- 1. разрыв первого рода (скачок)
- 2. разрыв второго рода3. устранимый разрыв
- существенный разрыв

Вопрос 40.

Функция, непрерывная на отрезке.

- 1. обязательно имеет ноль на этом отрезке
- 2. достигает максимума на этом отрезке
- 3. возрастает на этом отрезке
- обязательно имеет производную на этом отрезке 4.

Вопрос 41.

Предел $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ равен?

- e
 e³
- 3. **e**²
- 4. 3*e*
- 5. $\frac{1}{2e}$

Вопрос 42.

Предел $\lim_{n\to\infty} \frac{3n+5}{2n+4}$ равен?

- 1. <u>1,5</u>
- 2. ∞
- 3. 3
- 4. 1
- 5. 0

Вопрос 43.

Предел $\lim_{x\to 0} \frac{3x-x^2}{arcsin2x}$ равен?

- *1*. 1,5
- 2. 0
- *3*. -2
- 4. 0,5

Вопрос 44.

На отрезке [-1;2] функция f(x) = 1/(x-1) имеет

- 1. разрыв первого рода (скачок)
- 2. разрыв второго рода
- 3. устранимый разрыв
- 4. разрыв слева
- 5. разрыв справа

Вопрос 45.

Предел $\lim_{x\to 0}\frac{x}{tgx}$ имеет дело с неопределенностью типа.

- *1.* 0/∞
- 2. ¹/∞
- *3.* ∞/∞
- $4. \quad {}^{0}/_{0}$

Вопрос 46.

При $x \to 0$ фукция $f(x) = 2^x$ эквивалентна

- 1. x lnx
- $2. \quad 2x \ln x$
- 3. <u>xln2</u>
- *4*. x