МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

«СОГЛАСОВАНО» Руководитель ОП	«УТВЕРЖДАЮ» Заведующая кафедрой экологии
(подпись)	(подпись)
«27 » декабря 2019 г.	«27» декабря 2019 г.
РАБОЧАЯ ПРОГРАММА УЧЕБІ	НОЙ ДИСЦИПЛИНЫ

Физика

Направление подготовки 05.03.06 Экология и природопользование (Профиль «Экология и притродопользование»)

Форма подготовки очная

курс 1 семестр 2
лекции <u>18</u> час.
практические занятия не предусмотрены
лабораторные работы 36 час.
в том числе с использованием MAO лек / пр 18 _ / лаб 00 _ час.
всего часов аудиторной нагрузки54_ час.
в том числе с использованием МАО 18 час.
самостоятельная работа 54 час.
в том числе на подготовку к экзамену час.
контрольные работы (количество) не предусмотрены
курсовая работа / курсовой проект не предусмотрены
зачет 2 семестр
экзамен не предусмотрен

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного Министерством образования РФ по направлению подготовки Образовательного стандарта, самостоятельно установленного ДВФУ, утвержденного приказом ректора ДВФУ № 12-13-2030 от 21.10.2016 г. и Приложения 5 к приказу ректора ДВФУ № 12-13-1064/1 от 04.06.2018 г. «Об утверждении макетов основной профессиональной образовательной программы ВО»

Рабочая программа обсуждена на	заседании кафедры	экологии
протокол № <u>25</u> от « <u>27</u> »	декабря 20_19 г.	

Владивосток

Оборотная сторона титульного листа РПД

І. Рабочая програ	амма пересмо	трена на засед	цані	ии кафедры/департамента:
Протокол от «		20	_ г.	№
Заведующий кафе	дрой			
		(подпись)		(И.О. Фамилия)
II. Рабочая прогр	рамма пересмо	отрена на засе	дан	ии кафедры/департамента:
Протокол от «		20	_ г.	№
Заведующий кафе	дрой			
Заведующий кафе	-	(подпись)		(И.О. Фамилия)
Протокол от «		20	_ г.	
Заведующий кафе	дрой			
		(подпись)		(И.О. Фамилия)
	_	_		нии кафедры/департамента:
Протокол от «	»	20	_ г.	№
Заведующий кафе	дрой			·
		(подпись)		(И.О. Фамилия)

Цели и задачи освоения дисциплины:

Цель: научить студентов понимать и пользоваться при решении профессиональных задач основными законами физики.

Задачи:

- студенты должны знать основные законы физики;
- научить применять основные законы физики при решении конкретных задач;
- студенты-экологи должны владеть методами научного эксперимента.

Для успешного изучения дисциплины «Физика для экологов» у обучающихся должны быть сформированы следующие предварительные компетенции:

• умение применять базовые знания фундаментальных разделов наук о Земле, естественно-научного и математического циклов при решении задач в области экологии и природопользовании.

В результате изучения данной дисциплины у студента формируются следующие компетенции:

Код компетенции	Этапы формирования компетенции			
ОПК-2 владение базовыми знаниями	Знает	основные законы, теории, модели, гипотезы физики		
фундаментальных разделов физики, химии и биологии в объеме, необходимом для освоения физических, химических и биологических основ в экологии и природопользования; владением методами химического анализа, владением знаниями о современных динамических процессах в природе и техносфере, о состоянии геосфер Земли, экологии и эволюции биосферы,	Умеет Владеет	модели, гипотезы физики обобщать, анализировать информацию, ставить цели и выбирать пути ее достижения навыками работы с экспериментальным оборудованием, методиками экспериментальных исследований, навыками работы с научной и методической литературой		
глобальных экологических проблемах, методами отбора и анализа геологических и биологических проб, а также навыками идентификации и описания биологического разнообразия, его оценки современными методами количественной обработки информации				

2. Трудоёмкость дисциплины и видов учебных занятий по дисциплине

Общая трудоемкость дисциплины составляет 3 зачётные единицы 108 академических часов).

(1 зачетная единица соответствует 36 академическим часам)

Видами учебных занятий и работы обучающегося по дисциплине являются:

Обозначение	Виды учебных занятий и работы обучающегося			
Лек	Лекции			
Лаб	Лабораторные работы			
CP	Самостоятельная работа обучающегося в период теоретического обучения			

Структура дисциплины:

Форма обучения – очная.

		d	Количество часов по видам учебных занятий и работы обучающегося					_	
Nº	Наименование раздела дисциплины	Семестр	Лек	Лаб	ďΠ	OK	CP	Контроль	Формы промежуточной аттестации
1	Раздел I. Механика	2	6	14	-				
2	Раздел 2. Термодинамика	2	4	8	-		54		УО-1;
3	Раздел 3. Электромагнетизм	2	8	14	-	_	54	1	30-1,
	Итого:		18	36	-	-	54	-	

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Лекционные занятия (18 час.)

Раздел I. Механика (6 час.)

Тема 1. Механика материальной точки (4 час.)

Основная задача механики и ее решение применительно к математическому маятнику. Фундаментальные взаимодействия. Механическая работа. Механическая энергия. Законы сохранения энергии, импульса и момента импульса.

Тема 2. Механика твердого тела (2 час.)

Твердое тело, центр масс твердого тела. Кинематика и динамика плоского вращения твердого тела.

Раздел II. Термодинамика (4 час.)

Тема 1. Вещество как форма материи (2 час.).

Основные положения молекулярно-кинетической теории строения вещества.

Тема 2. Термодинамические системы (2 час.).

Термодинамические системы и температура. Начала термодинамики.

Раздел III. Электромагнетизм (8 час.)

Тема 1. Электрическое поле (3 час.).

Электрический заряд и электрическое поле. Напряженность и потенциал электрического поля. Энергия электрического поля. Электрический ток.

Тема 2. Магнитное поле (3 час).

Электрический ток и магнитное поле. Магнитная индукция и энергия магнитного поля.

Тема 3. Волны (2 час.).

Волны, как основной способ передачи энергии в пространстве. Уравнение волны. Механические и электромагнитные волны.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА И САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Лабораторные работы (36 час.)

- **1.** Лабораторная работа № 1.0 Измерение линейных размеров тел с помощью штангенциркуля и микрометра (4 часа).
- Лабораторная работа № 1.3 Определение момента инерции твердых тел (6 часа).
- 3. Лабораторная работа № 1.2 Закон Гука (4часа).
- 4. Лабораторная работа № 1.1 Математический маятник (4 часа).
- 5. Лабораторная работа № 2.2 Законы идеального газа (4 часа).
- 6. Лабораторная работа № 3.01 Электростатическое поле (6 часа).
- 7. Лабораторная работа № 3.2 Изучение вольтамперной характеристики проводников методом наименьших квадратов (4 часа).
- 8. Лабораторная работа № 4.1 Линзы (4 часа).

Задания для самостоятельной работы (60 час.)

Самостоятельная работа учащихся включает:

- 1) работу с основной и дополнительной учебной и учебно-методической литературой по предмету;
- 2) оформление отчетов по лабораторным работам;
- 3) оформление письменных ответов на вопросы к лабораторным работам;
- 4) подготовке к устному собеседованию по результатам лабораторных работ.

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине включает в себя:

- учебно-методические указания к выполнению соответствующих

лабораторных работ;

- план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;
- требования к представлению и оформлению результатов самостоятельной работы;
 - критерии оценки выполнения самостоятельной работы.

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение в часах	Форма контроля
1.	1-2 недели	Освоение методики расчета погрешностей	4	Отчет по л.р. 1.0
2.	3-4 недели	Работа с учебно - методической литературой по л.р.1.2, знакомство с графическим анализом результатов л.р.	6	Отчет по л.р.1.2, УО-1 по теории к л.р. 1.2
3. 5-6 недели		Работа с учебно - методической		Отчет по л.р.1.1, УО-1 по теории к л.р. 1.1
4.	7-8 недели	Работа с учебно - методической литературой по л.р.1.3, графический анализ результатов л.р. Теоретический расчет результатов эксперимента	6	Отчет по л.р.1.3, УО-1 по теории к л.р. 1.3
5.	9-10 недели	Работа с учебно - методической литературой по л.р.2.2, графический анализ результатов л.р. Работа с программой EXEL	6	Отчет по л.р.2.2, УО-1 по теории к л.р. 2.2
6.	11-12 недели	Работа с учебно - методической литературой по л.р.3.2, графический анализ	6	Отчет по л.р.3.2, УО-1 по теории к л.р. 3.2

		результатов л.р. Работа с программой EXEL		
7.	13-14 недели	Работа с учебно - методической литературой по л.р.3.01, графический анализ результатов. Знакомство с методами моделирования	6	Отчет по л.р.3.01, УО-1 по теории к л.р. 3.01
8.	15-16 недели	Работа с учебно - методической литературой по л.р.4.1, Знакомство с оптическими методами исследования	6	Отчет по л.р.4.1, УО-1 по теории к л.р. 4.1
9.	В течение семестра	Подготовка к зачету	14	Зачет (УО-1)

Требования к представлению и оформлению результатов самостоятельной работы

В ходе лабораторной работы, выполняемой во время аудиторного занятия, все наблюдения по ходу выполнения эксперимента, результаты записываются в тетрадь. Для более полного же осмысления результатов работы и закрепления методики ее выполнения студенты самостоятельно оформляют отчет по лабораторной работе.

Отчет состоит из четырех обязательных частей.

- 1. Наименование и цель выполнения работы, перечень и описание приборов и оборудования, теоретическое обоснование работы, закономерности, лежащие в основе ее выполнения.
- 2. Таблица результатов измерений и расчетов, графики.
- 3. Выводы по работе.

Критерии оценки выполнения самостоятельной работы (подготовка отчета по лабораторной работе)

5 баллов выставляется, если студент представил полный отчет по лабораторной работе, содержащий все необходимые разделы и результаты самостоятельной работы, статистические сведения, продемонстрировал знание и владение навыком самостоятельной исследовательской работы по теме исследования; методами и приемами анализа. При устном ответе на собеседовании фактических ошибок, связанных с пониманием проблемы, нет. Ответ показывает прочные знания основных процессов изучаемой предметной

области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; логичность и последовательность ответа; умение приводить примеры.

- 4 балла выставляется, если студент представил полный отчет по лабораторной работе, содержащий все необходимые разделы и результаты самостоятельной работы, статистические сведения, продемонстрировал знание и владение навыком самостоятельной исследовательской работы по теме исследования; методами и приемами анализа. При собеседовании обнаружил прочные знания основных процессов изучаемой предметной области, владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, однако допустил одну-две неточности в ответе.
- **3 балла** выставляется, если студент представил отчет по лабораторной работе с недочетами. При собеседовании обнаружил недостаточную глубину и полноту раскрытия темы; знание основных вопросов теории; слабо сформированные навыки анализа явлений, процессов, недостаточным умением давать аргументированные ответы и приводить примеры; недостаточно свободное владение монологической речью, логичность и последовательность ответа.
- 2 балла выставляется, если студент представил отчет по лабораторной работе со значительными недочетами и ошибками. При собеседовании обнаружил незнание процессов изучаемой предметной области, неглубокое раскрытие темы; незнание основных вопросов теории, несформированные навыки анализа явлений, процессов; неумение давать аргументированные ответы, слабое владением монологической речью, отсутствие логичности и последовательности. Допустил серьезные ошибки в содержании ответа; обнаружил незнание современной проблематики изучаемой области.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№ п/п	Контроли руемые модули/	Код индикатора достижения компетенции	Результаты обучения	Оценочные (наимено	•
	разделы /				
	темы			текущий	промежуточ ная
	дисципли			контроль	аттестация
	ны				, ,

-		OFFIC 2	1	770.4	
1		ОПК-2 Использует полученные знания	Знает основные законы кинематики материальной точки.	УО-1 собеседование / устный опрос; лабораторная работа 1.2	
		фундаментальн ых разделов наук о Земле в профессиональн	Знает основные законы динамики материальной точки.	УО-1 собеседование / устный опрос; лабораторная работа 1.1	вопросы к зачету 1-5
	Penyay I	ой деятельности	Знает основные законы кинематики и динамики твердого тела	УО-1 собеседование лабораторная работа 1.3	
	Раздел I. Механика	ОПК-2 Применяет	Знает закон сохранения импульса и умеет его применять при анализе конкретных результатов	УО-1 собеседование / устный опрос	
		математические и естественно- научные знания для решения	Знает закон сохранения механической энергии и умеет его применять	УО-1 собеседование / устный опрос; лабораторная работа 1.1	вопросы к зачету 6-11
	для решения экологических задач	Владеет методами анализа результатов лабораторных работ	УО-1 собеседование / устный опрос; лабораторная работа 1.2, 1.3, 1.1		
2		ОПК-2	Знает основные положения мкт строения вещества	УО-1 собеседование / устный опрос	
	Раздел 2.	Использует полученные знания фундаментальн	Умеет графически обрабатывать, систематизировать и анализировать результаты лабораторной работы	УО-1 собеседование / устный опрос; лабораторная работа 2.2	вопросы к
	Термодина мика	ых разделов наук о Земле в профессиональн ой деятельности	Владеет навыками оценки полученных результатов	УО-1 собеседование / устный опрос; П.р. лабораторная работа 2.2	зачету 11-13
3	Раздел 3 электромаг	ОПК-2 Применяет математические и естественно- научные знания	Понимает физический смысл основных понятий электромагнетизма	УО-1 собеседование / устный опрос; ПР-6 лабораторная работа 3.2	вопросы к зачету
	нетизм	для решения экологических задач	Владеет навыками моделирования естественных процессов в лабораторных условиях	УО-1 собеседование / устный опрос; ПР-6 лабораторная	20-24

		работа 3.1
		УО-1
		собеседование
	Владеет навыками	/ устный опрос;
	оптического исследования	ПР-6
		лабораторная
		работа 4.1

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также качественные критерии оценивания, которые описывают уровень сформированности компетенций, представлены в разделе VIII.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература 1. Курс общей физики: учебное пособие для вузов по техническим направлениям и специальностям в 4 т.: т. 1 . Механика. Молекулярная физика и термодинамика / И. В. Савельев; под общ. ред. В. И. Савельева. - М: КноРус, 2012. - 521 с.

http://lib.dvfu.ru:8080/lib/item?id=chamo:684648&theme=FEFU

2.Курс общей физики: учебное пособие для вузов по техническим направлениям и специальностям в 4 т.: т. 2 . Электричество и магнетизм. Волны. Оптика / И. В. Савельев; под общ. ред. В. И. Савельева. - М : КноРус, 2012. - 570 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:684651&theme=FEFU

Дополнительная литература

- 1. Парселл Э. Электричество и магнетизм. СПб.: Издательство «Лань», 2009.
- 2. Дмитриев В.Ф., Прокофьев В.Л. Основы физики.–М.: 2003.
- 3. Ландсберг Г.С. Оптика. М.: Наука, 1978. 928 с.
- 4. Суханов А.Д. Фундаментальный курс физики: Учеб. пособ. для вузов: В 4 т.— М.: Агар, 1996–1999.
- 5. Иродов И.Е. Механика. Основные законы: Учеб. для вузов.—5-е изд., испр.— М.: Лаборатория базовых знаний. Физматлит, 2000.— 320 с.
- 6. Курс общей физики: Молекулярная физика: Учеб. пособие для студ. высш. пед. учеб. заведений / Е.М. Гершензон, Н.Н. Малов, А.Н. Мансуров.— М.: Изд. центр «Академия», 2000.—272 с..
- 7. Иродов И.Е. Волновые процессы. Основные законы: Учеб. пособ. для высших учебных заведений.— М.: Лаборатория базовых знаний, 1999.— 256 с.

- 8. Трофимова Т.И., Павлова З.Г. Сб. задач по курсу физики с решениями.—7-е изд., стереотип.—М.: Высш. шк., 2006.—591 с.
- 9. Кудрявцев П.С. Курс истории физики. М.: 1984.
- 10.Грабовский Р.И.Курс физики.—6-е изд.—СПб.: Изд-во «Лань».—2002.—608 с. (Простое и доступное изложение всех разделов курса физики).

Справочная литература

- 1. Яворский Б.М., Детлаф А.А. , Лебедев А.К. Справочник по физике для инженеров и студентов вузов: 8-е изд., испр. и перераб. М.: ООО изд-во ОНИКС, изд-во «Мир и образование».—2006.— 1056 с.
- 2. Справочник по физике: для инженеров и студентов вузов / Б. М. Яворский,
- A. A. Детлаф. M : Hayкa, 1977. 942 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:392723&theme=FEFU
- 3. Храмов Г.А. Физика. Биографический справочник. / Изд. 2-е. М.: 1983 г.
- 4. Кибец И.Н., Кибец В.И. Физика: Справочник.—Харьков: Фолио, М.: ООО "Изд-во АСТ".—2000.—480 с.
- 5. Голин Г.М., Филонович С.Р. Классики физической науки (с древнейших времен до начала XXв.): Справ. пособ.–М.: Высш. шк., 1989.–576 с.
- 6. Трофимова Т.И., Фирсов А.В. Физика. Законы. Формулы. Определения.— М.: Дрофа, 2004.— 304 с.
- 7. Справочник по физике/ И.М. Дубровский, Б.В. Егоров, К.П. Рябошапка. Киев, Наукова Думка, 1986.—558 с.
- 8. Выгодский М.Я. Справочник по высшей математике.— М.: АСТ Астрель, 2006.— 991 с.

Профессиональные базы данных и информационные справочные системы

- 1. База данных Scopus http://www.scopus.com/home.url
- 2. Базаданных Web of Science http://apps.webofknowledge.com/

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Пониманию, усвоению фундаментальных физических законов способствуют лабораторные работы, представленные в

https://www.dvfu.ru/upload/medialibrary/de3/om4d4ze4ggzkrlcarnk9a0l1nsbfajdn/%D0%AD%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82%20%D0%B2%20%D0%BA%D1%83%D1%80%D1%81%D0%B5%20%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B8.pdf

Здесь же даны контрольные вопросы к лабораторным работам, письменные ответы в рабочей тетради на которые помогут выучить эти законы.

Подготовка к зачету. К сдаче зачета допускаются обучающиеся, выполнившие все лабораторные работы, успешно сдавшие отчеты и устное собеседование по темам лабораторных работ. На зачет выносятся **следующие вопросы:**

- 1. Какое движение называется свободным падением, что называется ускорением свободного падения? Почему ускорение свободного падения не зависит от массы тела и зависит от высоты падения тела и широты местности?
- 2. Сформулируйте Первый закон Ньютона, поясните, почему системы отсчета, о которых идет речь в этом законе называются инерциальными. Приведите пример применения этого закона. Какое движение называется свободным?
- 3. Сформулируйте Второй и Третий законы Ньютона, поясните все величины, входящие в эти законы. Пользуясь этими законами, дайте определение силе тяжести, силе реакции опоры и весу тела, приведите пример их проявления.
- 4. Дайте определение импульса материальной точки, импульса твердого тела, внешних и внутренних сил, замкнутой системы материальных точек, импульса силы. Сформулируйте закон сохранения импульса. Приведите пример применения закона сохранения импульса. Как закон сохранения импульса связан с однородностью пространства? Что означает выражение: окружающее пространство однородно?
- 5. Дайте определение центра масс и центра тяжести системы материальных точек. Назовите свойства центра масс. Как можно экспериментально определить положение центра масс?
- 6. Дайте определение момента импульса материальной точки, твердого тела относительно произвольной оси и относительно произвольного центра. Сформулируйте закон сохранения момента импульса системы материальных точек. Что означает выражение: окружающее пространство изотропно? Как закон сохранения момента импульса системы

- материальных точек связан с изотропностью пространства? Приведите пример применения закона сохранения момента импульса.
- 7. Дайте определение механической работы силы, кинетической энергии материальной точки и твердого тела при поступательном движении. Дайте определение поступательного движения твердого тела. Сформулируйте теорему об изменении кинетической энергии системы материальных точек. Приведите пример применения этой теоремы.
- 8. Дайте определение потенциальной энергии системы материальных точек. Запишите формулы расчета потенциальной энергии упруго деформированного тела и потенциальной энергии тела, поднятого на высоту Н относительно Земли, поясните каждую величину, входящие в эти формулы. Сформулируйте теорему об изменении потенциальной энергии системы материальных точек. Приведите пример применения этой теоремы.
- 9. Дайте определение полной механической энергии системы материальных точек. Сформулируйте закон сохранения полной механической энергии системы материальных точек. Поясните применение этого закона к математическому маятнику. Дайте определение математического маятника.
- 10. Сформулируйте основные положения молекулярно-кинетической теории молекул. Подтвердите эти положения конкретными примерами.
- 11. Дайте определение молярной и молекулярной массам вещества. Как эти массы связаны между собой?
- 12. Дайте определение внутренней энергии тела. Как на основе этого понятия можно объяснить наличие разных агрегатных состояний одного и того же вещества?
- 13. Дайте определение средней, наивероятной и средней квадратичной скоростям движения молекул идеального газа. Дайте определение идеального газа. Как эти скорости связаны с температурой газа?
- 14. Дайте определение электрическому заряду частицы. Сформулируйте закон сохранения электрического заряда замкнутой системы материальных точек. Почему в природе существует два вида электрических зарядов? Приведите примеры заряженных частиц. Что называется элементарным зарядом?
- 15. Что называется магнитным полем? Чем магнитные полюса отличаются от электрических зарядов? Дайте определение вектора магнитной индукции и силы Ампера. Поясните все величины, входящие в эти формулы.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения учебных занятий по дисциплине, а также для организации самостоятельной работы студентам доступно лабораторное оборудование департамента общей и экспериментальной физики и специализированные кабинеты, соответствующие действующим санитарным и противопожарным нормам, а также требованиям техники безопасности при проведении учебных и научно-производственных работ.

В целях обеспечения специальных условий обучения инвалидов и лиц с ограниченными возможностями здоровья в ДВФУ все здания оборудованы пандусами, лифтами, подъемниками, специализированными местами, оснащенными туалетными комнатами, табличками информационнонавигационной поддержки.

VIII. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Для дисциплины «Физика для экологов» используются следующие оценочные средства:

Устный опрос:

1. Собеседование (УО-1)

Письменные работы:

1. Лабораторная работа (ПР-6)

Устный опрос

Устный опрос позволяет оценить знания и кругозор студента, умение логически построить ответ, владение монологической речью и иные коммуникативные навыки.

Обучающая функция состоит в выявлении деталей, которые по каким-то причинам оказались недостаточно осмысленными в ходе учебных занятий и при подготовке к зачёту.

Собеседование (УО-1) — средство контроля, организованное как специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Письменные работы

Письменный ответ приучает к точности, лаконичности, связности изложения мысли. Письменная проверка используется во всех видах контроля и

осуществляется как в аудиторной, так и во внеаудиторной работе.

Лабораторная работа (ПР-6) — средство для закрепления и практического освоения материала по определенному разделу.

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Оценочные средства для промежуточной аттестации

Промежуточная аттестация студентов по дисциплине «Физика для экологов» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной. Форма отчётности по дисциплине – зачет. Зачет по дисциплине включает ответы на 2 вопроса.

Методические указания по сдаче зачета

Зачет принимается ведущим преподавателем. Форма проведения зачета устная, утверждается на заседании кафедры по согласованию с руководителем в соответствии с рабочей программой дисциплины.

Время, предоставляемое студенту на подготовку к ответу на зачете, должно составлять не более 20 минут. По истечении данного времени студент должен быть готов к ответу.

Присутствие на зачете посторонних лиц (кроме лиц, осуществляющих проверку) без разрешения соответствующих лиц (ректора либо проректора по учебной и воспитательной работе, директора Школы, руководителя ОПОП или заведующего кафедрой), не допускается. Инвалиды и лица с ограниченными возможностями здоровья, не имеющие возможности самостоятельного передвижения, допускаются на зачет с сопровождающими.

При промежуточной аттестации обучающимся устанавливается оценка «зачтено» или «не зачтено».

В зачетную книжку студента вносится только запись «зачтено», запись «не зачтено» вносится только в экзаменационную ведомость. При неявке студента на зачет в ведомости делается запись «не явился».

Критерии выставления оценки студенту на зачете

К зачету допускаются обучающиеся, выполнившие программу обучения по дисциплине, выполнившие все лабораторные работы, подготовившие отчеты и успешно прошедшие собеседование по результатам лабораторных работ.

Оценка	Требования к сформированным компетенциям
«зачтено»	Студент показал развернутый ответ, представляющий собой
	связное, логическое, последовательное раскрытие
	поставленного вопроса, широкое знание литературы. Студент

	обнаружил понимание материала, обоснованность суждений,
	способность применить полученные знания на практике.
	Допускаются некоторые неточности в ответе, которые студент
	исправляет самостоятельно.
«не зачтено»	Студент обнаруживает незнание большей части проблем,
	связанных с изучением вопроса, допускает ошибки в ответе,
	искажает смысл текста, беспорядочно и неуверенно излагает
	материал. Данная оценка характеризует недостатки в
	подготовке студента, которые являются серьезным
	препятствием к успешной профессиональной и научной
	деятельности.

Оценочные средства для текущей аттестации

Текущая аттестация студентов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Текущая аттестация проводится в форме контрольных мероприятий (собеседования, лабораторных работ) по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Объектами оценивания выступают:

- учебная дисциплина (активность на занятиях, своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
 - степень усвоения теоретических знаний;
- уровень овладения практическими умениями и навыками по всем видам учебной работы;
 - результаты самостоятельной работы.

Составляется календарный план контрольных мероприятий по дисциплине. Оценка посещаемости, активности обучающихся на занятиях, своевременность выполнения различных видов заданий ведётся на основе журнала, который ведёт преподаватель в течение учебного семестра.

Вопросы для собеседования / устного опроса представлены в https://www.dvfu.ru/upload/medialibrary/de3/om4d4ze4ggzkrlcarnk9a0l1nsbfajdn/% D0%AD%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82%20%D0%B2%20%D0%BA%D1%83%D1%80%D1%81%D0%B5%20%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B8.pdf

Критерии оценивания

5 баллов -- если ответ показывает прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия

темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы обобщения, давать свободное аргументированные ответы, приводить примеры; владение монологической речью, логичность и последовательность ответа; умение приводить примеры современных проблем изучаемой области.

4 балла -- ответ, обнаруживающий прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы И обобщения, давать свободное аргументированные ответы, приводить примеры; владение монологической речью, логичность и последовательность ответа. Допускается одна-две неточности в ответе.

3 балла — оценивается ответ, свидетельствующий в основном о знании процессов изучаемой предметной области, отличающийся недостаточной глубиной и полнотой раскрытия темы; знанием основных вопросов теории; слабо сформированными навыками анализа явлений, процессов, недостаточным умением давать аргументированные ответы и приводить примеры; недостаточно свободным владением монологической речью, логичностью и последовательностью ответа. Допускается несколько ошибок в содержании ответа; неумение привести пример развития ситуации, провести связь с другими аспектами изучаемой области.

2 балла — ответ, обнаруживающий незнание процессов изучаемой предметной области, отличающийся неглубоким раскрытием темы; незнанием основных вопросов теории, несформированными навыками анализа явлений, процессов; неумением давать аргументированные ответы, слабым владением монологической речью, отсутствием логичности и последовательности. Допускаются серьезные ошибки в содержании ответа; незнание современной проблематики изучаемой области.

Отчет по лабораторной работе состоит из четырех обязательных частей.

- 1. Наименование и цель выполнения работы, перечень и описание приборов и оборудования, теоретическое обоснование работы, закономерности, лежащие в основе ее выполнения.
- 2. Ход работы (план ее выполнения).
- 3. Результаты работы, включающие результаты измерений, их обработку, расчеты. По каждой отдельной работе форма фиксации фактического материала (в виде таблиц, рисунков) указана в методических пособиях.

4. Выводы по работе.

Критерии оценки выполнения отчета по лабораторной работе

- 5 баллов выставляется, если студент представил полный отчет по лабораторной работе, содержащий все необходимые разделы и результаты самостоятельной работы, статистические сведения, продемонстрировал знание и владение навыком самостоятельной исследовательской работы по теме исследования; методами и приемами анализа. При устном ответе на собеседовании фактических ошибок, связанных с пониманием проблемы, нет. Ответ показывает прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; аппаратом; умение объяснять терминологическим сущность, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; логичность и последовательность ответа; умение приводить примеры.
- 4 балла выставляется, если студент представил полный отчет по лабораторной работе, содержащий все необходимые разделы и результаты самостоятельной работы, статистические сведения, продемонстрировал знание и владение навыком самостоятельной исследовательской работы по теме исследования; методами и приемами анализа. При собеседовании обнаружил прочные знания основных процессов изучаемой предметной области, владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, однако допустил одну-две неточности в ответе.
- **3 балла** выставляется, если студент представил отчет по лабораторной работе с недочетами. При собеседовании обнаружил недостаточную глубину и полноту раскрытия темы; знание основных вопросов теории; слабо сформированные навыки анализа явлений, процессов, недостаточным умением даватьаргументированные ответы и приводить примеры; недостаточно свободное владение монологической речью, логичность и последовательность ответа.
- **2 балла** выставляется, если студент представил отчет по лабораторной работе со значительными недочетами и ошибками. При собеседовании обнаружил незнание процессов изучаемой предметной области, неглубокое раскрытие темы; незнание основных вопросов теории, несформированные навыки анализа явлений, процессов; неумение давать аргументированные ответы, слабое владением монологической речью, отсутствие логичности и

последовательности. Допустил серьезные ошибки в содержании ответа; обнаружил незнание современной проблематики изучаемой области.