

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

 СОГЛАСОВАНО
 УТВЕРЖДАЮ

 Руководитель ОП
 Заведующий кафедрой информатики, математического и компьютерного моделирования

 Чеботарев А.Ю.
 Чеботарев А.Ю.

 (подпись)
 (ФИО.)

 «28» января 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Алгоритмическая теория графов

Направление подготовки 01.03.02 Прикладная математика и информатика

(Системное программирование)

Форма подготовки очная

курс 2 семестр 4 лекции 00 час. практические занятия 00 час. лабораторные работы 36 час. в том числе с использованием МАО лек. 0 /пр. 0 /лаб. 0 час. всего часов аудиторной нагрузки 36 час. в том числе с использованием МАО 00 час. самостоятельная работа 81 час. в том числе на подготовку к экзамену 27 час. контрольные работы (количество) 36 час. курсовая работа / курсовой проект не предусмотрены зачет не предусмотрен экзамен 4 семестр

Рабочая программа составлена в соответствии в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки 01.03.02 **Прикладная математика и информатика** утвержденного приказом Министерства образования и науки РФ от 10 января 2018 г. №9

Рабочая программа обсуждена на заседании кафедры информатики, математического и компьютерного моделирования протокол № 19 от «15» июля 2020 г.

Заведующий кафедрой информатики, математического и компьютерного моделирования Чеботарев А.Ю.

Составитель (ли): Кленин А.С.

Оборотная сторона титульного листа РПД

II. Рабочая программа пер	ресмотрена на зас	едании кафедры:
Протокол от «»	202_ г. Л	<u> </u>
Заведующий кафедрой		(И.О. Фамилия)
III. Рабочая программа пе	ересмотрена на зас	седании кафедры:
Протокол от «»	202_ г. №	No
Заведующий кафедрой		(И.О. Фамилия)
IV. Рабочая программа пе	ересмотрена на зас	седании кафедры:
Протокол от «»	202_ г. №	<u> </u>
Заведующий кафедрой		
	(подпись)	(И.О. Фамилия)

I. Цели и задачи освоения дисциплины:

Цель: ознакомление студентов с важнейшими разделами теории графов и сетей, алгоритмическим аппаратом, основными приложениями.

Задачи:

- ознакомление студентов с фундаментальными понятиями теории графов для последующего свободного их использования,
- изучение современной проблематики теории графов,
- усвоение постановок задач теории графов и методов их решения,
- овладение основными теоретико-графовыми алгоритмами,
- применение графовых моделей к различным областям науки.
- 1. Для успешного изучения дисциплины «Алгоритмическая теория графов» у обучающихся должны быть сформированы следующие предварительные компетенции:
- ПК-3 Способен к разработке и применению алгоритмических и программных решений в области системного и прикладного программного обеспечения
- ПК-4 Способен к обоснованному выбору, проектированию и внедрению специальных технических и программно-математических средств в избранной профессиональной области

Профессиональные компетенции выпускников и индикаторы их достижения:

Тип задач	Код и наименование профессиональной компетенции (результат освоения)	Код и наименование индикатора достижения компетенции
Проектный	ПК-3 Способен к разработке	ПК-3.1 определяет основные подходы к разработке и интеграции
	и применению	программных модулей и компонент
	алгоритмических и программных решений	ПК-3.2 выполняет разработку современных алгоритмических и

Тип задач	Код и наименование профессиональной компетенции (результат освоения)	Код и наименование индикатора достижения компетенции
Проектный	в области системного и прикладного программного обеспечения	программных решений в области системного и прикладного программирования, в том числе с применением современных вычислительных систем ПК-3.3 осуществляет верификацию выпусков программного продукта ПК-4.1 управляет работами по
	ПК-4 Способен к обоснованному выбору, проектированию и внедрению специальных технических и программно- математических средств в избранной	созданию программных систем и комплексов, проектированию и реализации программного обеспечения, созданию архитектуры программных средств, участию в организации научно-технических работ, контроле, принятии решений ПК-4.2 применяет специальные технические и программноматематические средства в избранной профессиональной области для проектирования и внедрения специальных технических и программно-математических средств
	области	и алгоритмические модели, программы, программные системы и комплексы, методы их проектирования и реализации, способы производства, сопровождения, эксплуатации и администрирования в различных областях

II. Трудоёмкость дисциплины и видов учебных занятий по дисциплине

Общая трудоемкость дисциплины составляет 4 зачётных единиц (144 академических часов).

(1 зачетная единица соответствует 36 академическим часам)

Видами учебных занятий и работы обучающегося по дисциплине могут являться:

Обозначение	Виды учебных занятий и работы обучающегося
Лек	Лекции
Лаб	Лабораторные работы
Пр	Практические занятия
ОК	Онлайн курс
СР	Самостоятельная работа обучающегося в период теоретического обучения
Контроль	Самостоятельная работа обучающегося и контактная работа обучающегося с преподавателем в период промежуточной аттестации

Структура дисциплины:

Форма обучения - очная.

ы» Наименование раздела), Th		Количество часов по видам учебных занятий и работы обучающегося				Формы		
	№ дисциплины	Cons	Лек	Лаб	۲	λIO	9	Контроль	промежуточной аттестации
1	Раздел 1. Теория конечных графов			18			40	13	
2	Раздел 2. Приложения теории конечных графов (18 часов).	4		18			41	14	
	Итого:	4		36			81	27	Э(4)

III. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА И САМОСТОЯТЕЛЬНОЙ РАБОТЫ Лабораторные работы (36 часов)

Лабораторная работа 1.Введение в теорию графов. Основные понятия. Способы задания графов и их основные характеристики.Визуализация графов с помощью ИСGraphOnline. (6 часов).

Лабораторная работа 2. Деревья и их свойства (2 часа).

Лабораторная работа 3. Эйлеровы и гамильтоновы графы. Задача коммивояжера (4 часа).

Лабораторная работа 4. Раскраски (4 часа).

Лабораторная работа 5. Метрические характеристики графов и экстремальные задачи (6 часов).

Лабораторная работа 6. Алгоритмы на графах (6 часов).

Лабораторная работа 7. Транспортная задача (4 часа).

Лабораторная работа 8. Приложения к программированию (4 часа).

Практические работы (0 часов)

IV. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ И ОНЛАЙН КУРСА ПРИ НАЛИЧИИ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Теория конечных графов и ее приложения» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

План-график выполнения самостоятельной работы по дисциплине

Nº п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	17.09.19- 23.09.19	Работа над конспектом лекции,подготовка к лабораторной работе:Введение в теорию графов. Основные понятия.	2 часа	лабораторная работа
2	24.09.19- 30.09.19	Работа над конспектом лекции, подготовка к лабораторной работе:Способы задания графов и их основные характеристики.	2 часа	лабораторная работа
3	01.10.19- 07.10.19	Работа над конспектом лекции, подготовка к лабораторной работе:Визуализация графов с помощью ИС GraphOnline.	2 часа	лабораторная работа
4	08.10.19- 14.10.19	Работа над конспектом лекции, подготовка к лабораторной работе:Деревья и их свойства.	2 часа	лабораторная работа
5	15.10.19- 21.10.19	Работа над конспектом лекции, подготовка к лабораторной работе:Эйлеровы и	2 часа	лабораторная работа

		гамильтоновы графы.		
6	22.10.19- 28.10.19	Работа над конспектом лекции, подготовка к лабораторной работе:Задача коммивояжера.	2 часа	лабораторная работа
7	29.10.19- 04.11.19	Работа над конспектом лекции, подготовка к лабораторной работе:Раскраски.	2 часа	лабораторная работа
8	05.11.19- 11.11.19	Подготовка к контрольной работе «Основы теории конечных графов»	9 часов	Коллоквиум
9	12.11.19- 18.11.19	Работа над конспектом лекции, подготовка к лабораторной работе:Метрические характеристики графов.	2 часа	лабораторная работа
10	19.11.19- 25.11.19	Работа над конспектом лекции, подготовка к лабораторной работе:экстремальные задачи.	2 часа	лабораторная работа
11	26.11.19- 02.12.19	Работа над конспектом лекции, подготовка к лабораторной работе:экстремальные задачи.	2 часа	лабораторная работа
12	03.12.19- 09.12.10	Работа над конспектом лекции, подготовка к лабораторной работе: Алгоритмы на графах.	2 часа	лабораторная работа
13	10.12.19-	Работа над конспектом	2 часа	лабораторная

	16.12.19	лекции, подготовка к лабораторной работе:Алгоритмы на графах.		работа
14	17.12.19- 23.12.19	Работа над конспектом лекции, подготовка к лабораторной работе:Транспортная задача.	2 часа	лабораторная работа
15	24.12.19- 30.12.19	Работа над конспектом лекции, подготовка к лабораторной работе:Приложения к программированию.	2 часа	Лабораторная работа
16	07.01.19- 13.01.19	Подготовка к контрольной работе «Приложения теории конечных графов»	8 часов	Коллоквиум
17	Сессия	Подготовка к экзамену	36 часов	Экзамен

Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Самостоятельная работа студентов состоит ИЗ подготовки К лабораторным работам В компьютерном классе, работы над рекомендованной литературой и текстами лекций в процессе изучения теоретического материала.

Темы заданий для самостоятельной работы представлены в планеграфике выполнения самостоятельной работы по дисциплине.

При подготовке к лабораторным занятиям необходимо сначала прочитать основные понятия и теоремы по теме. При выполнении задания нужно сначала понять, что требуется в задаче, какой теоретический материал

нужно использовать, наметить план решения задачи. Рекомендуется использовать методические указания и материалы по курсу «Теория конечных графови ее приложения», текст лекций, а также электронные пособия, имеющиеся на сервере Школы естественных наук.

При подготовке к контрольным работам дополнительно к изучению конспектов лекций необходимо пользоваться учебниками. Вместо «заучивания» материала важно добиться понимания изучаемых тем дисциплины. Отвечая на поставленный вопрос, предварительно следует понять, что требуется от Вас в данном случае, какой теоретический материал нужно использовать.

При подготовке к экзамену нужно освоить теорию: разобрать определения всех понятий и графовых моделей, рассмотреть примеры и самостоятельно решить несколько типовых задач из каждой темы. При решении задач всегда необходимо комментировать свои действия и не забывать о содержательной интерпретации.

Требования к представлению и оформлению результатов самостоятельной работы

Результатом самостоятельной работыявляются отчеты-презентации по лабораторным работам.

В процессе подготовки отчетов-презентаций к лабораторным работам у студентов развиваются навыки применения современных информационных технологий представления/презентации информации, составления отчетной документации и систематизации имеющихся знаний. При составлении отчетов-презентаций рекомендуется придерживаться следующей структуры:

- Постановка задачи;
- Метод решения;
- Визуализация используемой графовой модели;

- Алгоритм метода;
- Тесты, с помощью которых происходит тестирование программного продукта;
- Результаты численного эксперимента;
- Выводы и заключение.

Критерии оценки выполнения самостоятельной работы

Отчет-презентация по лабораторной работе должен полностью удовлетворять условию задачи. В случае некачественно выполненных отчетов (не соответствующих заявленным требованиям) результирующий балл за работу может быть снижен. Студент должен продемонстрировать отчетливое и свободное владение концептуально-понятийным аппаратом, научным языком и терминологией. Наличие всех отчетов является допуском к экзамену.

V. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

,	Контролиру			Оценочн	ые средства
	I. емые □ разделы / темы дисциплины	Код	цы и этапы формирования компетенций	текущий контроль	промежуточная аттестация
1	Теория конечных графов	ОПК-3 ПК- 1ПК-5	знает основные понятия теории графов и матриц, методы вычисления основных метрических характеристикграфов, базовые методы поиска эйлеровых/гамильтоновых циклов, важнейшие классы графов и их свойства; методы обработки и интерпретации данных	контрольная работа (УО-2).	1 - 8
			умеетупотреблять специальную математическую символику для анализа задач теории графов, выбирать	Лабораторная работа (ПР-6)	Отчет по лабораторной работе

			необходимые методы исследования; использовать современные образовательные и информационные технологии, прикладные пакеты обработки данных;		
			владеет навыками использования современных образовательных и информационных технологий; навыками применения, интерпретирования и анализа данных; навыками оценки сложности алгоритмов и программ, использования современных технологий программирования.	Лабораторная работа (ПР-6)	Отчет по лабораторной работе
2	Приложения теории конечных графов	ОПК-3 ОПК-4 ПК-5	знает графовые модели в выбранной предметной области, теорию и методы вычислительного эксперимента; экономикоправовые основы разработки программных продуктов; основные теоретикографовые алгоритмы. методы разработки вычислительных алгоритмов для решения современных задач.	контрольная работа (УО-2).	9 - 18
			умеет собирать, обрабатывать и интерпретировать данные; формулировать графовые и сетевые модели для описания различных научнотехнических и экономических задач; проводить формализацию и реализацию решения прикладных задач	Лабораторная работа (ПР-6)	Отчет по лабораторной работе

программирования с помощью графовых моделей; владеет навыками оценки сложности алгоритмов и программ, использования современных технологий программирования, тестирования и документирования программных комплексов работы с инструментальными средствами моделирования предметной области, прикладных и информационных процессов; навыками визуализации и решения практических задач с использованием графовых моделей; основными теоретико-графовыми алгоритмами.	Лабораторная работа (ПР-6)	Отчет по лабораторной работе
--	----------------------------	------------------------------------

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

VII. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Основная литература

1. Геометрическая теория графов [Электронный ресурс]: учебное пособие/ Клековкин Г. А., Коннова Л. П., Коннов В. В– Юрайт, 2020. https://lib.dvfu.ru/lib/item?id=Urait:Urait-472746&theme=FEFU

- 2. Введение в теорию графов [Электронный ресурс]: учебное пособие/ В. С. Князьков, Т. В. Волченская Интернет-Университет Информационных Технологий, 2020. https://lib.dvfu.ru/lib/item? id=IPRbooks:IPRbooks-102006&theme=FEFU
- 3. Теория графов / Ф. Харари ; пер. с англ. и предисл. В. П. Козырева. Москва : URSS, : [Либроком], [2009].300 c. http://lib.dvfu.ru:8080/lib/item?id=chamo:306549&theme=FEFU
- 4. Элементы теории графов: учебное пособие / Б. М. Верников; Уральский государственный университет. Екатеринбург: Изд-во Уральского университета, 2005. 191 с. http://lib.dvfu.ru:8080/lib/item? id=chamo:251661&theme=FEFU
- 5. Экстремальные задачи теории графов и Интернет : [лекции : учебное пособие] / А. М. Райгородский. Долгопрудный : Интеллект, 2012. 103 c.http://lib.dvfu.ru:8080/lib/item?id=chamo:690525&theme=FEFU
- 6. Дискретная математика. Теория и практика решения задач по информатике: учебное пособие / С. М. Окулов. Москва: БИНОМ. Лаборатория знаний, 2008. 422 с. http://lib.dvfu.ru:8080/lib/item? id=chamo:274450&theme=FEFU
- 7. Графы на поверхностях и их приложения / А. К. Звонкин, С. К. Ландо. Москва: Изд-во Московского центра непрерывного математического образования, 2010. 480 c.http://lib.dvfu.ru:8080/lib/item?
 id=chamo:300865&theme=FEFU
- 8. Основы дискретной математики : учебное пособие для вузов / В. А. Осипова. Москва : Форум, : Инфра-М, 2017. 156 c.http://lib.dvfu.ru:8080/lib/item?id=chamo:841735&theme=FEFU

Дополнительная литература

1. Годунова Е.К. Введение в теорию графов. Индивидуальные задания [Электронный ресурс]/ Годунова Е.К.— Электрон.текстовые данные.—

- M.: Прометей, 2012.— 44 с.— Режим доступа: http://www.iprbookshop.ru/23979.html.
- 2. Лекции по теории графов : учебное пособие / [В. А. Емеличев, О. И. Мельников, В. И. Сарванов и др.] Москва : Наука, 1990. 383 c.http://lib.dvfu.ru:8080/lib/item?id=chamo:28800&theme=FEFU
- 3. Шевелев, Ю.П. Сборник задач по дискретной математике (для практических занятий в группах) [Электронный ресурс] : учебное пособие / Ю.П. Шевелев, Л.А. Писаренко, М.Ю. Шевелев. Электрон.дан. Санкт-Петербург : Лань, 2013. 528 с. Режим доступа: https://e.lanbook.com/book/5251.
- 4. Теория конечных графов т. 1 / А. А. Зыков ; Академия наук СССР, Сибирское отделение, Институт математики. Новосибирск : Наука, 1969. 543 c.http://lib.dvfu.ru:8080/lib/item?id=chamo:71001&theme=FEFU
- 5. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии / Л. Ловас, М. Д. Пламмер; пер. с англ. Г. П. Гаврилова, В. В. Мартынюка.Москва: Мир, 1998.653 c.http://lib.dvfu.ru:8080/lib/item?id=chamo:24740&theme=FEFU
- 6. Кирсанов М. Н. Графы в Maple. М.: Физматлит, 2007. 168 с.

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. GraphOnline. Работа с графами онлайн. http://graphonline.ru/
- 2. Базовые понятия теории графов. http://bourabai.ru/dm/graph.htm
- 3. Теория графов Каталог задач по темам. http://www.problems.ru/view_by_subject_new.php?parent=192
- 4. Примеры решений задач по теории графов. https://www.matburo.ru/ex_dm.php?p1=dmgraf
- 5. Проект «"Чистая" и прикладная математика». https://function-x.ru

Перечень информационных технологий и программного обеспечения

- 1. Операционная система Windows.
- 2. MicrosoftOffice.

VIII. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

1.Рекомендации по планированию и организации времени, необходимого для изучения дисциплины. Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Изучение конспекта лекции в тот же день после лекции - 10-15 минут.

Повторение лекции за день перед следующей лекцией - 10-15 минут.

Изучение теоретического материала по учебнику и конспекту – 1 час в неделю.

Подготовка к лабораторному занятию и работе в компьютерном классе – 1 час.

Тогда общие затраты времени на освоение курса «Численные методы» студентами составят около 2,5 часа в неделю.

2. Описание последовательности действий студента («сценарий изучения дисциплины»). При изучении теории конечных графов следует внимательно слушать и конспектировать материал, излагаемый на аудиторных занятиях. Для его понимания и качественного усвоения рекомендуется следующая последовательность действий:

- 1. После окончания учебных занятий для закрепления материала просмотреть и обдумать текст лекции, прослушанной сегодня, разобрать рассмотренные примеры (10-15 минут).
- 2. При подготовке к лекции следующего дня повторить текст предыдущей лекции, подумать о том, какая может быть следующая тема (10-15 минут).
- 3. В течение недели выбрать время для работы со специальной литературой в библиотеке и для занятий на компьютере (по 1 часу).
- 4. При подготовке к лабораторным занятиям следующего дня необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении задания нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и опробовать решить аналогичную задачу самостоятельно.
- 3. Рекомендации по использованию материалов учебнометодического комплекса. Рекомендуется использовать методические указания и материалы по курсу «Теория конечных графов и ее приложения», текст лекций, а также электронные пособия, имеющиеся на сервере Школы естественных наук.
- **4. Рекомендации по работе с литературой.** Теоретический материал курса становится более понятным, когда дополнительно к прослушиванию лекций изучаются и книги. Литературу по курсу желательно изучать в

библиотеке. Полезно использовать несколько учебников, однако легче освоить курс, придерживаясь одного учебника и конспекта. Рекомендуется, кроме «заучивания» материала, добиться понимания изучаемой темы дисциплины. Кроме того, очень полезно мысленно задать себе и попробовать ответить на следующие вопросы: о чем эта глава, какие новые понятия в ней введены.

- 5. Советы по подготовке к экзамену. Дополнительно к изучению конспектов лекций необходимо пользоваться учебниками. Вместо «заучивания» материала важно добиться понимания изучаемых тем дисциплины. При подготовке к экзамену нужно освоить теорию: разобрать определения всех понятий и графовых моделей, рассмотреть примеры и самостоятельно решить несколько типовых задач из каждой темы. При решении задач всегда необходимо комментировать свои действия и не забывать о содержательной интерпретации.
- 6. Указания по организации работы с контрольно-измерительными материалами. При подготовке к лабораторной работе или коллоквиуму необходимо сначала прочитать теорию по каждой теме. Отвечая на поставленный вопрос, предварительно следует понять, что требуется от Вас в данном случае, какой теоретический материал нужно использовать, наметить общий план решения.

ІХ. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Лекционная аудитория: мультимедийный проектор OptimaEX542I 1 шт.; аудио усилитель QVC RMX 850 1 шт.; колонки 1 шт.; ноутбук; ИБП 1 шт.; настенный экран; микрофон 1 шт.
- 2. Компьютерные классы ДВФУ (кампус на о. Русском, Аякс 10, корпус D, ауд. 733, 733a) по 15 персональных компьютеров ExtremeDOUE 8500/500 GB/ DVD+RW.
- 3. Системное и прикладное обеспечение ПЭВМ.

Х. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Для дисциплины «Алгоритмическая теория графов» используются следующие оценочные средства:

Оценочные средства для промежуточной аттестации

Промежуточная аттестация студентов по дисциплине «Численные методы» проводится в соответствии с локальными нормативными актами ДВФУ в виде экзамена в устной форме (ответы на вопросы экзаменационных билетов).

Критерии выставления оценки студенту на экзамене по дисциплине «Теория конечных графов и ее приложения»

Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.

Оценка «хорошо» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных

неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.

Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по дисциплине.

Вопросы к экзамену

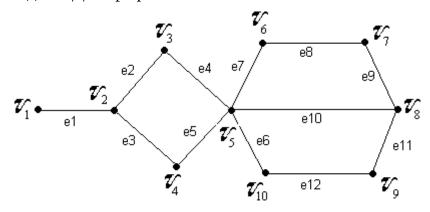
- 1. Понятие и элементы графа. Виды графов. Подграф.
- 2. Смежность и инцидентность вершин/ребер.
- 3. Способы задания графов.
- 4. Окрестности и степени вершин. Теорема о «рукопожатиях».
- 5. Некоторые специальные графы: пустой, полный, двудольный, мультиграф.
- 6. Изоморфизм графов.
- 7. Операции над графами.
- 8. Путь, цикл, связность графа/орграфа. Длина пути.
- 9. Расстояния и метрические характеристики: расстояние между вершинами, эксцентриситет вершины, диаметр/радиус графа,

- центральная вершина, центр графа. Теорема о диаметре почти всех графов.
- 10.Понятие и элементы дерева. Свойства деревьев. Центр дерева.
- 11.Планарные, плоские графы. Формула Эйлера.
- 12. Эйлеровы циклы и графы. Теорема об эйлеровом цикле. Алгоритм построения эйлерова цикла.
- 13. Гамильтоновы циклы. Нахождение гамильтонова пути.
- 14. Методы обхода графа. Поиск в ширину.
- 15. Методы обхода графа. Поиск в глубину.
- 16. Паросочетания в графе.
- 17. Раскраска вершин графа. Хроматическое число графа. Пример алгоритма правильной раскраски вершин графа.
- 18. Раскраска ребер графа. Хроматический индекс графа. Способы правильной раскраски ребер графа.
- 19. Поиск кратчайшего пути. Алгоритм Дейкстры.
- 20. Транспортная задача. Сферы применения.
- 21. Транспортная сеть и ее основные понятия (источник, сток, пропускная способность, связность).
- 22.Поток в транспортной сети. Величина потока.
- 23.Сечение сети. Пропускная способность сечения. Теорема Форда, Фалкерсона.
- 24.Приложения теории графов для задач программирования (по докладам студентов).
- 25.Примеры применения теории конечных графов в различных областях знаний.

Оценочные средства для текущей аттестации

Текущая аттестация студентов по дисциплине «Численные методы» проводится в соответствии с локальными нормативными актами ДВФУ в форме контрольных и лабораторных работ по оцениванию фактических

результатов обучения студентов, в соответствии с Положением о фондах оценочных средств образовательных программ высшего образования – программ бакалавриата ДВФУ, утвержденным приказом ректора от 12.05.2015 №12-13-850.

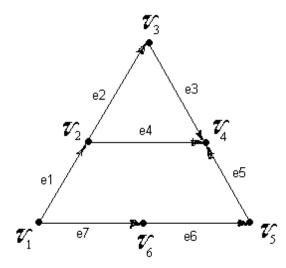

Объектами оценивания выступают:

- · учебная дисциплина (активность на занятиях, своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
- степень усвоения теоретических знаний (контрольные работы);
- · уровень овладения практическими умениями и навыками (лабораторные работы);
- результаты самостоятельной работы.

Примеры контрольных работ

Контрольная работа № 1 «Основы теории конечных графов»

Задача. Дан граф G



- 1. Определить степени всех вершин графа.
- 2. Записать матрицу смежности вершин $A_1(G)$.
- 3. Записать матрицу инцидентности $A_2(G)$.
- 4. Проверить, является ли граф эйлеровым.
- 5. Проверить, является ли граф гамильтоновым.

- 6. Проверить, является ли граф двудольным. Если да, указать подмножества \mathbf{V}_1 и \mathbf{V}_2 .
 - 7. Записать какой-нибудь маршрут от v_1 до v_9 .
 - 8. Указать какой-нибудь простой цикл.
 - 10. Вычислить расстояния: диаметр графа, центр графа, радиус графа.
 - 11. Построить дерево с корнем v_1 .

Контрольная работа № 2«Приложения теории конечных графов»

<u>Задача 1.</u> Дан граф G

- 1. Построить матрицу смежности вершин $A_1(G)$.
- 2. Построить матрицу инцидентности $A_{2}(G)$.
- 3. Проверить, является ли граф эйлеровым. Если да, построить эйлеров цикл.
- 4. Определить хроматическое число и хроматический индекс данного графа. Выполнить правильную раскраску графа (назначить цвета вершинам и ребрам).

<u>Задача 2.</u>В стране Цифра есть 9 городов с названиями 1, 2, 3, 4, 5, 6, 7, 8, 9. Путешественник обнаружил, что два города соединены авиалинией в том и только в том случае, если двузначное число, составленное из цифр-названий этих городов, делится на 3. Можно ли добраться из города 1 в город 9?

<u>Задача 3.</u> В классе больше 32, но меньше 40 человек. Каждый мальчик дружит с тремя девочками, а каждая девочка – с пятью мальчиками. Сколько человек в классе?

<u>Задача 4.</u> Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?

Критерии выставления оценки по результату контрольной работы:

«отлично» - если ответ показывает прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; логичность и последовательность ответа; умение приводить примеры современных проблем изучаемой области.

«хорошо» - ответ, обнаруживающий прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; логичность и последовательность ответа. Однако допускается одна - две неточности в ответе.

«удовлетворительно» - оценивается ответ, свидетельствующий в области, изучаемой основном знании процессов предметной отличающийся недостаточной глубиной и полнотой раскрытия темы; знанием основных вопросов теории; слабо сформированными навыками явлений, давать анализа процессов, недостаточным умением аргументированные ответы и приводить примеры. Допускается несколько ошибок в содержании ответа; неумение привести пример развития ситуации, провести связь с другими аспектами изучаемой области.

«неудовлетворительно» - ответ, обнаруживающий незнание процессов изучаемой предметной области, отличающийся неглубоким вопросов раскрытием темы: незнанием основных теории, не сформированными навыками анализа явлений, процессов; неумением давать аргументированные ответы, отсутствием логичности И последовательности. Допускаются серьезные ошибки в содержании ответа; незнание современной проблематики изучаемой области.

Критерии оценивания лабораторной работы

Результатом лабораторной работы является отчет-презентация по лабораторной работе.

В процессе подготовки отчетов-презентаций к лабораторным работам у студентов развиваются навыки применения современных информационных технологий представления/презентации информации, составления отчетной документации и систематизации имеющихся знаний. При составлении отчетов-презентаций рекомендуется придерживаться следующей структуры:

- 1. Математическая постановка задачи. Исходные данные.
- 2. Описание метода решения;
- 3. Визуализация используемой графовой модели;
- 4. Описание алгоритма метода;
- 5. Спецификация используемых функций и типов данных;
- 6. Описание тестов, с помощью которых происходит тестирование программного продукта;
- 7. Результаты численного эксперимента;
- 8. Выводы и заключение.

Отчет по лабораторной работе должен полностью удовлетворять условию задачи. В случае некачественно выполненных отчетов (не соответствующих заявленным требованиям) результирующий балл за работу

может быть снижен. Студент должен продемонстрировать отчетливое и свободное владение концептуально-понятийным аппаратом, научным языком, терминологией и современными средствами информационных технологий. Наличие всех отчетов является допуском к экзамену.