

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА

СОГЛАСОВАНО

Руководитель ОП

Чеботарев А.Ю.

(поднись) (ФИО)

УТВЕРЖДАЮ

Заведующий кафедрой

«15» июля 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дифференциальные уравнения в частных производных Направление подготовки 01.03.02 Прикладная математика и информатика (Системное программирование) Форма подготовки очная

курс 3 семестр 5 лекции 16 час. практические занятия 0 час. лабораторные работы 32 час. в том числе с использованием МАО лек.0 /пр. 0 /лаб. 0 час. всего часов аудиторной нагрузки 48 час. в том числе с использованием МАО 66 час. самостоятельная работа 60 час. в том числе на подготовку к экзамену 36 час. контрольные работы (количество) 2 курсовая работа / курсовой проект - / - зачет не предусмотрен экзамен 5 семестр

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденного приказом Министерства образования и науки Российской Федерации от 10 января 2018 г. № 9 (с изменениями и дополнениями).

Рабочая программа обсуждена на заседании кафедры информатики, математического и компьютерного моделирования протокол № 10 от «09» июля 2021 г.

Заведующий кафедрой Чеботарев А.Ю.

Составители: Сущенко А.А

Владивосток 2021

Оборотная сторона титульного листа РПД

I. Рабочая прогр	амма перес	мотрена на заседан	ии кафедры/департамента:
Протокол от «	»	20 г	r. №
Заведующий каф	едрой		
		(подпись)	(И.О. Фамилия)
II. Рабочая прог	рамма пере	смотрена на заседа	нии кафедры/департамента:
Протокол от «	»	20 г	r. №
Заведующий каф	едрой		
1		(подпись)	(И.О. Фамилия)
III. Рабочая про	грамма пер	есмотрена на заседа	ании кафедры/департамента:
Протокол от «	»	20 г	. №
Заведующий кафо	едрой		
		(подпись)	(И.О. Фамилия)
IV. Рабочая про	грамма пер	есмотрена на заседа	ании кафедры/департамента:
Протокол от «	»	20 г	·. №
Заведующий кафо	едрой		_
-		(подпись)	(И.О. Фамилия)

І. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ:

Цель: Приобретение у обучающихся необходимого для осуществления профессиональной деятельности уровня компетенций.

Задачи:

- развитие логического мышления;
- повышение уровня математической культуры;
- овладение современным математическим аппаратом, необходимым для изучения естественнонаучных, общепрофессиональных и специальных дисциплин;
- освоение методов математического моделирования;
- освоение приемов постановки и решения математических задач;

В результате изучения данной дисциплины у обучающихся формируются следующие общепрофессиональные компетенции:

Наименование категории (группы) общепрофессиональных компетенций	Код и наименование общепрофессиональной компетенции (результат освоения)	Код и наименование индикатора достижения компетенции
Теоретические и практические основы профессиональной деятельности	ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	ОПК-1.1 использует в профессиональной деятельности основы математических дисциплин ОПК-1.2 решает стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и математического и компьютерного моделирования ОПК-1.3 осуществляет теоретическое и экспериментальное исследование объектов профессиональной деятельности

Код и наименование индикатора	Наименование показателя оценивания
достижения компетенции	(результата обучения по дисциплине)
OUIV 1 1 veregreever b	<u>Знает</u> основные положения теории множеств, теории пределов, теории рядов
ОПК-1.1 использует в профессиональной деятельности основы математических дисциплин	<u>Умеет</u> вычислять пределы, производные и интегралы от элементарных функций
основы математических дисциплин	<u>Владеет</u> методами построения простейших математических моделей типовых профессиональных задач
ОПК-1.2 решает стандартные	Знает основные положения дифференциального, интегрального
профессиональные задачи с	исчисления, методы исследования функций
применением естественнонаучных и	<u>Умеет</u> проводить исследование функций
общеинженерных знаний, методов математического анализа и	Владеет методами построения компьютерных и физических
математического и компьютерного	моделей типовых профессиональных задач
моделирования	
ОПК-1.3 осуществляет теоретическое и	Знает методы обработки и интерпретации данных современных научных исследований
экспериментальное исследование объектов профессиональной	<u>Умеет</u> собирать, обрабатывать и интерпретировать данные
* *	современных научных исследований
деятельности	Владеет навыками применения, интерпретирования данных

	Код и наименование индикатора достижения компетенции	Наименование показателя оценивания (результата обучения по дисциплине)
Ī		современных научных исследований

II. ТРУДОЁМКОСТЬ ДИСЦИПЛИНЫ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ

Общая трудоемкость дисциплины составляет 5 зачётных единиц (180 академических часа).

(1 зачетная единица соответствует 36 академическим часам)

Видами учебных занятий и работы обучающегося по дисциплине могут являться:

Обозначение	Виды учебных занятий и работы обучающегося		
Лек	Лекции		
Лаб	Лабораторные работы		
Пр	Практические занятия		
ОК	Онлайн курс		
CP	Самостоятельная работа обучающегося в период теоретического обучения		
Контроль	Самостоятельная работа обучающегося и контактная работа обучающегося с преподавателем в период промежуточной аттестации		

Структура дисциплины:

Форма обучения – очная.

Ψ			Количество часов по видам учебных занятий и работы обучающегося						
№	Наименование раздела дисциплины	Семестр	Лек	Лаб	Пр	OK	CP	Контроль	Формы промежуточной аттестации
1	Раздел 1. Метод разделения переменных (метод Фурье) и волновые процессы на прямой		2		4				
2	Раздел 2. Метод разделения переменных (метод Фурье) и волновые процессы в пространстве		2		4				
3	Раздел 3. Параболические уравнения и тепловые процессы	5	3		6		60	36	экзамен
4	Раздел 4. Элементы теории эллиптических уравнений и гармонических функций		3		6				
5	Раздел 5. Элементы теории объемного потенциала		3		6				
6	Раздел 6. Элементы теории потенциалов простого и двойного слоя		3		6				
	Итого:		16		32		60	36	

III. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Раздел 1. Метод разделения переменных (метод Фурье) волновые процессы на прямой. (2 час.). Спектральная задача для простейшего одномерного дифференциального оператора 2-го порядка. Собственные значения и собственные функции и их свойства. Применение метода Фурье для уравнения свободных колебаний струны. Обоснование метода Фурье для уравнения свободных колебаний струны. Метод Фурье для вынужденных колебаний струны (с подвижными границами). Спектральная задача для одномерного дифференциального оператора с переменными коэффициентами. Формулировка теоремы существования задачи (собственных функций). решения спектральной значений Применение метода Фурье для одномерного уравнения гиперболического типа с переменными коэффициентами. Единственность и устойчивость краевой решения первой задачи ДЛЯ одномерного уравнения гиперболического типа с переменными коэффициентами.

Раздел 2. Метод разделения переменных (метод Фурье) и волновые процессы в пространстве. (2 час.). Многомерная спектральная задача. Формулировка теоремы существования и свойства решения (собственных значений и функций). Применение метода Фурье для двумерного волнового уравнения. Колебания прямоугольной мембраны. Физический анализ решения. Применение метода Фурье для уравнения колебаний круглой мембраны. Цилиндрические функции Бесселя, Неймана и Ханкеля.

Раздел 3. Параболические уравнения и тепловые процессы. (4 час.). Принцип максимума для трехмерного однородного уравнения теплопроводности. Единственность и устойчивость решения первой краевой задачи. Принцип максимума для уравнения параболического типа с переменными коэффициентами. Единственность и устойчивость решения первой краевой задачи. Решение первой краевой задачи для одномерного однородного уравнения теплопроводности методом Фурье. Обоснование Фурье. Решение первой краевой метода задачи ДЛЯ одномерного неоднородного уравнения теплопроводности методом Фурье. Постановка задачи Коши для одномерного уравнения теплопроводности. Единственность решения. Применение метода Фурье для решения устойчивость Коши одномерной задачи уравнения теплопроводности. ДЛЯ Фундаментальное решение и его свойства. Обоснование метода Фурье для задачи Коши для уравнения теплопроводности. Физический анализ решения. Сущность метода интегральных преобразований. Применение для решения задачи Коши для неоднородного одномерного уравнения теплопроводности.

Раздел 4. Элементы эллиптических теории уравнений гармонических функций. (3 час.) Понятие гармонической функции. Понятие сингулярного, регулярного и фундаментального решений для уравнений Пуассона и Гельмгольца. Их свойства и физический смысл. Элементы теории обобщенных функций. δ-функция и ее физический смысл. Грина. Интегральные формулы Интегральное представление гладких функций. Основные свойства гармонических функций. Принцип максимума и следствия к нему. Теоремы о единственности и устойчивости решений первой краевой задачи (внутренней и внешней) для уравнения Пуассона. Теоремы о единственности решений второй и третьей краевой задачи (внутренней и внешней) для уравнения Пуассона. Решение краевой задачи для уравнения Лапласа в круге, кольце, прямоугольнике методом Фурье. Формула Пуассона решения краевой задачи для уравнения Лапласа в круге. Поведение гармонической функции на бесконечности. Формула Пуассона решения краевой задачи для уравнения Лапласа в шаре.

Раздел 5. Элементы теории объемного потенциала. (3 час.). Несобственные кратные интегралы, зависящие от параметра. Равномерная сходимость. Теорема о непрерывности равномерно сходящегося интеграла. Понятие и физический смысл потенциала (объемного, простого и двойного слоя). Объемный потенциал. Теорема о непрерывной дифференцируемости объемного потенциала в пространстве. Вторые производные объемного потенциала. Дифференциальное уравнение для объемного потенциала.

Элементы теории потенциалов простого и двойного слоя. (3 час.). Потенциал простого слоя и его свойства. Формулы для скачка его нормальных производных на границе. Потенциал двойного слоя и его свойства. Формулы для скачка предельных значений на границе. Метод функций Грина решения краевой задачи для уравнения Пуассона. Элементы теории интегральных уравнений. Альтернатива Фредгольма. Формулировка теорем Фредгольма. Сущность метода граничных интегральных уравнений. задачи Дирихле ДЛЯ уравнения Лапласа К граничному интегральному уравнению. Сведение задачи Неймана для уравнения Лапласа к граничному интегральному уравнению.

IV. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА И САМОСТОЯТЕЛЬНОЙ РАБОТЫ

На практических занятиях студенты решают задачи на избранные темы. В рамках самостоятельной работы студентов запланирована одна индивидуальная домашняя письменная контрольная работа в 6-м семестре.

- Цель её закрепление пройденного теоретического и практического материала.
- **Занятие 1.** Основные этапы математического моделирования. Примеры простейших математических моделей. (2 час.)
- Занятие 2. Классификация и приведение к каноническому виду уравнений в частных производных второго порядка с постоянными коэффициентами. (2 час.)
- **Занятие 3.** Приведение к каноническому виду уравнений второго порядка с двумя независимыми переменными. (2 час.)
- **Занятие 4.** Характеристики для уравнений первого и второго порядков. (2 час.)
- **Занятие 5.** Формула Даламбера решения задачи Коши для уравнения колебания струны. (2 час.)
- Занятие 6. Построение решения задачи Коши методом распространяющихся волн. Начально-краевые задачи для уравнения колебания струны на вещественной полуоси. (2 час.)
- **Занятие 7.** Спектральная задача для одномерного дифференциального оператора второго порядка. (2 час.)
- **Занятие 8.** Применение метода Фурье для однородного уравнения колебания струны. Физический анализ решения. (2 час.)
- **Занятие 9.** Применение метода Фурье для неоднородного уравнения колебания струны. Физический анализ решения. (2 час.)
- **Занятие 10.** Применение метода Фурье для однородного уравнения колебания мембраны. Физический анализ решения. (2 час.)
- **Занятие 11.** Применение метода Фурье для однородного одномерного уравнения теплопроводности. Физический анализ решения. (2 час.)
- **Занятие 12.** Применение метода Фурье для неоднородного уравнения теплопроводности. Физический анализ решения. (2 час.)
- **Занятие 13.** Решение задачи Коши для неоднородного уравнения теплопроводности методом интегральных преобразований. Физический анализ решения. (2 час.)
 - Занятие 14. Основные свойства гармонических функций. (2 час.)
- **Занятие 15.** Решение задачи Дирихле для уравнения Лапласа в прямоугольнике. (2 час.)
- **Занятие 16.** Решение задачи Дирихле для уравнения Лапласа в прямоугольном параллелепипеде. (2 час.)
- **Занятие 17.** Свойства объемного потенциала и потенциалов простого и двойного слоя. (2 час.)

V. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ (И ОНЛАЙН

КУРСА ПРИ НАЛИЧИИ)

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Дифференциальные уравнения в частных производных» включает в себя:

План-график выполнения самостоятельной работы по дисциплине

№	Дата/сроки	Вид самостоятельной работы	Примерные нормы	Форма контроля
п/п	выполнения		времени на выполнение	
1	В течение	Подготовка рефератов по	На написание одного	Защита рефератов
	семестра	обязательным разделам курса с	реферата отводится не	проводится как в виде
		использованием материалов	менее двух недель.	устного опроса (УО-1), в
		учебника Г.В. Алексеева	Требования к оформлению	ходе коллоквиума (УО-2),
		«Классические модели и методы	рефератов стандартные.	так и в виде доклада (УО-
		математической физики»		3).
2		Подготовка рефератов по	На написание одного	Защита рефератов
		дополнительным разделам курса	реферата отводится не	проводится как в виде
		с использованием	менее двух недель.	устного опроса (УО-1), в
		дополнительной учебной и	Требования к оформлению	ходе коллоквиума (УО-2),
		научной литературы.	рефератов стандартные.	так и в виде доклада (УО-
				3).

VI. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№	Контролируемые разделы / темы	Коды и этапы формирования компетенций		Оценочные средства - наименование		
п/п	дисциплины			текущий контроль	(вопросы к экзамену)	
			Знает			
1	Раздел 1. Введение	ОПК-1	Умеет	УО-1 (устный опрос)	1	
			Владеет			
		ОПК-1	Знает			
2	Раздел 2. Математические модели физических процессов		Умеет	УО-1	1-8	
			Владеет			
	Раздел 3. Общие вопросы теории уравнений в частных производных.	ОПК-1	Знает			
3			Умеет	УО-2 (коллоквиум) УО-1	9-17	
			Владеет			
	Раздел 4. Уравнения гиперболического типа и волновые процессы на прямой	ОПК-1	Знает		18-20	
4			Умеет	УО-2 (коллоквиум) УО-1 (устный опрос)		
			Владеет			
		ОПК-1	Знает			
5	Раздел 5. Уравнения гиперболического типа и волновые процессы в пространстве		Умеет	УО-1	21-25	
			Владеет			
	Раздел 6. Метод разделения переменных	ОПК-1	Знает			
6	(метод Фурье) и волновые процессы на		Умеет	УО-2 (коллоквиум)	26-31	
	прямой		Владеет			

	Раздел 7. Метод разделения переменных	ОПК-1	Знает		
7	(метод Фурье) и волновые процессы в		Умеет	УО-2 УО-1	32-34
	пространстве		Владеет		
		ОПК-1	Знает		
8	Раздел 8. Параболические уравнения и тепловые процессы		Умеет		35-42
	тепловые процессы		Владеет		
	Раздел 9. Элементы теории эллиптических уравнений и гармонических функций	ОПК-1	Знает	УО-2	
9			Умеет	УО-3 (доклад,	43-51
			Владеет	сообщение)	
	Раздел 10. Элементы теории объемного потенциала	ОПК-1	Знает	УО-2	
10			Умеет	УО-3, УО-4	52- 54
			Владеет	(дискуссия)	
	Раздел 11. Элементы теории потенциалов простого и двойного слоя	ОПК-1	Знает	УО-2	
11			Умеет	УО-3, УО-4	55, 56
			Владеет		

VII. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература (электронные и печатные издания)

- 1. Ильин А.М. Уравнения математической физики. Издательство Физматлит.
 2010.
 192
 с.

 http://e.lanbook.com/books/element.php?pl1_id=2181
- 2. Емельянова В.М., Рабыкина В.А. Уравнения математической физики. Практикум по решению задач. М.: Изд-во Лань. 2010. 224 с. http://e.lanbook.com/books/element.php?pl1_id=140
- 3. Абдурахманов В.Г., Булгакова Г.Т. Уравнения математической физики. Теория и практика. Издательство ФЛИНТА. 2014. 338 с. http://e.lanbook.com/books/element.php?pl1_id=51962
- 4. Блинова И.В., Попова И.Ю. Простейшие уравнения математической физики. Издательство. НИУ ИТМО (Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики). 2010. 60 с. http://e.lanbook.com/books/element.php?pl1_id=43439
- 5. Сабитов К.Б. Уравнения математической физики. Издательство Физматлит.
 2013.
 352
 с.

 http://e.lanbook.com/books/element.php?pl1_id=59660
 с.
- 6. Прокудин Д.А., Глухарева Т.В., Казаченко И.В. Уравнения математической физики: учебное пособие. Издательство КемГУ. 2014.

- 163 c. http://e.lanbook.com/books/element.php?pl1_id=58343
- 7. Полянин А.Д. Справочник по линейным уравнениям математической физики. Издательство Физматлит. 2010. 592 с. http://e.lanbook.com/books/element.php?pl1_id=48190

Дополнительная литература (печатные и электронные издания)

- 1. Алексеев Г.В. Классические модели и методы математической физики: Учебное пособие для вузов. Владивосток: Изд-во. Дальнаука. 2011. 456 с.
- 2. Арсенин В.Я. Методы математической физики и специальные функции. М: Наука, 1974. 432 с.
- 3. Бабич В.М., Григорьева Н.С. Ортогональные разложения и метод Фурье. Л.: Изд-во Ленингр. ун-та., 1983. 240 с.
- 4. Владимиров В.С. Уравнения математической физики. М: Наука, 1981. 512 с.
- 5. Годунов С.К. Уравнения математической физики. М.: Наука, 1971. 416 с.
- 6. Коробейников В.П. Принципы математического моделирования. Владивосток, ДальНаука, 1997. 240 с.
- 7. Михлин С.Г. Линейные уравнения в частных производных. М.: Высшая школа, 1977. 432 с.
- 8. Михлин С.Н. Лекции по линейным интегральным уравнениям. М.: Физматгиз, 1959. 232 с.
- 9. Петровский И.Г. Лекции об уравнениях с частными производными. М.: Физматгиз, 1961. 400 с.
- 10.Самарский А.А., Михайлов А.П. Математическое моделирование. М.: Наука, 1997. 320 с.
- 11.Смирнов М.М. Дифференциальные уравнения с частными производными второго порядка. М: Наука, 1974. 210 с.
- 12.Тихонов А.Н., Самарский А.А. Уравнения математической физики. М: Изд-во Моск. ун-та. 1999. 800 с.
- 13. Свешников А.Г., Боголюбов А.Н., Кравцов В.В. Лекции по математической физике: Учебник для вузов. Москва: Изд-во МГУ. Наука. 2004. 416 с.
- 14.Владимиров В.В., Жариков В.С. Уравнения математической физики: Учебник для вузов. Москва: Изд-во Физико-математическая литература. 2004. 400 с.
- 15. Краснопевцев Е.А. Математические методы физики. Избранные вопросы: Учебник для вузов. Новосибирск: Изд-во НГТУ. 2003. 244 с.
- 16.Пикулин В.П., Похожаев С.И. Практический курс по уравнениям математической физики: Учебное пособие для вузов. Москва: Изд-во

- МНЦМО. 2004. 208 с.
- 17. Сабитов К.Б. Уравнения математической физики: Учебное пособие для вузов. Москва: Изд-во Высшая школа. 2003. 255с.
- 18.<u>http://window.edu.ru/resource/433/24433</u> Попов И.Ю. Лекции по математической физике. СПб.: СПбГИТМО(ТУ), 2004. 104 с.
- 19. http://window.edu.ru/resource/183/79183 Жидков А.А., Калинин А.В., Тюхтина А.А. Математические основы современной теории краевых задач для уравнений с частными производными: Электронное учебнометодическое пособие. -Нижний Новгород: Нижегородский госуниверситет, 2012. 82 с.
- 20.http://window.edu.ru/resource/224/79224 Жислин Г.М. Интегральные преобразования в задачах математической физики. Электронное учебнометодическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2012. 80 с.
- 21. Алексеев Г.В. Классические методы математической физики: Учебное пособие. Часть 1. Владивосток: Изд-во Дальневост. ун-та, 2005. 224 с. http://window.edu.ru/resource/008/63008
- 22. Алексеев Г.В. Классические методы математической физики: Учебное пособие. Часть 2. Владивосток: Изд-во Дальневост. ун-та, 2005. 195 с. http://window.edu.ru/resource/009/63009

Перечень информационных технологий и программного обеспечения

- 1. Российское образование http://www.edu.ru/ (Портал содержит каталог образовательных web ресурсов по многим учебным дисциплинам, тексты законодательных и нормативных документов по образованию, федеральные программы и стандарты развития образования, информацию о конкурсах на получения грантов, сведения об образовательных учреждениях всех видов, глоссарий образовательных терминов)
- 2. Электронная каталог библиотеки ДВФУ: http://lib.dvfu.ru/
- 3. Exponenta.Ru http://www.exponenta.ru/ (Сайт показывает возможности популярных математических пакетов (Mathcad, Matlab, Maple, Mathematica, Statistica) для решения учебных и практических задач; содержит рекомендации, руководства по работе с математическими пакетами. Ссылки на основные ресурсы российского Интернета, посвященные использованию математических пакетов в образовании и в науке, опыт использования компьютера в математическом образовании. Математика онлайн)
- 4. Интернет-библиотека по математике http://ilib.mccme.ru/ (Сайт Московского Центра непрерывного математического образования)
- 5. Издательство «Лань»: <u>http://e.lanbook.com</u>, к ресурсам которого есть

доступ с ДВФУ

6. Math.ru - библиотека http://www.math.ru/lib/formats (В библиотеке представлены книги, которые многие годы пользуются популярностью у студентов, преподавателей и просто любителей математики. Также содержит книги по физике).

VIII. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

На вводной лекции даются рекомендации по планированию и организации времени, отведенного на изучение дисциплины; рекомендации по работе с литературой. Большинство вопросов из лекционного материала подробно представлено в учебном пособии Алексеева Г.В. «Классические модели и методы математической физики», изданном в издательстве Дальнаука в 2011 г.

IX. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Мультимедийная аудитория (мультимедийный проектор Optima EX542I-1 шт.; аудио усилитель QVC RMX 850–1 шт.; колонки 1 шт.; ноутбук; ИБП 1 шт.; настенный экран; микрофон 1 шт.) для проведения лекций в формате презентаций.
- 2. Учебный компьютерный класс и Мультимедийный класс с выходом в сеть Интернет.

х. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

В соответствии с требованиями ФГОС ВО для аттестации обучающихся на соответствие их персональных достижений планируемым результатам обучения по дисциплине созданы фонды оценочных средств:

№ п/п	Контролируемые разделы дисциплины (результаты по разделам)	Код контролируемо	Наименование оценочного средства	
1.	Теоретическая часть	ОПК-1 Способен применять фундаментальные	ОПК-1.1 использует в профессиональной деятельности основы математических дисциплин	Реферат, доклад, презентация
		области математических и (или) естественных наук, и использовать	ОПК-1.2 решает стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и математического и компьютерного моделирования	
		деятельности	ОПК-1.3 осуществляет теоретическое и экспериментальное исследование объектов профессиональной деятельности	
2.	Практическая часть	ОПК-1 Способен применять	ОПК-1.1 использует в профессиональной деятельности основы математических	лабораторные работы

фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной	дисциплин ОПК-1.2 решает стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и математического и компьютерного моделирования	
деятельности	ОПК-1.3 осуществляет теоретическое и экспериментальное исследование объектов профессиональной деятельности	

Вопросы к экзамену

- 1. Сущность метода математического моделирования. Основные этапы моделирования. Простейшие математические модели движения материальной точки.
- 2. Стационарные процессы. Математическая модель гравитационного поля. Уравнение Лапласа.
- 3. Нестационарные процессы. Математические модели колебания струны и мембраны. Волновое уравнение.
- 4. Математическая модель распространения тепла в изолированном твердом теле. Уравнение теплопроводности.
- 5. Математические модели движения идеальной жидкости.
- 6. Математические модели движения вязкой жидкости.
- 7. Математическая модель распространения звуковых волн. Волновое уравнение. Уравнение Гельмгольца для гармонических звуковых волн. Условия Зоммерфельда на бесконечности.
- 8. Математические модели электромагнитного поля. Уравнения Максвелла. Волновое уравнение для электромагнитных волн. Векторное уравнение Гельмгольца для электромагнитных волн.
- 9. Корректно и некорректно поставленные задачи. Задача Коши для уравнения Лапласа.
- 10. Типы уравнений второго порядка. Формулировка теоремы Коши-Ковалевской.
- 11. Линейные однородные уравнения 1-го порядка. Метод характеристик.
- 12. Решение начально-краевой задачи для неоднородного уравнения 1-го порядка. Метод энергетических неравенств.
- 13. Метод энергетических неравенств. Исследование единственности и устойчивости решения начально-краевой задачи для уравнения 1-го порядка методом энергетических неравенств.
- 14. Приведение к каноническому виду уравнений второго порядка с постоянными коэффициентами.
- 15. Приведение к каноническому виду уравнений второго порядка с двумя независимыми переменными.
- 16. Постановка задачи Коши для уравнения второго порядка. Понятие характеристик.
- 17. Примеры нахождения характеристик для уравнений второго порядка.
- 18. Задача Коши для уравнения колебания струны. Формула Даламбера. Понятие плоской волны. Физический смысл решения.

- 19. Задача Коши для неоднородного волнового уравнения. Устойчивость решения задачи Коши. Обобщенное решение.
- 20. Начально-краевые задачи для однородного волнового уравнения на вещественной полуоси.
- 21. Задача Коши для волнового уравнения в пространстве. Формула Кирхгоффа.
- 22. Физический смысл формулы Кирхгоффа. Принцип Гюйгенса.
- 23. Задача Коши для волнового уравнения на плоскости. Метод спуска. Формула Пуассона. Физический смысл решения.
- 24. Задача Коши для неоднородного волнового уравнения. Физический смысл решения.
- 25. Теоремы единственности решения краевых задач для волнового уравнения. Область зависимости, область влияния и область определения для волнового уравнения.
- 26. Спектральная задача для простейшего одномерного дифференциального оператора 2-го порядка. Собственные значения и собственные функции и их свойства.
- 27. Применение метода Фурье для уравнения свободных колебаний струны. Обоснование метода Фурье для уравнения свободных колебаний струны.
- 28. Метод Фурье для вынужденных колебаний струны (с подвижными границами).
- 29. Спектральная задача для одномерного дифференциального оператора с переменными коэффициентами. Формулировка теоремы существования и свойства решения (собственных значений и функций).
- 30. Применение метода Фурье для одномерного уравнения гиперболического типа с переменными коэффициентами.
- 31. Единственность и устойчивость решения первой краевой задачи для одномерного уравнения гиперболического типа с переменными коэффициентами.
- 32. Многомерная спектральная задача. Формулировка теоремы существования и свойства решения (собственных значений и функций).
- 33. Применение метода Фурье для двумерного волнового уравнения. Колебания прямоугольной мембраны. Физический анализ решения.
- 34. Применение метода Фурье для уравнения колебаний круглой мембраны. Цилиндрические функции Бесселя, Неймана и Ханкеля.
- 35. Принцип максимума для трехмерного однородного уравнения теплопроводности. Единственность и устойчивость решения первой краевой задачи.
- 36. Принцип максимума для уравнения параболического типа с переменными коэффициентами. Единственность и устойчивость решения первой краевой задачи.
- 37. Решение первой краевой задачи для одномерного однородного уравнения теплопроводности методом Фурье. Обоснование метода Фурье.

- 38. Решение первой краевой задачи для одномерного неоднородного уравнения теплопроводности методом Фурье.
- 39. Постановка задачи Коши для одномерного уравнения теплопроводности. Единственность и устойчивость решения.
- 40. Применение метода Фурье для решения одномерной задачи Коши для уравнения теплопроводности. Фундаментальное решение и его свойства.
- 41. Обоснование метода Фурье для задачи Коши для уравнения теплопроводности. Физический анализ решения.
- 42. Сущность метода интегральных преобразований. Применение метода для решения задачи Коши для неоднородного одномерного уравнения теплопроводности.
- 43. Понятие гармонической функции. Понятие сингулярного, регулярного и фундаментального решений для уравнений Пуассона и Гельмгольца. Их свойства и физический смысл.
- 44. Элементы теории обобщенных функций. δ-функция и ее физический смысл.
- 45. Интегральные формулы Грина.
- 46. Основные свойства гармонических функций. Принцип максимума и следствия к нему.
- 47. Теоремы о единственности и устойчивости решений первой краевой задачи (внутренней и внешней) для уравнения Пуассона.
- 48. Теоремы о единственности решений второй и третьей краевой задачи (внутренней и внешней) для уравнения Пуассона.
- 49. Решение краевой задачи для уравнения Лапласа в круге методом Фурье.
- 50. Формула Пуассона решения краевой задачи для уравнения Лапласа в круге. Поведение гармонической функции на бесконечности.
- 51. Формула Пуассона решения краевой задачи для уравнения Лапласа в шаре.
- 52. Несобственные кратные интегралы, зависящие от параметра. Равномерная сходимость. Теорема о непрерывности равномерно сходящегося интеграла. Понятие и физический смысл потенциала (объемного, простого и двойного слоя).
- 53. Объемный потенциал. Теорема о непрерывной дифференцируемости объемного потенциала в пространстве.
- 54. Вторые производные объемного потенциала. Дифференциальное уравнение для объемного потенциала.
- 55. Потенциал простого слоя и его свойства. Формулы для скачка его нормальных производных на границе.
- 56. Потенциал двойного слоя и его свойства. Формулы для скачка предельных значений на границе. Метод функций Грина решения краевой задачи для уравнения Пуассона.
- 57. Элементы теории интегральных уравнений. Альтернатива Фредгольма. Формулировка теорем Фредгольма.

- 58. Сущность метода граничных интегральных уравнений. Сведение задачи Дирихле для уравнения Лапласа к граничному интегрального уравнению.
- 59. Сведение задачи Неймана для уравнения Лапласа к граничному интегральному уравнению.