

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

«СОГЛАСОВАНО» Руководитель ОП

Дак Т.В. (Ф.И.О.)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математические методы регуляризации некорректных задач Направление подготовки 01.04.02 Прикладная математика и информатика (Математические и компьютерные технологии) Форма подготовки очная

курс <u>1</u> семестр <u>2</u> лекции <u>18</u> час. практические занятия <u>00</u> час. лабораторные работы <u>36</u> час. всего часов аудиторной нагрузки <u>54</u> час. самостоятельная работа <u>54</u> час. в том числе на подготовку к экзамену <u>27 час.</u> контрольные работы (количество) не предусмотрены курсовая работа / курсовой проект не предусмотрены зачет не предусмотрен экзамен <u>2 семестр</u>

Рабочая программа составлена в соответствии в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки 01.04.02 Прикладная математика и информатика, утвержденного приказом Министерства образования и науки РФ от 10 января 2018 г. №13

Рабочая программа обсуждена на заседании департамента математического и компьютерного моделирования протокол № 5 от «17» января 2022 г.

Директор департамента: А.А. Сущенко

Составитель (ли): Т.В. Пак

Владивосток

2022

Оборотная сторона титульного листа РПД

І. Рабочая программа пе	ресмотрена на засе	дании департамента:
Протокол от «»	20	г. №
Директор департамента _		
		(И.О. Фамилия)
II. Рабочая программа п	ересмотрена на зас	едании департамента:
Протокол от «»	20	г. №
Директор департамента _		
·		(И.О. Фамилия)

1. Цели и задачи освоения дисциплины:

Цель: овладеть математическими методами регуляризации некорректных задач, осуществлять поиск и обоснование оптимальных решений с учетом различных требований, совершенствовать и реализовывать новые математические методы решения прикладных задач.

Задачи:

- изучение новых программных продуктов и непрерывное профессиональное совершенствование;
 - разработка алгоритмов и реализации их в виде программ;
- выработка навыков самостоятельной работы при решении теоретических и практических задач.

В результате изучения данной дисциплины у обучающихся формируются профессиональные компетенции.

Профессиональные компетенции выпускников и индикаторы их достижения:

Тип задач	Код и наименование профессиональной компетенции (результат освоения)	Код и наименование индикатора достижения компетенции
производственно- технологический	ПК-5 Способен разрабатывать и анализировать концептуальные и теоретические модели решаемых задач проектной и производственнотехнологической деятельности	ПК-5.1 Демонстрирует знание методов анализа концептуальных и теоретических моделей решаемых задач проектной и производственно-технологической деятельности ПК-5.2 Самостоятельно выбирает методы исследования, соотносит проблему, цели, задачи, предмет и методы исследования при решении задач проектной и производственнотехнологической деятельности ПК-5.3 Применяет методологические принципы и методы решении задач проектной и производственно-технологической деятельности

Код и наименование индикатора	Наименование показателя оценивания
достижения компетенции	(результата обучения по дисциплине)
ПК-5.1 Демонстрирует знание методов анализа концептуальных и теоретических моделей решаемых задач проектной и производственно-технологической деятельности	Знает основные методы анализа концептуальных и теоретических моделей решаемых задач
	Умеет использовать методы анализа концептуальных и теоретических моделей при решении поставленной задачи
	Владеет навыками создания математических моделей, алгоритмов, по тематике проводимых научно-
,,,	исследовательских проектов
ПК-5.2 Самостоятельно выбирает	Знает основные принципы математического моделирования
методы исследования, соотносит	Умеет строить математические алгоритмы и реализовывать
проблему, цели, задачи, предмет и	их с помощью языков программирования, применять

Код и наименование индикатора достижения компетенции	Наименование показателя оценивания (результата обучения по дисциплине)
методы исследования, формулирует проблему исследования при решении задач проектной и производственно-технологической деятельности	методы математического моделирования к решению конкретных задач Владеет навыками профессионального мышления, необходимыми для адекватного использования методов современной математики в теоретических и прикладных
ПК-5.3 Применяет методологические принципы и методы решении задач проектной и производственно-технологической деятельности	задачах, понятийным аппаратом современной математики Знает основные понятия и методы, необходимые для научной работы по выбранной тематике Умеет реализовывать алгоритмы на языках программирования; разрабатывать математические модели процессов и явлений, относящихся к исследуемому объекту Владеет навыками построения и реализации основных математических алгоритмов, методологией математического моделирования

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

- **Тема 1. Введение. Методы подбора и регуляризации.** Цели и структура курса. Об определении обратных и некорректных задач. Классификация. Примеры. Теорема В. К. Иванова. Квазирешение. Метод М. М. Лаврентьева. Метод регуляризации А. Н. Тихонова. Градиентные методы.
- **Тема 2. Некорректные задачи линейной алгебры.** Обобщение понятия решения. Псевдорешение. Метод регуляризации. Принципы выбора параметра регуляризации. Итерационные регуляризирующие алгоритмы.
- **Тема 3. Интегральные уравнения.** Интегральные уравнения Фредгольма и Вольтерра первого рода. Регуляризация нелинейных операторных уравнений первого рода
- **Тема 4. Некорректные задачи для ОДУ и ДУЧП.** Задачи определения коэффициентов линейных ДУ и систем. Обратные задачи для линейных ОДУ с параметром. Обратные задачи для нелинейных ОДУ. Обратные задачи для уравнения теплопроводности. Обратные задачи для уравнения Колебаний. Коэффициентные обратные задачи для ДУЧП.
- **Тема 5. Применение методов статистики в решении некорректных задач. Предварительные сведения из математической статистики.** Задача регрессии при анализе экспериментальных данных. Линейная регрессия. Задача минимизации при нелинейной регрессии. Оценка погрешности определения параметров.
- **Тема 6. Параметрическое описание искомой функции.** Проверка изначальных предположений и модификация стандартной процедуры регрессии. Решение обратной задачи.

Тема 7. Восстановление функции. Регуляризация. Основы томографии. Оптическая когерентная томография. Обратная задача рассеяния

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА И САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Лабораторная работа № 1. Квазирешение. Метод М. М. Лаврентьева. Метод регуляризации А. Н. Тихонова. Градиентные методы

Лабораторная работа № 2. Обобщение понятия решения. Псевдорешение. Метод регуляризации. Принципы выбора параметра регуляризации. Итерационные регуляризирующие алгоритмы.

Лабораторная работа № 3. Интегральные уравнения Фредгольма и Вольтерра первого рода. Регуляризация нелинейных операторных уравнений первого рода.

Лабораторная работа № 4. Задачи определения коэффициентов линейных ДУ и систем. Обратные задачи для линейных ОДУ с параметром. Обратные задачи для нелинейных ОДУ. Обратные задачи для уравнения теплопроводности. Обратные задачи для уравнения Лапласа. Обратные задачи для уравнения колебаний. Коэффициентные обратные задачи для ДУЧП.

Лабораторная работа № 5. Задача регрессии при анализе экспериментальных данных. Линейная регрессия. Задача минимизации при нелинейной регрессии. Оценка погрешности определения параметров.

Лабораторная работа № 6. Проверка изначальных предположений и модификация стандартной процедуры регрессии. Решение обратной задачи.

Лабораторная работа № 7. Регуляризация. Основы томографии. Оптическая когерентная томография. Обратная задача рассеяния.

Содержание самостоятельной работы

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	Неделя 1-2	Работа над конспектом лекции, подготовка к лабораторной работе №1	3	лабораторная работа №1
2	Неделя 3-4	Работа над конспектом лекции, подготовка к	3	лабораторная работа №2

		лабораторной работе №2		
3	Неделя 4-5	Работа над конспектом лекции, подготовка к лабораторной работе №3	3	лабораторная работа №3
4	Неделя 6-7	Работа над конспектом лекции, подготовка к лабораторной работе №4	3	лабораторная работа №4
5	Неделя 8-9	Работа над конспектом лекции, подготовка к лабораторной работе №5	3	лабораторная работа №5
6	Неделя 10-11	Работа над конспектом лекции, подготовка к лабораторной работе №6	3	лабораторная работа №6
7	Неделя 12-14	Работа над конспектом лекции, подготовка к лабораторной работе №7	3	лабораторная работа №7
8	Неделя 15-17	Подготовка к защите лабораторных работ	6	Защита отчетов по лабораторным работам
		Итого:	27 часов	Итоговый контроль

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Математические методы регуляризации некорректных задач» представлено включает в себя:

- характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;
- требования к представлению и оформлению результатов самостоятельной работы;
- критерии оценки выполнения самостоятельной работы.

Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Самостоятельная работа студентов состоит из подготовки к лабораторным работам, работы над рекомендованной литературой и текстами лекций в процессе изучения теоретического материала.

Темы заданий для самостоятельной работы представлены в планеграфике выполнения самостоятельной работы по дисциплине.

При подготовке к лабораторным занятиям необходимо сначала прочитать основные понятия и теоремы по теме. При выполнении задания нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи.

Требования к представлению и оформлению результатов самостоятельной работы

Результатом самостоятельной работы являются отчеты по лабораторным работам. В процессе подготовки отчетов к лабораторным работам у студентов развиваются навыки составления письменной документации и систематизации имеющихся знаний. При составлении отчетов рекомендуется придерживаться следующей структуры:

- 1. Постановка задачи;
- 2. Математическая постановка задачи;
- 3. Описание метода решения;
- 4. Описание алгоритма метода;
- 5. Спецификация используемых функций и типов данных;
- 6. Описание тестов, на которых программа проходит проверку;
- 7. Анализ результатов численного эксперимента.

Критерии оценки выполнения самостоятельной работы

Отчет по лабораторной работе должен полностью удовлетворять условию задачи. В случае некачественно выполненных отчетов (не соответствующих заявленным требованиям) результирующий балл за работу может быть снижен. Студент должен продемонстрировать отчетливое и свободное владение концептуально-понятийным аппаратом, научным языком и терминологией. Наличие всех отчетов является допуском к зачету.

Оценка результатов самостоятельной работы организуется как единство двух форм: контроль со стороны преподавателя с использованием рейтинга и самоконтроль с использованием ЭУК BlackBoard, доступного в компьютерной сети ДВФУ, и содержащего электронные тесты по дисциплине.

Критерии оценивания лабораторной работы

Результатом лабораторной работы является отчет по лабораторной работе. В процессе подготовки отчетов к лабораторным работам у студентов развиваются навыки составления письменной документации и систематизации имеющихся знаний. При составлении отчетов рекомендуется придерживаться следующей структуры:

1. Постановка задачи;

- 2. Математическая постановка задачи;
- 3. Описание метода решения;
- 4. Описание алгоритма метода;
- 5. Спецификация используемых функций и типов данных;
- 6. Описание тестов для проверки работоспособности программы;
- 7. Результаты численного эксперимента.

Отчет по лабораторной работе должен полностью удовлетворять условию задачи. В случае некачественно выполненных отчетов (не соответствующих заявленным требованиям) результирующий балл за работу может быть снижен. Студент должен продемонстрировать отчетливое и свободное владение концептуально-понятийным аппаратом, научным языком и терминологией.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№ п/п	Контролируем ые модули/ разделы /	Код индикатора достижения компетенции	Результаты обучения	Оценочные средства – наименование	
	темы дисциплины			текущий контроль	промежуточ ная аттестация
1		ПК-5.1 Демонстрирует	Знает основные методы анализа концептуальных и теоретических моделей решаемых задач	Лабораторная работа №1, 2	экзамен
	анализ концептеоретт моделе задач ппроизв Раздел 1. Введение. Методы	знание методов анализа концептуальных и теоретических моделей решаемых задач проектной и	Умеет использовать методы анализа концептуальных и теоретических моделей при решении поставленной задачи	Лабораторная работа №1, 2	экзамен
		задач проектной и производственно- технологической деятельности	Владеет навыками создания математических моделей, алгоритмов, по тематике проводимых научно-исследовательских проектов	Лабораторная работа №1, 2	экзамен
	подбора и регуляризаци и	ПК-5.2 Самостоятельно	Знает основные принципы математического моделирования	Лабораторная работа №1, 2	экзамен
	Некорректные задачи линейной алгебры	выбирает методы исследования, соотносит проблему, цели, задачи, предмет и методы исследования, формулирует проблему	Умеет строить математические алгоритмы и реализовывать их с помощью языков программирования, применять методы математического моделирования к решению конкретных задач	Лабораторная работа №1, 2	экзамен
		исследования при решении задач проектной и производственно-технологической деятельности	Владеет навыками профессионального мышления, необходимыми для адекватного использования методов современной математики в теоретических и прикладных	Лабораторная работа №1, 2	экзамен

	T	1	,		
			задачах, понятийным		
			аппаратом современной		
			математики		
			Знает основные понятия и		
			методы, необходимые для	Лабораторная	экзамен
			научной работы по	работа №1, 2	экзамен
			выбранной тематике		
			Умеет реализовывать		
		ПК-5.3 Применяет	алгоритмы на языках		
		методологические	программирования;		
		принципы и	разрабатывать	Лабораторная	
		методы решении	математические модели	работа №1, 2	экзамен
		задач проектной и	процессов и явлений,	paoora 3121, 2	
		производственно-	относящихся к		
		технологической	исследуемому объекту		
		деятельности	Владеет навыками		
		деятельности			
			построения и реализации	Побоновина	
			основных математических	Лабораторная	экзамен
			алгоритмов, методологией	работа №1, 2	
			математического		
	D 2		моделирования		
2	Раздел 2.	ПК-5.1	Знает основные методы анализа	π.σ	
	Интегральные		концептуальных и	Лабораторная	экзамен
	уравнения	Демонстрирует	теоретических моделей	работа №3, 4	onsumen.
	Некорректные	знание методов	решаемых задач		
	задачи для	анализа	Умеет использовать методы		
	ОДУ и ДУЧП	концептуальных и	анализа концептуальных и	Лабораторная	OKOOMOH
		теоретических	теоретических моделей при	работа №3, 4	экзамен
		моделей решаемых	решении поставленной задачи		
		задач проектной и	Владеет навыками создания		
		производственно- технологической	математических моделей,	Лабораторная	
			алгоритмов, по тематике		экзамен
		деятельности	проводимых научно-	работа №3, 4	
			исследовательских проектов		
			Знает основные принципы		
		ПК-5.2	математического	Лабораторная	экзамен
		Самостоятельно	моделирования	работа №3, 4	SKSUMCII
		_	Умеет строить математические		
		выбирает методы	_		
		исследования,	алгоритмы и реализовывать их		
		соотносит проблему,	с помощью языков	Лабораторная	
		цели, задачи,	программирования, применять	работа №3, 4	экзамен
		предмет и методы	методы математического	•	
		исследования,	моделирования к решению		
		формулирует	конкретных задач		
		проблему	Владеет навыками		
		исследования при	профессионального мышления,		
		решении задач	необходимыми для адекватного		
		проектной и	использования методов	Лабораторная	экзамен
		производственно-	современной математики в	работа №3, 4	GRIGHTOIT
		технологической	теоретических и прикладных		
		деятельности	задачах, понятийным аппаратом		
			современной математики		
			Знает основные понятия и		
		ПК-5.3 Применяет	методы, необходимые для	Лабораторная	
		методологические	научной работы по выбранной	работа №3, 4	экзамен
		принципы и методы	тематике	r	
		решении задач	Умеет реализовывать		
		проектной и	алгоритмы на языках		
		*	-	Лабораторная	
		производственно-	программирования;		экзамен
		технологической	разрабатывать математические	работа №3, 4	
	деятельности	модели процессов и явлений,			
			относящихся к исследуемому		

		объекту		
		Владеет навыками построения и реализации основных математических алгоритмов, методологией математического моделирования	Лабораторная работа №3, 4	экзамен
Раздел 3. Применение методов статистики в	ПК-5.1 Демонстрирует знание методов	Знает основные методы анализа концептуальных и теоретических моделей решаемых задач	Лабораторная работа №5	экзамен
решении некорректных задач. Предварительн	анализа концептуальных и теоретических моделей решаемых	Умеет использовать методы анализа концептуальных и теоретических моделей при решении поставленной задачи	Лабораторная работа №5	экзамен
ые сведения из математическо й статистики		Владеет навыками создания математических моделей, алгоритмов, по тематике проводимых научно-исследовательских проектов	Лабораторная работа №5	экзамен
	ПК-5.2 Самостоятельно	Знает основные принципы математического моделирования	Лабораторная работа №5	экзамен
	выбирает методы исследования, соотносит проблему, цели, задачи, предмет и методы исследования, формулирует	Умеет строить математические алгоритмы и реализовывать их с помощью языков программирования, применять методы математического моделирования к решению конкретных задач	Лабораторная работа №5	экзамен
	проблему исследования при решении задач проектной и производственнотехнологической деятельности	Владеет навыками профессионального мышления, необходимыми для адекватного использования методов современной математики в теоретических и прикладных задачах, понятийным аппаратом современной математики	Лабораторная работа №5	экзамен
		Знает основные понятия и методы, необходимые для научной работы по выбранной тематике	Лабораторная работа №5	экзамен
	ПК-5.3 Применяет методологические принципы и методы решении задач проектной и производственнотехнологической	Умеет реализовывать алгоритмы на языках программирования; разрабатывать математические модели процессов и явлений, относящихся к исследуемому объекту	Лабораторная работа №5	экзамен
	деятельности	Владеет навыками построения и реализации основных математических алгоритмов, методологией математического моделирования	Лабораторная работа №5	экзамен
Раздел 4. Параметрическ ое описание искомой	ПК-5.1 Демонстрирует знание методов анализа	Знает основные методы анализа концептуальных и теоретических моделей решаемых задач	Лабораторная работа №6, 7	экзамен
функции Восстановлени е функции	концептуальных и	Умеет использовать методы анализа концептуальных и теоретических моделей при решении поставленной задачи	Лабораторная работа №6, 7	экзамен
	производственно-	Владеет навыками создания	Лабораторная	экзамен

технологической	математических моделей,	работа №6, 7	
деятельности	алгоритмов, по тематике	paoora 3120, 7	
делтельности	проводимых научно-		
	исследовательских проектов		
	Знает основные принципы		
ПК-5.2	-	Лабораторная	OTEO OF COLU
	математического	работа №6, 7	экзамен
Самостоятельно	моделирования		
выбирает методы	Умеет строить математические		
исследования,	алгоритмы и реализовывать их		
соотносит проблему,	с помощью языков	Лабораторная	
цели, задачи,	программирования, применять	работа №6, 7	экзамен
предмет и методы	методы математического	pace 14 7 .= 0, 7	
исследования,	моделирования к решению		
формулирует	конкретных задач		
проблему	Владеет навыками		
исследования при	профессионального мышления,		
решении задач	необходимыми для адекватного		
проектной и	использования методов	Лабораторная работа №6, 7	экзамен
производственно-	современной математики в		
технологической	теоретических и прикладных	•	
деятельности	задачах, понятийным аппаратом		
	современной математики		
	Знает основные понятия и		
	методы, необходимые для	Лабораторная	
	научной работы по выбранной	работа №6, 7	экзамен
	тематике	r 300 14 1 120, /	
ПК-5.3 Применяет	Умеет реализовывать		
методологические	алгоритмы на языках		
принципы и методы	программирования;		
_	разрабатывать математические	Лабораторная	JESSMAII
решении задач		работа №6, 7	экзамен
проектной и	модели процессов и явлений,		
производственно-	относящихся к исследуемому		
технологической	объекту		
деятельности	Владеет навыками построения и		
	реализации основных	Лабораторная	
	математических алгоритмов,	работа №6, 7	экзамен
	методологией математического	pacora 31-0, /	
	моделирования		

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

(электронные и печатные издания)

- 1. Тихонов А. Н. Методы решения некорректных задач: учебное пособие для вузов / А. Н. Тихонов, В. Я. Арсенин. Москва: Наука,
- 2. Численные методы решения некорректных задач / А.Н. Тихонов [и др.]. Москва: Наука, 1990.
- 3. Обратные задачи и методы их решения. Приложения к геофизике / А. Г. Ягола, Ван Янфей, И. Э. Степанова, В. Н. Титаренко. 3-е изд. М.:

- Лаборатория знаний, 2017. 217 с. ISBN 978-5-00101-496-6. http://www.iprbookshop.ru/89113.html
- 4. Обратные и некорректные задачи: учебник / А. О. Ватульян, О. А. Беляк, Д. Ю. Сухов, О. В. Явруян.— Ростов-на-Дону: Издательство Южного федерального университета, 2011. 232 с. ISBN 978-5-4358-0908-9. http://www.iprbookshop.ru/47033.html

Дополнительная литература (печатные и электронные издания)

1. Крылов В.И. Начала теории вычислительных методов. Интегральные уравнения, некорректные задачи и улучшение сходимости / В.И. Крылов, В.В. Бобков, П.И. Монастырный. - Минск: Наука и техника, 1984.

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

1. Рекомендации по планированию и организации времени, необходимого для изучения дисциплины. Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины: Изучение конспекта лекции в тот же день после лекции – 10-15 минут. Повторение лекции за день перед следующей лекцией – 10-15 минут.

Изучение теоретического материала по учебнику и конспекту – 1 час в неделю. Подготовка к лабораторному занятию и работе в компьютерном классе – 1,5 часа. Тогда общие затраты времени на освоение дисциплины студентами составят около часа в неделю.

- 2. Описание последовательности действий студента («алгоритм изучения дисциплины»). При изучении методов кластерного анализа следует внимательно слушать и конспектировать материал, излагаемый на аудиторных занятиях. Для его понимания и качественного усвоения рекомендуется следующая последовательность действий:
- 1. После окончания учебных занятий для закрепления материала просмотреть и обдумать текст лекции, прослушанной сегодня, разобрать рассмотренные примеры (10-15 минут).

- 2. При подготовке к лекции следующего дня повторить текст предыдущей лекции, подумать о том, какая может быть следующая тема (10-15 минут).
- 3. В течение недели выбрать время для работы со специальной литературой в библиотеке и для занятий на компьютере (по 1 часу).
- 4. При подготовке к лабораторным занятиям следующего дня необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении задания нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и опробовать решить аналогичную задачу самостоятельно.
- 3. Рекомендации по работе с литературой. Теоретический материал курса становится более понятным, когда дополнительно к прослушиванию лекций изучаются и книги. Литературу по курсу желательно изучать в библиотеке. Полезно использовать несколько учебников, однако легче освоить курс, придерживаясь одного учебника и конспекта. Рекомендуется, кроме «заучивания» материала, добиться понимания изучаемой темы дисциплины. Кроме того, очень полезно мысленно задать себе и попробовать ответить на следующие вопросы: о чем эта глава, какие новые понятия в ней введены.
- 4. Советы по подготовке к итоговому контролю. Дополнительно к изучению конспектов лекций необходимо пользоваться учебниками. Вместо «заучивания» материала важно добиться понимания изучаемых тем дисциплины. При подготовке к итоговому контролю нужно освоить теорию: разобрать определения всех понятий и численных методов, рассмотреть примеры и самостоятельно решить несколько типовых задач из каждой темы. При решении задач всегда необходимо комментировать свои действия и не забывать о содержательной интерпретации.

5. Указания по организации работы с контрольно-измерительными материалами. При подготовке к лабораторной работе необходимо сначала прочитать теорию по каждой теме. Отвечая на поставленные вопросы, предварительно следует понять, что требуется от Вас в данном случае, какой теоретический материал нужно использовать, наметить общий план решения.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебная аудитория для проведения занятий семинарского типа, практических занятий: компьютерный класс (690001, Приморский край, г. Владивосток, о. Русский, п. Аякс, 10, Корпус 20, ауд.D733, D733a, D734).

D733: Моноблок lenovo C360G-i34164G500UDK - 13 шт. Мультимедийное оборудование: Экран проекционный ScreenLine Trim White Ice 50 см черная кайма сверху, размер рабочей области 236х147 см Документ-камера Avervision CP355AF ЖК-панель 47", Full HD, LG M4716 CCBA Мультимедийный проектор Mitsubishi EW33OU, 3000 ANSI Lumen, 1280х800 Сетевая видеокамера Multipix MP-HD718.

D733a: Компьютер (твердотельный диск - объемом 128 ГБ; жесткий диск - объем 1000 ГБ; форм-фактор - Tower; комплектуется клавиатурой, мышью, монитором АОС i2757Fm; комплектом шнуров эл. питания) модель - M93p1 - 13 шт.

D734: Моноблок HPP-B0G08ES#ACB/8200E AIO i52400S 500G 4.0G 28 PC - 15 шт Мультимедийное оборудование: Экран проекционный ScreenLine Trim White Ice 50 см черная кайма сверху, размер рабочей области 236х147 см Документ-камера Avervision CP355AF ЖК-панель 47", Full HD, LG M4716 CCBA Мультимедийный проектор Mitsubishi EW33OU, 3000 ANSI Lumen, 1280х800 Сетевая видеокамера Multipix MP-HD718.

Программное обеспечение:

- 1) Acrobat Pro DC. Договор ЭА-442-15 от 18.01.16 лот 1. Лицензия 20.01.2019.
- 2) Primiere Elements. Договор ЭА-442-15 от 18.01.16 лот 1. Лицензия 20.01.2019.
- 3) In Design CC. Договор ЭА-442-15 от 18.01.16 лот 1. Лицензия 20.01.2019.
- 4) Photoshop СС. Договор ЭА-442-15 от 18.01.16 лот 1. Лицензия 20.01.2019.
- 5) Academic Campus 500. Договор ЭА-442-15 от 18.01.16 лот 3. Лицензия бессрочно.

- 6) Academic Reseach. Договор ЭА-442-15 от 18.01.16 лот 3. Лицензия 14.01.2020.
- 7) Academic Associate Mech. Договор ЭА-442-15 от 18.01.16 лот 3. Лицензия бессрочно.
- 8) SPSS Statistics Premium Campus Edition. Договор ЭА-442-15 от 18.01.16 лот 5. Лицензия бессрочно.
- 9) SPSS Statistics Premium Base. Договор ЭА-442-15 от 18.01.16 лот 5. Лицензия бессрочно.
- 10) SPSS Amos. Договор ЭА-442-15 от 18.01.16 лот 5. Лицензия бессрочно.
- 11) АСКОН Компас 3D v17. Поставщик Навиком. Договор 15-03-53 от 20.12.2015. Срок действия договора 31.12.2015. Лицензия бессрочно.
- 12) Statistica Ultimate Academic Bundle. Договор ЭА-442-15 от 18.01.16 лот 9. Лицензия 14.01.2020.
- 13) Statistica. Договор ЭА-442-15 от 18.01.16 лот 9. Лицензия 14.01.2020.
- 14) MathCad Education Universety Edition. Договор 15-03-49 от 02.12.2015. Лицензия бессрочно.

VIII. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Описание показателей и критериев оценивания:

Оценка	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
Набранная сумма баллов (% выполненных заданий) (мах – 5)	Менее 3 (Менее 60%)	3-3,5 (61-74%)	3,6 -4,4 (75-84%)	4,5-5 (85- 100%)
Оценка	Незачет	3a·	чет	
Набранная сумма баллов (% выполненных заданий) (мах – 5)	Менее 3 (Менее 60%)	3,1 – 5 (61-100%)		

Зачетно-экзаменационные материалы

Вопросы для подготовки к экзамену (2 семестр)

1. Понятие корректности (определение корректности ПО Адамару, некорректно поставленные задачи c точки зрения построения моделей физических задач. Примеры математических некорректно поставленных задач).

- 2. Математическая постановка задачи восстановления функций.
- 3. Свойства непрерывных функций (модуль непрерывности, его свойства; классы непрерывных функций, соотношения между ними: Lipm1, Lipm β, Дини-Липшица)
- 4. Методы приближенного решения задачи восстановления функций из L [ab] в C[ab].
- 5. Выражение для нормы интегрального оператора, действующего из L [ab] в C[ab].
- 6. Свойства семейства операторов Th, применяемого для решения задачи восстановления. Необходимые и достаточные условия сходимости.
- 7. Восстановление функций с помощью оператора Стеклова.
- 8. Построение расширенного оператора Стеклова Sh.
- 9. Решение задачи восстановления с помощью оператора Sh (доказательство сходимости, подсчет нормы, выбор параметра оценки погрешности).
- 10. Восстановление периодических функций.
- 11. Интегральные представления сумм Фурье и Фейера.
- 12. Подсчет норм этих операторов, согласование n с δ, доказательство сходимости, оценки погрешности.
- 13. Понятие наилучшего приближения, его свойства.
- 14.Метод регуляризации (постановка задачи восстановления, компактность в C[ab] множества $||f||_{w_2 1} \le C$, вывод уравнения Эйлера, теорема о сходимости метода).
- 15. Методы восстановления производной (с помощью конечно-разностного оператора, с помощью интегральных операторов).
- 16. Методы решения уравнений первого рода
- 17. Примеры уравнений 1 рода
- 18. Лемма Тихонова.
- 19. Понятие корректности по Тихонову.
- 20.Метод Лаврентьева (доказательство сходимости, оценка нормы регуляризирующего оператора на основании спектральной теоремы).
- 21. Общий прием построения методов решения уравнений первого рода в гильбертовых пространствах.
- 22. Метод регуляризации Тихонова решения интегральных уравнений 1 рода.