АННОТАЦИЯ РПД «Механика композитов»

Дисциплина «Механика композитов» предназначена для аспирантов, обучающихся по направлению подготовки 01.06.01 Математика и механика, профиль «Механика деформируемого твердого тела». Трудоемкость дисциплины — 3 зачетные единицы (108 академических часов), включает в себя 18 часов лекций, 18 часов практических занятий и 72 часа самостоятельной работы. Промежуточная аттестация проводится форме зачета в четвертом семестре. Дисциплина «Механика композитов» входит в вариативную часть учебного плана Б1.В.ОД.6 и является обязательной дисциплиной.

Целью изучения дисциплины «Механика композитов» является формирование общекультурных И профессиональных компетенций, определяющих готовность и способность специалиста к использованию знаний в области современных композитных материалов при решении практических задач в рамках производственно-технологической, проектноизыскательской научно-исследовательской профессиональной И деятельности. Знакомство классами перспективных материалов c физическими явлениями в них.

Задачи дисциплины:

- 1. Развитие представлений о многообразии композитных материалов, их свойствах и областях применения.
- 2. Изучение способов моделирования структуры композитных материалов.
- 3. Формирование умения определять механические характеристики композитных материалов в зависимости от свойств компонентов.
- 4. Формирование научного подхода к анализу механизмов создания композитных материалов с заданными свойствами.

Интерактивные формы обучения составляют 4 часа и включают в себя 2 часа лекционных занятий (проблемная лекция), 2 часа практических занятий (обсуждение доклада).

Планируемые результаты обучения по данной дисциплине (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы, характеризуют этапы формирования следующих компетенций (элементы компетенций):

Код и формулировка Этапы формирования компетенции	r r
	и
компетенции	
ОПК - 1 Способность Знает методы реализации научно-иссл	едовательской
самостоятельно деятельности в области математики	и механики, а
осуществлять научно- также методы генерирования нов	ых идей при
исследовательскую решении исследовательских и практи	ических задач с
деятельность в использованием ин	формационно-
соответствующей коммуникационных технологий	
профессиональной Умеет планировать и осуществлят	ъ научно-
области с исследовательскую деятельность с	применением
использованием современных методов иссле	едования и
современных методов информационно-коммуникационных	технологий
исследования и Владеет навыками сбора, обработки,	анализа и
информационно- систематизации информации; выбо	
коммуникационных средств решения задач исследован	1
технологий работы с вычислительной техникой	
ПК-1 самостоятельно Знает научные основы и закономерности м	еханических
выполнять научные явлений, применяемые для изучения	
исследования в области деформирования, повреждения и разг	
механики материалов, выявления новых связей	
деформируемого структурой материалов	
твердого тела,	
используя Умеет использовать базовый физико-матема	атический
соответствующий аппарат, вычислительные методы и м	
физико- компьютерного моделирования для в	
математический новых связей между структурой мате	
аппарат, характером внешних воздействий и п	_
вычислительные деформирования и разрушения	1 ,
методы и	
компьютерные	
технологии, с целью	
установление законов	
деформирования, Владеет современными методами и технологи	
повреждения и вычислительной математики и механ	-
разрушения компьютерными технологиями, прим	
материалов; выявлять области механики деформируемого т	вердого тела
новые связи между	
структурой материалов,	
характером внешних	
воздействий и	
процессами	
деформирования и	
разрушения	

ПК - 3	Знает	современные методы экспериментальной
овладевать новыми		механики деформируемого твердого тела, методы
современными		планирования экспериментов и обработки
методами и средствами		экспериментальных данных
проведения		
экспериментальных	37	
исследований по	Умеет	использовать экспериментальные методы
исследованию		исследований процессов деформирования,
процессов		повреждения и разрушения материалов, в том числе
деформирования,		объектов, испытывающих фазовые структурные
повреждения и		превращения при внешних воздействиях.
разрушения		
материалов, в том числе	Владеет	современными методами экспериментальных
объектов,		исследований в области механики деформируемого
испытывающих		твердого тела, методами обработки, анализа и
фазовые структурные		обобщения результатов экспериментов.
превращения при		, 1 , 1
внешних воздействиях;		
планировать,		
проведение и		
интерпретировать		
экспериментальные		
данные по изучению		
деформирования,		
повреждения и		
разрушения		
материалов;		
обрабатывать,		
анализировать и		
обобщать результаты		
экспериментов.		

Для формирования вышеуказанных компетенций в рамках дисциплины «Механика композитов» применяются следующие методы активного / интерактивного обучения: презентации, кейс-технологии, проблемные лекции, метод анализа конкретных ситуаций, метод разыгрывания ролей, метод игрового производственного проектирования, мозговой штурм, интерактивное занятие с применением видеоматериалов, и др.

Широкое применение получают методы: круглые столы (дискуссии, дебаты), тематические конференции, деловые игры, имитирующие реальные условия проведения исследования прочности строительных материалов и изделий.