

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ НАУКОЕМКИХ ТЕХНОЛОГИЙ И ПЕРЕДОВЫХ МАТЕРИАЛОВ

«СОГЛАСОВАНО»
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Ростовые процессы тонких пленок пленок Направление подготовки 11.03.04 Электроника и наноэлектроника
Нанотехнологии в электроника и наноэлектроника
Форма подготовки очная
курс 4 семестр 8 лекции 22 час. практические занятия 34 час лабораторные работы не предусмотрены час. в том числе с использованием МАО лек / пр / лаб час. всего часов аудиторной нагрузки 56 час. в том числе с использованием МАО час. самостоятельная работа 52 час. в том числе на подготовку к экзамену 36 час. контрольные работы (количество) курсовая работа / курсовой проект не предусмотрены зачет не предусмотрен экзамен 8 семестр
Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки 11.03.04 Электроника и наноэлектроника, утвержденного приказом Министерства образования и науки РФ от 19 сентября 2017 г. № 927 (с изменениями и дополнениями). Рабочая программа обсуждена на заседании департамента общей и экспериментальной физики протокол № 3 от «29 » ноября 2021 г.
И. о. директора департамента к.х.н., доцент Короченцев В. В. Составитель (ли): к.фм.н. Козлов А.Г. Владивосток, 2021

Оборотная сторона титульного листа РПД

І. Рабочая програ	амма пересмо	трена на засед	ани	ии кафедры/департамента:
Протокол от «		20	_ г.	№
Заведующий кафе	дрой	(подпись)		(И.О. Фамилия)
II. Рабочая прогр	рамма пересм	отрена на засе	дан	ии кафедры/департамента:
Протокол от «				
Заведующий кафе	дрой	(подпись)		(И.О. Фамилия)
III. Рабочая прог	рамма перес	мотрена на зас	еда	нии кафедры/департамента:
Протокол от «		20	_ г.	<u>№</u>
Заведующий кафе	дрой			
Заведующий кафе		(подпись)		(И.О. Фамилия)
IV. Рабочая прог	рамма пересм	иотрена на зас	едал	нии кафедры/департамента:
Протокол от «	»	20	_ г.	<u>№</u>
Заведующий кафе	дрой			
		(подпись)		(И.О. Фамилия)

Цели и задачи освоения дисциплины:

Цель: получение знаний о процессах зарождения и роста тонких металлических пленок. Подготовка академических бакалавров в области нанотехнологий в электронике, понимающих физические принципы образования устойчивого осадка при конденсации атомов металла в вакууме, а также понимающих перспективы их применения в современной наноэлектронике при разработке новых типов сверхбыстродействующих электронных устройств.

Задачи:

- Ознакомление с основными теоретическими подходами, использующимися для описания процессов роста тонких пленок;
- Изучение методов нанесения структурно сплошных конденсированных сред в высоком и сверхвысоком вакууме;
- Изучение процессов зарождения, роста и механизмов кристаллизации зародышей вакуумных конденсатов;
- Изучение влияния структурных дефектов на свойства вакуумных конденсатов;
- Установление взаимосвязи между физическими свойствами ультратонких пленок и технологическими параметрами;

Для успешного изучения дисциплины «Ростовые процессы тонких пленок» у обучающихся должны быть сформированы следующие предварительные компетенции:

- ОПК-1.1. Формулирует фундаментальные законы природы и основные физические и математические законы;
- ОПК-1.3. использует знания физики и математики при решении практических задач.
- ОПК-2.3. Применяет основные методы и средства проведения экспериментальных исследований и измерений.

В результате изучения данной дисциплины у обучающихся формируются следующие профессиональные компетенции:

Тип задач	Код и наименование профессиональной компетенции	Тип задач
Научно- исследовательский	ПК-3 Способен выполнять работы по технологической подготовке производства	ПК-3.3 проводит подготовку к проведению процесса модификации свойств наноматериалов и наноструктур в соответствии с

Тип задач	Код и наименование профессиональной компетенции	Тип задач
	материалов и изделий	технической и эксплуатационной
	электроники и	документацией
	наноэлектроники	
Производственно-	ПК-4 Способен	ПК-4.3
технологический	организовывать	обеспечивает метрологическое
	метрологическое	сопровождение технологических
	обеспечение	процессов производства материалов и
	производства	изделий электронной техники
	материалов и изделий	
	электронной техники	

Код и наименование индикатора достижения компетенции	Наименование показателя оценивания (результата обучения по дисциплине)
ПК-3.3 проводит подготовку к проведению процесса модификации свойств наноматериалов и наноструктур в соответствии с технической и эксплуатационной документацией	Знает принципы модификации свойств наноматериалов и наноструктур Умеет осуществлять подготовку к процессу модификации свойств наноматериалов и наноструктур Владеет навыками проведения процессов модификации свойств наноматериалов и наноструктур в соответствии с технической и эксплуатационной документацией
ПК-4.3	Знает принципы технологических процессов
обеспечивает метрологическое	производства материалов и изделий электронной техники
сопровождение технологических	Умеет осуществлять метрологическое сопровождение
процессов производства	технологических процессов производства материалов и
материалов и изделий	изделий электронной техники
электронной техники	Владеет навыками метрологического сопровождения технологических процессов

2. Трудоёмкость дисциплины и видов учебных занятий по дисциплине

Общая трудоемкость дисциплины составляет 4 зачётные единицы 144 академических часа).

(1 зачетная единица соответствует 36 академическим часам)

Видами учебных занятий и работы обучающегося по дисциплине являются:

Обозначение	Виды учебных занятий и работы обучающегося
Лек	Лекции
ПР	Практическиетзанятия
CP	Самостоятельная работа обучающегося в период теоретического обучения
Контроль	Самостоятельная работа обучающегося и контактная работа обучающегося с преподавателем в период промежуточной аттестации

Структура дисциплины:

Форма обучения – очная.

						ичество обуч		і и раб		Формы
№	Наименование раздела дисциплины	Семестр	Лек	Лаб	ďΠ	CP	Контроль	промежуточной аттестации		
1	Раздел I. Дефекты кристаллического строения		4		6		6	ПР-6		
2	Раздел II. Основные теории конденсации. Морфологическая эволюция островковых пленок.	8	18	-	28	52	30	ПР-6		
	Итого:		22		34	52	36			

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Лекционные занятия (22 час.)

Раздел I. Особенности кристаллического строения (6 часа)

Тема 1. Кристаллическая решетка твердых тел (2 часа)

Введение в курс. Идеальные кристаллы. Пустоты, классификация пустот в кристаллах. Виды химической связи в кристаллах. Равновесное состояние решетки.

Тема 2. Дефекты кристаллического строения (2 часа)

Классификация дефектов: точечные, линейные, двух- и трехмерные дефекты. Виды точечных дефектов. Деформация и напряжения решетки вблизи дефектов. Термодинамика точечных дефектов, подвижность и взаимодействие их между собой.

Тема 2. Линейные дефекты (2часа)

Краевые, винтовые и смешанные дислокации. Характеристики дислокаций и тензоры деформаций. Искажения кристаллической решетки, создаваемые дислокацией. Механизмы смещения дислокаций,

взаимодействие их с точечными дефектами. Основные законы применимые к дислокациям.

Раздел II. Базовые теории роста вакуумных конденсатов. Морфологическая эволюция островковых пленок. (16 часов)

Тема 1. Основные теории вакуумной конденсации (8 час.)

Понятие критического зародыша. Основные положения термодинамической теории конденсации и критерии применимости теории. Теория Уолтона и Родина. Теория Льюиса-Кемпбелла. Зоны захвата. Теория гетерогенного зародышеобразования.

Тема 2. Морфологическая эволюция островковых пленок. (8 часов) Основные этапы формирования структурно-сплошных пленок. Механизмы роста, влияние температуры и типа подложки на структуру

пленок. Коалесценция островков и собирательная рекристаллизация. Роль коалесценции при формировании пленок по механизму пар-кристалл. Основные требования к материалам для эпитаксиального роста пленок. Понятие дислокации несоответствия. Типы границ сопряжения.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА И САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Практические работы (34 час.)

Занятие 1. Изучение процесса подготовки подложек для напыления (2 часа). Изучение методики подготовки монокристаллических подложек, нарезка пластин необходимого размера и формы. Метод химической очистки поверхности. Подготовка образца к загрузке в сверхвысоковакуумную камеру.

Занятие 2. Изучение сверхвысоковакуумного напылительного комплекса (4 часа)

Ознакомление с базовыми элементами сверхвысоковакуумного комплекса Ответон, получение представления о процессах изготовления тонких пленок, перемещения образцов магнитными манипуляторами, функционировании шлюзовой камеры.

Занятие 3. Изучение структуры поверхности монокристаллического кремния (4 час.).

Изучение процесса высокотемпературного отжига для удаления оксидного слоя. Подбор параметров отжига прямым током. Ознакомление с методом дифракции быстрых электронов для структурного анализа поверхности. Изучение поверхностной реконструкции Si(111) 7x7 при помощи дифракции быстрых электронов (ДБЭ). Определение параметра решетки кремния по методу ДБЭ.

Занятие 4. Ознакомление с напылительной техникой. Получение тонкой металлической пленки (6 час.)

Изучение основных блоков управления и контроля эффузионных ячеек. Ознакомление с режимами работы пропорционального интегральнодифференциального контроллера. Получение тонкой металлической пленки Си. Исследование осцилляций интенсивности зеркального рефлекса.

Занятие 5. Сканирующая туннельная микроскопия для исследования морфологии пленок (8 час.)

Исследование рельефа поверхности кремния и поверхности пленки Cu Изучение принципов работы кварцевого измерителя толщин. Ознакомление с программным обеспечением для управления экспериментом. Получение тонкой металлической пленки Cu/Pd/Co/Pd.

Занятие 6. Получение эпитаксиальной металлической пленки Pd/Co/Pd(10 час.) Изучение принципов работы кварцевого измерителя толщин. Ознакомление с программным обеспечением для управления экспериментом. Получение тонкой металлической пленки Cu/Pd/Co/Pd.

Задания для самостоятельной работы (52 час.)

Требования: После каждой практической работы обучающемуся необходимо обработать полученные результаты, построить графики зависимостей измеряемых величин, рассчитать требуемые величины и построить рассчитанные графики, объяснить их поведение и сделать правильные выводы.

Задания к практическим работам

Практическая работа №3. Изучение структуры поверхности монокристаллического кремния (10 час.)

Установите кремниевую подложку в вертикальный манипулятор образца камеры для молекулярно-лучевой эпитаксии. Поднимите манипулятор до

отметки 0 мм. Установите ускоряющее напряжение на дифракции быстрых электронов и ток спирали. Откройте заслонку на пульте управления электронным пучком, поворачивайте образец до тех пор, пока не получите симметричное изображение дифракции. Определите кристаллическое направление и по расстоянию между суперрефлексами определите постоянную решетки кремния в выбранном направлении.

Практическая работа №4. Ознакомление с напылительной техникой. Получение тонкой металлической пленки (12 часа)

Установите подложку в камере молекулярно-лучевой эпитаксии. Разогрейте и материал в эффузионной ячейке при помощи блока питания и ПИД-контроллера. Настройте дифракцию быстрых электронов для процесса напыления, получите дифракционную картину поверхности подложки. Установите курсоры интенсивности на зеркальный рефлекс. Откройте заслонку эффузионной ячейки для инициации процесса напыления. Получите осцилляции интенсивности зеркального рефлекса. По периоду осцилляций определите толщину пленки, полученной за заданный промежуток времени

Практическая работа №5. Сканирующая туннельная микроскопия для исследования морфологии пленок (14 час.)

Проанализируйте рельеф поверхности тонкой пленки меди. Проанализируйте морфологические особенности поверхностей: параметры шероховатости поверхности, форму островков с помощью программы Gwyddion. Сопоставьте значения средней шероховатости каждого из слоев с толщиной слоя. Сделайте выводы.

Практическая работа №6. Получение эпитаксиальной металлической пленки Pd/Co/Pd (16 час.)

Подготовьте источники для напыления требуемых материалов, разогрев их до нужной температуры. Напылите буферный слой меди толщиной 10 монослоев. Определите постоянную решетки меди и кристаллическое направление. Нанесите последовательно слои кобальта и палладия. По изменению расстояния между дифракционными максимумами определите величину кристаллических напряжений в каждом из слоев. При помощи метода сканирующей туннельной микроскопии исследуйте шероховатости слоев.

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине включает в себя:

- план-график выполнения самостоятельной работы по дисциплине, в

том числе примерные нормы времени на выполнение по каждому заданию;

- требования к представлению и оформлению результатов самостоятельной работы;
 - критерии оценки выполнения самостоятельной работы.

План-график выполнения самостоятельной работы по дисциплине

No	Дата/сроки	Вид самостоятельной	Примерные	Форма контроля
п/п	выполнения	работы	нормы	
			времени на	
			выполнение	
1	3-5 недели	Практическая работа 3,	10 час.	ПР-6 (практическая
	семестра	подготовка отчета		работа)
2	6-7 недели	Практическая работа 4,	12 час	ПР-6 (практическая
	семестра	подготовка отчета		работа)
	_			_
3	8-9 недели	Практическая работа 5,	14 час.	ПР-6 (практическая
	семестра	подготовка отчета		работа)
4	10-11 недели	Практическая работа 6,	6 час.	ПР-6 (практическая
	семестра	подготовка отчета		работа)
Итог	0:		52 час.	

Рекомендации по самостоятельной работе студентов

Планирование и организация времени, отведенного на выполнение заданий самостоятельной работы.

Изучив график выполнения самостоятельных работ, следует правильно её организовать. Рекомендуется изучить структуру каждого задания, обратить внимание на график выполнения работ, отчетность по каждому заданию предоставляется в последнюю неделю согласно графику. Обратить внимание, что итоги самостоятельной работы влияют на окончательную оценку по итогам освоения учебной дисциплины.

Главное в период обучения своей специальности - это научиться методам самостоятельного умственного труда, сознательно развивать свои творческие способности и овладевать навыками творческой работы. Для этого необходимо строго соблюдать дисциплину учебы и поведения.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием

успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Работа с литературой.

При выполнении ряда заданий требуется работать с литературой. Рекомендуется использовать различные возможности работы с литературой: фонды научной библиотеки ДВФУ (http://www.dvfu.ru/library/) и других ведущих вузов страны, а также доступных для использования научно-библиотечных систем.

Работа с конспектом лекций

В конспекте лекций необходимо кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Нужно проверять термины, понятия с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации или практических работах.

Методические рекомендации по выполнению заданий для самостоятельной работы и критерии оценки.

Практическая работа требует теоретической подготовки. Студент должен прочитать лекции по теме. Самостоятельно выяснить непонятные моменты или подготовить список вопросов, чтобы задать их преподавателю на лабораторной работе. Перед выполнением практической работы типа студент должен изучить самостоятельно методические указания ПО ee выполнению, ознакомиться с содержанием работы, прочитать необходимую учебную литературу для понимания физических процессов, изучаемых в лабораторной работе. После успешного выполнения практической работы самостоятельно пишет, обрабатывает полученные данные и пишет отчет по практической работе. В методических указаниях по выполнению работ после каждой практической работы следуют контрольные вопросы. На них необходимо подготовить ответы. Кроме того, необходимо иметь базовые знания по изучаемой теме. Только после теоретической подготовки и написания отчета можно пробовать сдать отчет. Сдача отчета проводится во время практических занятий, когда студенты не работают за лабораторными установками.

Структура отчета по практической работе

Отчеты по практическим работам представляются в электронной форме, подготовленные как текстовые документы в редакторе MSWord.

Отчет по работе должен быть обобщающим документом, включать всю информацию по выполнению заданий, в том числе, построенные диаграммы, таблицы, приложения, список литературы и (или) расчеты, сопровождая необходимыми пояснениями и иллюстрациями в виде схем, экранных форм («скриншотов») и т. д.

Структурно отчет по практической работе, как текстовый документ, комплектуется по следующей схеме:

- ✓ *Титульный лист— обязательная* компонента отчета, первая страница отчета, по принятой для лабораторных работ форме (титульный лист отчета должен размещаться в общем файле, где представлен текст отчета);
- ✓ *Исходные данные к выполнению заданий* обязательная компонента отчета, с новой страницы, содержат указание варианта, темы и т.д.);
- ✓ *Основная часть* материалы выполнения заданий, разбивается по рубрикам, соответствующих заданиям работы, с иерархической структурой: разделы подразделы пункты подпункты и т. д.

Рекомендуется в основной части отчета заголовки рубрик (подрубрик) давать исходя из формулировок заданий, в форме отглагольных существительных;

- ✓ *Выводы* обязательная компонента отчета, содержит обобщающие выводы по работе (какие задачи решены, оценка результатов, что освоено при выполнении работы);
- ✓ Список литературы— обязательная компонента отчета, с новой страницы, содержит список источников, использованных при выполнении работы, включая электронные источники (список нумерованный, в соответствии с правилами описания библиографии);
- ✓ *Приложения* необязательная компонента отчета, с новой страницы, содержит дополнительные материалы к основной части отчета.

Оформление отчета по лабораторной работе

Практическая работа относится к категории «письменная работа», оформляется по правилам оформления письменных работ студентами ДВФУ.

Необходимо обратить внимание на следующие аспекты в оформлении отчетов работ:

- набор текста;
- структурирование работы;
- оформление заголовков всех видов (рубрик-подрубрикпунктов-подпунктов, рисунков, таблиц, приложений);

- оформление перечислений (списков с нумерацией или маркировкой);
 - оформление таблиц;
- оформление иллюстраций (графики, рисунки, фотографии, схемы, «скриншоты»);
- набор и оформление математических выражений (формул);
- оформление списков литературы (библиографических описаний) и ссылок на источники, цитирования.

Набор текста

Набор текста осуществляется на компьютере, в соответствии со следующими требованиями:

- ✓ печать на одной стороне листа белой бумаги формата A4 (размер 210 на 297 мм.);
 - ✓ интервал межстрочный полуторный;
 - ✓ шрифт TimesNewRoman;
- ✓ размер шрифта 14 пт., в том числе в заголовках (в таблицах допускается 10-12 пт.);
 - ✓ выравнивание текста «по ширине»;
- \checkmark поля страницы -левое -25-30 мм., правое -10 мм., верхнее и нижнее -20 мм.;
- ✓ нумерация страниц в правом нижнем углу страницы (для страниц с книжной ориентацией), сквозная, от титульного листа до последней страницы, арабскими цифрами (первой страницей считается титульный лист, на котором номер не ставиться, на следующей странице проставляется цифра «2» и т. д.).
- ✓ режим автоматического переноса слов, за исключением титульного листа и заголовков всех уровней (перенос слов для отдельного абзаца блокируется средствами MSWord с помощью команды «Формат» абзац при выборе опции «запретить автоматический перенос слов»).

Если рисунок или таблица размещены на листе формата больше A4, их следует учитывать, как одну страницу. Номер страницы в этих случаях допускается не проставлять.

Список литературы и все *приложения* включаются в общую в сквозную нумерацию страниц работы.

Рекомендации по оформлению графического материала, полученного с экранов в виде «скриншотов»

Графические копии экрана («скриншоты»), отражающие графики, диаграммы моделей, схемы, экранные формы и т. п. должны отвечать требованиям визуальной наглядности представления иллюстративного материала, как по размерам графических объектов, так и разрешающей способности отображения текстов, цветовому оформлению и другим важным пользовательским параметрам.

Рекомендуется в среде программного приложения настроить «экран» на параметры масштабирования и размещения снимаемых для иллюстрации объектов. При этом необходимо убрать «лишние» окна, команды, выделения объектов и т. п.

В перенесенных в отчет «скриншотах» рекомендуется «срезать» ненужные области, путем редактирования «изображений», а при необходимости отмасштабировать их для заполнения страницы отчета «по ширине».

«Скриншоты» в отчете оформляются как рисунки, с заголовками, помещаемыми ниже области рисунков, а в тексте должны быть ссылки на указанные рисунки.

Критерии оценки выполнения самостоятельной работы

Оценивание практических работ проводится по критериям:

- полнота и качество выполненных заданий;
- владение методами и приемами компьютерного моделирования в исследуемых вопросах, применение специализированных программных средств;
- качество оформления отчета, использование правил и стандартов оформления текстовых и электронных документов;
- использование данных отечественной и зарубежной литературы, источников сети Интернет, информации нормативно-правового характера и передовой практики;
- отсутствие фактических ошибок, связанных с пониманием проблемы.
 - правильно сделанные выводы
- правильные и полные ответы на контрольные вопросы, понимание теоретического материала

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№ п/п	Контролируем ые модули/ разделы /	Код индикатора достижения компетенции	Результаты обучения	Оценочные с наимено	-
	темы дисциплины			текущий контроль	промежуточ ная аттестация
1		ПК-3.3. Проводит	Знает принципы модификации свойств наноматериалов и наноструктур	ПР-6 (практическая работа)	Экзамен (вопросы 1-4)
	Раздел I. Особенности кристаллическ	подготовку к проведению процесса модификации свойств наноматериалов и	Умеет осуществлять подготовку к процессу модификации свойств наноматериалов и наноструктур		
	ого строения наноструктур в соответствии с	Владеет навыками проведения процессов модификации свойств наноматериалов и наноструктур в соответствии с технической и эксплуатационной документацией			
2	Раздел II. Базовые теории роста вакуумных конденсатов. Морфологичес кая эволюция островковых пленок	ПК-4.3. Обеспечивает метрологическое сопровождение технологических процессов производства материалов и изделий электронной техники	Знает принципы технологических процессов производства материалов и изделий электронной техники Умеет осуществлять метрологическое сопровождение технологических процессов производства материалов и изделий электронной техники Владеет навыками метрологического сопровождения	ПР-6 (практическая работа),	Экзамен (вопросы 5- 27)

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также качественные критерии оценивания, которые описывают уровень сформированности компетенций, представлены в разделе VIII.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

(электронные и печатные издания)

- 1. Беркин А.Б. Физические основы вакуумной техники : учебное пособие / Беркин А.Б., Василевский А.И.. Новосибирск : Новосибирский государственный технический университет, 2014. 84 с. http://www.iprbookshop.ru/45189.html
- 2. Старостин В.В. Материалы и методы нанотехнологии: Учебное пособие / Под общ. редакцией Л.Н. Патрикеева. М.: БИНОМ. Лаборатория знаний, 2015. 432 с.: ил. http://www.iprbookshop.ru/4589.html
- 3. Кирчанов В.С. Наноматериалы и нанотехнологии : учебное пособие / Кирчанов В.С. Пермь : Пермский национальный исследовательский политехнический университет, 2016. 241 с http://www.iprbookshop.ru/105597.html
- 4. Неволин В.К. Зондовые нанотехнологии в электронике. М. Техносфера, 2014. 174 с. http://www.iprbookshop.ru/26894.html

Дополнительная литература

- 1. Головин Ю.И. Основы нанотехнологий Изд. "Машиностроение", 2012. 656 с. http://www.iprbookshop.ru/18532.html
- 2. Филимонова Н.И. Методы исследования микроэлектронных и наноэлектронных материалов и структур. Сканирующая зондовая микроскопия. Часть I: учебное пособие / Филимонова Н.И., Кольцов Б.Б.. Новосибирск: Новосибирский государственный технический университет, 2013. 134 с. http://www.iprbookshop.ru/45104.html

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Нанотехнологии в России http://www.nanonewsnet.ru
- 2. Российский электронный наножурнал http://www.nanorf.ru
- 3. Проект о современной фундаментальной науке «ПостНаука» http://postnauka.ru
- 4. Нанотехнологическое общество «Нанометр» http://www.nanometer.ru

Перечень информационных технологий и программного обеспечения

При осуществлении образовательного процесса по дисциплине используется общее программное обеспечение компьютерных учебных классов (Windows XP, Microsoft Office и др.), а также специализированное свободно распространяемое программное обеспечение по обработке экспериментальных данных Gwyddion.

Профессиональные базы данных и информационные справочные системы

- 1. База данных Scopus http://www.scopus.com/home.url
- 2. База данных Web of Science http://apps.webofknowledge.com/
- 3. Научная электронная библиотека http://www.elibrary.ru

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Планирование и организация времени, отведенного на изучение дисциплины. Приступить к освоению дисциплины следует незамедлительно в самом начале учебного семестра. Рекомендуется изучить структуру и основные положения Рабочей программы дисциплины. Обратить внимание, что кроме аудиторной работы (лекции, практические занятия) планируется самостоятельная работа, итоги которой влияют на окончательную оценку по учебной дисциплины. итогам освоения Bce задания (аудиторные самостоятельные) необходимо выполнять и предоставлять на оценку соответствии с графиком.

В процессе изучения материалов учебного курса предлагаются следующие формы работ: чтение лекций, практические занятия, задания для самостоятельной работы.

Пекционные занятия ориентированы на освещение вводных тем в каждый раздел курса и призваны ориентировать студентов в предлагаемом материале, заложить научные и методологические основы для дальнейшей самостоятельной работы студентов. Успешное освоение дисциплины предполагает активное участие студентов на всех этапах ее освоения. Изучение дисциплины следует начинать с проработки содержания рабочей программы и методических указаний. При изучении и проработке теоретического материала студентам необходимо:

- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- перед очередной лекцией просмотреть конспект предыдущего занятия;
- при самостоятельном изучении темы сделать конспект, используя рекомендованные в РПУД литературные источники.

В случае, если возникли затруднения, обратиться к преподавателю в часы консультаций или на практическом занятии.

Практические занятия акцентированы на наиболее принципиальных и проблемных вопросах курса и призваны стимулировать выработку практических умений. Основной целью проведения лабораторных занятий является систематизация и закрепление знаний по изучаемой теме, формирование умений самостоятельно работать с дополнительными источниками информации, аргументировано высказывать и отстаивать свою точку зрения.

При подготовке к лабораторным занятиям студентам необходимо:

- повторить теоретический материал по заданной теме;
- продумать формулировки вопросов, выносимых на обсуждение;
- использовать не только конспект лекций, но и дополнительные источники литературы, рекомендованные преподавателем.

Контрольные работы предназначены для поэтапного усвоения материала студентами, стимуляции активного изучения теоретических основ зондовой микроскопии в течение всего семестра, возможного применения рейтинговой системы оценки.

Особо значимой для профессиональной подготовки студентов является *самостоятельная работа* по курсу. В ходе этой работы студенты отбирают необходимый материал по изучаемому вопросу и анализируют его. Студентам необходимо ознакомиться с основными источниками, без которых невозможно полноценное понимание проблематики курса.

Освоение курса способствует развитию навыков обоснованных и самостоятельных оценок фактов и концепций. Поэтому во всех формах контроля знаний, особенно при сдаче экзамена, внимание обращается на понимание проблематики курса, на умение практически применять знания и делать выводы.

Работа с литературой. Рекомендуется использовать различные возможности работы с литературой: фонды научной библиотеки ДВФУ и электронные библиотеки (http://www.dvfu.ru/library/), а также доступные для использования другие научно-библиотечные системы.

Подготовка к экзамену. К сдаче экзамена допускаются обучающиеся, сдавшие 4 отчетов по лабораторным работам, написавшие 2 предусмотренные

учебной программой дисциплины контрольные работы, посетившие не менее 75% аудиторных занятий.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Перечень материально-технического и программного обеспечения дисциплины приведен в таблице.

Материально-техническое и программное обеспечение дисциплины

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
690922, Приморский край, г. Владивосток, остров Русский, полуостров Саперный, поселок Аякс, 10, корпус L, ауд. L 441. Учебная аудитория для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Помещение укомплектовано специализированной учебной мебелью (посадочных мест – 15) Оборудование: ЖК-панель 47", Full HD, LG M4716 CCBA – 1 шт. Доска аудиторная.	Специализированное ПО не требуется
690922, Приморский край, г. Владивосток, остров Русский, полуостров Саперный, поселок Аякс, 10, корпус L, ауд. L 320. Лаборатория пленочных технологий	Сверхвысоковакуумный комплекс Omicron оснащенный методом молекулярно-лучевой эпитаксии, дифракцией быстрых электронов, сканирующим туннельным микроскопом	ПО, позволяющее выполнять практические работы
690922, Приморский край, г.Владивосток, остров Русский, полуостров Саперный, поселок Аякс, 10, корп. А (Лит. П), Этаж 10, каб.А1017. Аудитория для самостоятельной работы	Оборудование: Моноблок Lenovo C360G- i34164G500UDK – 15 шт. Интегрированный сенсорный дисплей Polymedia FlipBox - 1 шт. Копир-принтер-цветной сканер в e-mail с 4 лотками Xerox WorkCentre 5330 (WC5330C – 1 шт.)	Специализированное ПО не требуется

Для проведения учебных занятий по дисциплине, а также для организации самостоятельной работы студентам доступны лабораторное оборудование и специализированные кабинеты, соответствующие действующим санитарным и противопожарным нормам, а также требованиям техники безопасности при проведении учебных и научно-производственных работ.

В целях обеспечения специальных условий обучения инвалидов и лиц с

ограниченными возможностями здоровья в ДВФУ все здания оборудованы пандусами, лифтами, подъемниками, специализированными местами, оснащенными туалетными комнатами, табличками информационнонавигационной поддержки.

VIII. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Для дисциплины «Ростовые процессы тонких пленок» используются следующие оценочные средства:

Устный опрос:

1. практическая работа (ПР-6) защита отчета

Письменные работы

2. практическая работа (ПР-6) написание отчета

Устный опрос

Устный опрос позволяет оценить знания и кругозор студента, понимание материала, самостоятельность выполнения домашних задач, умение логически построить ответ, владение монологической речью и иные коммуникативные навыки.

Обучающая функция состоит в выявлении деталей, которые по каким-то причинам оказались недостаточно осмысленными в ходе учебных занятий и при подготовке к экзамену.

Письменные работы

Письменный ответ приучает к точности, лаконичности, связности изложения мысли. Письменная проверка используется во всех видах контроля и осуществляется как в аудиторной, так и во внеаудиторной работе.

Практические работы в лаборатории позволяют студентам непосредственно ознакомиться с научным экспериментальным оборудованием, научиться получать экспериментальные результаты, обрабатывать их, анализировать результаты и делать выводы.

Контрольные работы нужны для более полного и постепенного усвоения теоретического материала и проверки самостоятельной работы студентов в данном направлении.

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Оценочные средства для промежуточной аттестации

Промежуточная аттестация студентов по дисциплине «Ростовые процессы

тонких пленок» проводится в соответствии с локальными нормативными актами ДВФУ и является вариативной. Форма отчётности по дисциплине — экзамен (8-й, весенний семестр). Форма экзамена — два вопроса, на которые студенту дается 20 мин подготовки и два произвольных дополнительных вопроса. Допуск к экзамену возможен только после сдачи всех отчетов по практическим работам.

Методические указания по сдаче экзамена

Зачет принимается ведущим преподавателем. При большом количестве групп у одного преподавателя или при большой численности потока по распоряжению заведующего кафедрой (заместителя директора по учебной и воспитательной работе) допускается привлечение в помощь ведущему преподавателю других преподавателей. В первую очередь привлекаются преподаватели, которые проводили лабораторные занятия по дисциплине в группах.

В исключительных случаях, по согласованию с заместителем директора Школы по учебной и воспитательной работе, заведующий кафедрой имеет право принять экзамен в отсутствие ведущего преподавателя.

Форма проведения зачета (устная, письменная и др.) утверждается на заседании кафедры по согласованию с руководителем в соответствии с рабочей программой дисциплины.

Во время проведения зачета студенты могут пользоваться рабочей программой дисциплины, а также с разрешения преподавателя, проводящего зачет, справочной литературой и другими пособиями (учебниками, учебными пособиями, рекомендованной литературой и т.п.).

Время, предоставляемое студенту на подготовку к ответу на зачете, должно составлять не более 20 минут. По истечении данного времени студент должен быть готов к ответу.

Присутствие на зачете посторонних лиц (кроме лиц, осуществляющих проверку) без разрешения соответствующих лиц (ректора либо проректора по учебной и воспитательной работе, директора Школы, руководителя ОПОП или заведующего кафедрой), не допускается. Инвалиды и лица с ограниченными возможностями здоровья, не имеющие возможности самостоятельного передвижения, допускаются на зачет с сопровождающими.

При промежуточной аттестации обучающимся устанавливается оценка «зачтено», «не зачтено». При неявке студента на экзамен в ведомости делается запись «не явился».

Вопросы к экзамену

- 1. Кристаллическая решетка. Типы химических связей
- 2. Дефектов кристаллического строения
- 3. Точечные дефекты, виды точечных дефектов, влияние на кристаллическую решетку. Комплексы ТД, подвижность
 - 4. Дислокации винтовые, краевые, смешанные
 - 5. Термодинамическая теория конденсации (основные положения)
 - 6. Влияние температуры подложки и скорости осаждения
 - 7. Статистическая теория конденсации (основные положения)
 - 8. Микрокинетическая теория конденсации (основные положения)
 - 9. Коэффициент прилипания и замедленная конденсация.
- 10. Полная и неполная конденсация на начальных стадиях роста, испарение зародышей.
- 11. Влияние контактного угла на механизмы роста пленок(послойный, островковый, послойно-островковый).
 - 12. Структура поверхности раздела фаз.
 - 13. Влияние температуры на образование зародышей.
 - 14. Влияние дефектов и примесей.
 - 15. Взаимодействие островков с подложкой. Типы межфазных границ.
 - 16. Этапы конденсации.
 - 17. Механизмы конденсации пленок П-К, П-Ж-К.
 - 18. Коалесценция.
 - 19. Механизмы ПК с коалесценцией и ПК без коалесценции.
 - 20. Теория эпитаксиального наращивания (основные положения).
 - 21. Влияние точечных дефектов.
 - 22. Влияние скорости осаждения и температуры подложки.
 - 23. Виды эпитаксии и типы границ сопряжения.
- 24. Дефекты кристаллического строения эпитаксиальных пленок
- 25. Влияние дефектов ЭП при росте по механизму ПК с коалесценцией.
- 26. Влияние дефектов ЭП при росте по механизму ПК без коалесценции.
- 27. Структура границ сопряжения.

Критерии выставления оценки студенту на экзамене по дисциплине «Ростовые процессы тонких пленок»:

Баллы (рейтингово й оценки)	Оценка экзамена (стандартная)	Требования к сформированным компетенциям
86 -100	отлично	Оценка «отлично» выставляется студенту, если он полно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с

		практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.
76 - 85	хорошо	Оценка «хорошо» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.
61 -75	удовлетворительн о	Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при решении задач.
0 -60	неудовлетворител ьно	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного «не материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет решение задач. Как правило, оценка «неудовлетворительно» «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Оценочные средства для текущей аттестации

Текущая аттестация студентов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Текущая аттестация проводится в форме контрольных мероприятий (контрольных работ и сдаче отчетов по лабораторным работам) по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Объектами оценивания выступают:

- учебная дисциплина (своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
 - степень усвоения теоретических знаний;
- уровень овладения практическими умениями и навыками по всем видам учебной работы;
 - посещение занятий
 - результаты самостоятельной работы.

Составляется календарный план контрольных мероприятий по дисциплине. Оценка посещаемости, своевременность выполнения различных видов заданий ведётся на основе журнала, который ведёт преподаватель в течение учебного семестра.

Устный опрос в сочетании с проверкой отчета по практической работе

Оценивание защиты лабораторной работы проводится при представлении отчета в электронном или печатном виде, по двухбалльной шкале: «зачтено», «не зачтено».

Критерии оценивания отчета по практической работе

Оценка	Требования
«зачтено»	Студент присутствовал на лабораторной работе, самостоятельно получил необходимые экспериментальные результаты, оформил отчет в соответствии с требованиями, правильно построил графические зависимости физических величин, сделал правильные выводы, объяснил ход закономерностей, продемонстрировал глубокое знание теории изучаемых явлений, правильно ответил на контрольные вопросы
«не зачтено»	Студент не предоставил отчет, либо отчет не соответствует установленным требованиям по оформлению или содержанию, не содержит выводов. Студент предоставил правильно оформленный отчет, но использовал чужие данные. Студент предоставил правильно оформленный отчет, но не может ответить на контрольные вопросы.