

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

Инженерная школа

УТВЕРЖДАЮ Директор Инженерной школы

А.Т. Беккер

2020 г.

СБОРНИК ПРОГРАММ ПРАКТИК

Направление подготовки в подставки в подготовки в подгото

15.04.06 Мехатроника и робототехника

Программа академической магистратуры

Наименование образовательной программы: «Мехатроника и робототехника»

Квалификация выпускника - магистр

Форма обучения: очная пополозности от выплания выплания поположения поположения выплания выплания в поположения выплания в поположения выплания в поположения в положения в поположения в поположения в поположения в поположения

Нормативный срок освоения программы

(очная форма обучения) 2 года

Владивосток 2020

ЛИСТ СОГЛАСОВАНИЯ Сборника программ практик

По направлению подготовки 15.04.06 Мехатроника и робототехника Магистерской программы Мехатроника и робототехника

Сборник программ практик составлен в соответствии с требованиями образовательного стандарта, самостоятельно устанавливаемого ДВФУ по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденного приказом ректора от 07.07.2015 № 12-13-1282.

Сборник программ практик включает в себя:

- 1. Учебная практика (Научно-исследовательская работа в профессиональной области)
- 2. Учебная практика (Практика по получению профессиональных умений и навыков в области проектирования мехатронных и робототехнических систем)
- 3. Производственная практика (Практика по получению профессиональных умений и опыта проектно-конструкторской деятельности на предприятии)
- 4. Производственная практика (Научно-исследовательская работа в профессиональной области)
- 5. Производственная практика (Преддипломная практика)

Руководитель образовательной програми зав. кафедрой АиУ	мы подпись	Филаретов	<u>В.Ф.</u>
Заместитель директора Школы по учебной и воспитательной работе	подпись	-	ФИО

МИНИСТЕРСТВО НАУКИ И ВЫСЩЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» $(ДВ\Phi Y)$

Инженерная школа

УТВЕРЖДАЮ
УТВЕРЖДАЮ
Инженерной школы

Образовательной
Инженерной

ПРОГРАММА

УЧЕБНОЙ ПРАКТИКИ

(Научно-исследовательская работа в профессиональной области)

Для направления подготовки
15.04.06 Мехатроника и робототехника
Программа академической магистратуры

Наименование образовательной программы: «Мехатроника и робототехника»

Владивосток 2020

1. НОРМАТИВНАЯ ДОКУМЕНТАЦИЯ, РЕГЛАМЕНТИРУЮЩАЯ ПРОЦЕСС ОРГАНИЗАЦИИ И ПРОХОЖДЕНИЯ ПРАКТИКИ

Программа учебной практики составлена в соответствии с требованиями:

- 1. Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Образовательного стандарта высшего образования по направлению подготовки 15.04.06 Мехатроника и робототехника (уровень магистратуры), самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора от 7 июля 2015 г. № 12-13-1282;
- 3. Приказа Министерства образования и науки Российской Федерации от 19.12.2013 г. № 1367 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры».

2. ЦЕЛИ ОСВОЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА В ПРОФЕССИОНАЛЬНОЙ ОБЛАСТИ

Целями учебной практики является закрепление и углубление теоретических знаний, полученных во время аудиторных занятий при изучении учебных дисциплин; приобретение практических навыков и компетенций; изучение организационной структуры предприятия и действующей в ней системы управления; развитие и накопление знаний в области мехатроники и робототехники; формирование у студентов навыков ведения самостоятельной научно-производственной деятельности, исследования и экспериментирования; сбор необходимых материалов для выполнения выпускной квалификационной работы; воспитание у будущих специалистов уважения к производственному труду рабочих, ответственности за выполнение намеченных работ; приобретение опыта организаторской работы в коллективе.

3. ЗАДАЧИ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Задачами учебной практики являются:

- 1. ознакомление с содержанием нормативно-технической документацией по мехатронным и робототехническим системам;
- 2. приобретение навыков работы с оборудованием, техническими средствами контроля и управления мехатронными системами;
- 3. изучение особенностей создания проектной документации применительно к мехатронным и робототехническим системам;

- 4. изучение комплекса производственных задач решаемых с помощью мехатронных и робототехнических систем;
 - 5. изучение вопросов экономики и организации производства.

4. МЕСТО ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ В СТРУКТУРЕ ОПОП

Практика научно-исследовательская работа в профессиональной области входит в вариативную часть Блока 2 Практики учебного плана (Б2.В.01) и является составной частью профессиональной подготовки магистра.

В результате освоения предшествующих частей ОПОП студенты должны были приобрести следующие знания и умения, необходимые при освоении данной практики: владение в полной мере основным физико-математическим аппаратом, необходимым для описания и исследования разрабатываемых систем и устройств.

Для выполнения программы практики магистрант должен владеть знаниями и умениями по дисциплинам «Методы и теория оптимальных систем управления», «Моделирование и экспериментальные исследования мехатронных систем», «Системы управления роботами», «Информационные системы в мехатронике и робототехнике», «Системы автоматизированного проектирования и производства», «Компьютерные технологии управления в мехатронных системах», «Подводная робототехника», «Программное обеспечение роботов», «Методы искусственного интеллекта в мехатронике и робототехнике», «Промышленные и мобильные роботы», «Дистанционное управление роботами», «Первичные преобразователи информации», «Навигационные системы роботов».

5. ТИПЫ, СПОСОБЫ, МЕСТО И ВРЕМЯ ПРОВЕДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Вид практики – учебная практика.

Тип практики - научно-исследовательская работа в профессиональной области.

Способ проведения преддипломной практики – стационарная.

Практика в соответствии с учебным планом и календарным учебным графиком, проводится на 1 курсе во 2 семестре.

Местом проведения практики являются структурные подразделения ДВФУ или сторонние организации в соответствии с заключенными с ДВФУ договорами, обладающие необходимым кадровым и научно-техническим потенциалом. В их число входят: ПАО «Дальприбор», ОАО «Изумруд», а также производственные подразделения

научных институтов Дальневосточного отделения Российской академии наук: Институт проблем морских технологий ДВО РАН, Институт автоматики и процессов управления ДВО РАН и др.

Для лиц с ограниченными возможностями здоровья и инвалидов выбор мест прохождения практик согласуется с требованием их доступности для данных обучающихся и практика проводится с учетом особенностей их психофизического развития, индивидуальных возможностей и состояния здоровья.

6. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ПРОХОЖДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

В ходе прохождения производственной практики у обучающихся формируются следующие компетенции:

готовностью собирать, обрабатывать, анализировать и систематизировать научнотехническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии в своей профессиональной деятельности (ОПК-4);

способность осуществлять анализ научно-технической информации, обобщать отечественный и зарубежный опыт в области мехатроники и робототехники, средств автоматизации и управления, проводить патентный поиск (ПК-4);

готовность к составлению аналитических обзоров и научно-технических отчетов по результатам выполненной работы, в подготовке публикаций по результатам исследований и разработок (ПК-6).

7. СТРУКТУРА И СОДЕРЖАНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Общая трудоемкость практики (научно-исследовательская работа в профессиональной области) составляет 2 недели, 3 зачетные единицы, 108 часов.

№ п/п	Разделы (этапы) практики	Виды учебной работы на практике, включая самостоятельную работу студентов и трудоемкость (в часах)		Формы текущего контроля
1	Подготовительный	Инструктаж по технике безопасности, оформление на рабочее место, знакомство с общими вопросами организации предприятия и его производственного процесса, охраной труда и техникой безопасности	16	Собесе- дование
2	Производственный	Выполнение производственных заданий на рабочем месте или проведение теоретической / экспериментальной исследовательской работы в научном коллективе	60	Отметки в дневнике практики

3	Аналитический	Сбор, обработка и систематизация	16	Отчет по
		фактического и литературного		практике
		материала		•
4	Заключительный	Подготовка отчета по практике,	16	Защита
		защита практики		отчета
		Итого	108	

Во время практики студенты работают по регламенту предприятия, строго соблюдая правила внутреннего распорядка. Руководитель практики от университета совместно с руководством предприятия обеспечивают перемещение студентов по рабочим местам предприятия в соответствии с графиком.

Студенты могут оформляться на оплачиваемые рабочие места по согласованию с руководителем практики от университета. Работа студента с оплатой его труда разрешается при условии, что его оплачиваемое рабочее место удовлетворяет требованиям программы практики и способствует её выполнению.

В период практики студенты работают самостоятельно или дублёрами сотрудников разрабатывающих, устанавливающих или ремонтирующих мехатронные системы. Рекомендуется подробно ознакомиться с обязанностями 2-3 сотрудников.

После изучения взаимодействия различных отделов и подразделений предприятия студенты знакомятся с конструкцией и технологией изготовления какого-либо оборудования или изделия. Особое внимание следует уделить изучению новейшей аппаратуры и оборудования. В завершение практики у студента должно сформироваться ясное представление об организации технологической цепи разработки, ремонта, эксплуатации мехатронных устройств. В период практики студент может работать на инженерно-технических должностях.

Находясь на практике, студент занимается:

- изучением организационной и функциональной структуры, состава и характеристик подсистем и видов мехатронных устройств;
- изучением организации проектно-конструкторской работы, порядка разработки, прохождения и утверждения проектной, технической, конструкторской и технологической документации на мехатронные устройства;
- изучением методов исследования, проектирования и проведения экспериментальных работ;
 - методами и средствами компьютерного исследования и

проектирования, необходимые при разработке приборов, материалов и устройств или их технологии;

- выработкой умений правильной оценки главных технико-экономических показателей разрабатываемой системы;
- изучением мероприятий по ТБ, охране труда, противопожарной безопасности, охране окружающей среды.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ НА ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

В период практики студент должен научиться определять характеристики реальных мехатронных систем, уметь по результатам эксперимента определять вероятностные характеристики и законы распределения случайных ошибок, получить навыки в составлении технического задания на проектирование мехатронных устройств, соблюдать при оформлении технической документации требования ЕСКД, ЕСТД и ГОСТов.

Руководитель практики от вуза, как правило, научный руководитель магистранта, осуществляет общее руководство практикой студента, а непосредственное руководство на конкретном объекте осуществляет руководитель практики от предприятия. Руководитель практики от вуза регулярно контролирует процесс прохождения практики и принимает участие в решении возникающих организационных, технических и других вопросов, в том числе по организации самостоятельной работы студента.

Учебно-методическим обеспечением практики является:

- основная и дополнительная литература, рекомендуемая при изучении дисциплин;
- инструкции по эксплуатации приборов и технических средств автоматизации, используемые в профессиональной деятельности предприятий;
- техническая документация на производство работ по монтажу и наладке систем автоматизации;
- пакеты специализированных прикладных программ, рекомендованных руководителями от вуза и предприятия.

Контрольные вопросы для проведения аттестации

- 1. Опишите методы выполнения технических расчётов и определения экономической эффективности исследований и разработок.
 - 2. Как производится отчётность по основным этапам проектирования?
- 3. Как производится эксплуатация оборудования, оформление программ испытаний и технической документации?
- 4. Каковы основные этапы разработки конструкторско-технологической документации?

- 5. Каков порядок представления и утверждения документов?
- 6. Какие средства вычислительной техники используются в подразделении?
- 7. Каковы правила эксплуатации установок, измерительных приборов и технологического оборудования, имеющегося в подразделении?
 - 8. Как обеспечивается безопасность жизнедеятельности и экологической чистоты?

9. ФОРМЫ АТТЕСТАЦИИ (ПО ИТОГАМ ПРАКТИКИ)

Форма аттестации по итогам практики – зачет с оценкой.

На практике студент ежедневно заполняет дневник, в который заносится вся выполняемая работа или время простоев с причиной их возникновения и т.п. Дневник систематически проверяется руководителем практики и прилагается к отчёту студента.

Важным элементом самостоятельной работы студентов во время прохождения практики является выполнение индивидуального задания. Задание выдаётся руководителем практики от кафедры. Оно может быть по тематике исследовательской работы студентов, но с обязательным учётом специфики предприятия — базы практики. Наиболее интересные материалы индивидуального задания впоследствии представляются в виде доклада для сообщений на итоговой конференции по производственной практике, а также на конкурс студенческих научно-исследовательских работ.

Текущий контроль за прохождением практики осуществляет руководитель практики, контролируя соблюдение магистрантом индивидуального графика прохождения практики, объем и качество выполнения запланированных действий.

Промежуточный контроль осуществляется в форме зачета по практике по получению профессиональных умений и навыков в области проектирования мехатронных и робототехнических систем, выставляемого руководителем практики по результатам защиты отчета по практике.

При проведении аттестации оценивается уровень сформированности следующих профессиональных компетенций:

Код и формулировка компетенции	Этапы формирования компетенции		
ОПК-4 готовность собирать, обрабатывать, анализировать и систематизировать научно-	Знает	основные достижения отечественной и зарубежной науки, техники и технологии в мехатронике	
техническую информацию по тематике исследования, использовать достижения	Умеет	собирать и обрабатывать научнотехническую информацию в обрасти мехатроники	
отечественной и зарубежной науки, техники и технологии в	Владеет	методами анализа и систематизции научно-технической информации по	

своей профессиональной деятельности		тематике исследования и использовать достижения отечественной и зарубежной науки, техники и технологии в мехатронике
ПК-4 способность осуществлять анализ научнотехнической информации, обобщать отечественный и зарубежный опыт в области мехатроники и робототехники, средств автоматизации и управления, проводить патентный поиск	Знает	Способы анализа состояния научно- технической проблемы в области мехатроники и робототехники
	Умеет	Подбирать и анализировать литературные и патентные источники по мехатронике и робототехнике
	Владеет	Методами анализа состояния научно- технической проблемы в области мехатроники и робототехники на основе литературных и патентных источников
ПК-6 готовность к составлению аналитических обзоров и научно-технических отчетов по результатам выполненной работы, в подготовке публикаций по результатам исследований и разработок	Знает	Требования к оформлению аналитических обзоров и научно-технических отчетов по результатам выполненной работы
	Умеет	Оформить и доложить результаты выполненной работы
	Владеет	Методами аргументированной защиты результаты выполненной работы

Критерии оценок при защите отчёта по производственной практике:

«Отлично» — отчёт выполнен в соответствии с требованиями, предъявляемые к нему с использованием компьютерных технологий, ответы на поставленные руководителем практики вопросы освещены в полном объёме, с достаточной степенью профессиональности и компетенции, содержание ответов свидетельствует об уверенных знаниях студента и о его умении решать профессиональные задачи.

«Хорошо» – отчёт выполнен в соответствии с требованиями, предъявляемые к нему, но есть небольшие неточности, неаккуратность в исполнении, неполный ответ на один вопрос, заданный руководителем, но при этом содержание ответов свидетельствует о достаточных знаниях студента и умение решать профессиональные задачи.

«Удовлетворительно» - отчёт выполнен с нарушением требований, предъявляемых к оформлению, пропущены разделы в отчёте, неаккуратность в исполнении, плохая ориентация студента по отчёту, неполные ответы на два вопроса, содержание ответов свидетельствует о знаниях студента и о его ограниченном умении решать профессиональные задачи.

«Неудовлетворительно» - не представлен отчёт по практике, студент не ориентируется в вопросах, задаваемых руководителем практики, не может ответить на вопросы, связанные с местом прохождения практики и выполнением им обязанностей.

10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Основная литература

- 1. Дорф Р., Бишоп Р. Современные системы управления. М.: Лаборатория

 Базовых
 Знаний,
 2012. –
 831 с.

 http://lib.dvfu.ru:8080/lib/item?id=chamo:398350&theme=FEFU (2 экз.)
- 2. Филаретов В.Ф. Линейная теория автоматического управления / В.Ф. Филаретов.

 Владивосток: ДВГТУ, 2010. 116 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:381426&theme=FEFU (19 экз.)
- 3. Бессмертный И.А. Искусственный интеллект. Учебное пособие СПб: СПбГУ ИТМО, 2010. 132 с. https://e.lanbook.com/book/43663
- 4. Альтшуллер Г.С. Найти идею. Введение в теорию решения изобретательских задач. М.: Альпина Паблишер, 2014. 400 с. http://znanium.com/go.php?id=520707
- 5. Автоматизация проектирования радиоэлектронных средств: учеб. пособие / Е.Л. Гамаюнов. Владивосток: Изд-во ДВГТУ, 2010. 173 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:425908&theme=FEFU (16 экз.)
- 6. Юревич Е.И. Основы робототехники: учебное пособие для вузов. Санкт-Петербург: БХВ-Петербург, 2010. -359 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:686006&theme=FEFU (6 экз.)
- 7. Коновалов Б.И., Лебедев Ю. М. Теория автоматического управления. СПб.: Издательство «Лань», 2010. 224 с. http://e.lanbook.com/view/book/538/page1/
- 8. Певзлер Л.Д. Теория систем управления. СПб.: Издательство «Лань», 2013. 424 c. http://e.lanbook.com/view/book/38841/page2/
- 9. Предко М. Устройства управления роботами. М. ДМК Пресс, 2010.-404 с. http://e.lanbook.com/view/book/40006/
- 10. Управление техническими системами. Е.Б. Бунько, К.И. Меша, Е.Г. Мурачев и др.; Под ред. В.И. Харитонова. М.: Форум, 2010. 384 с. http://znanium.com/bookread.php?book=188363
- 11. Современная автоматика в системах управления технологическими процессами: Учебное пособие / В.П. Ившин, М.Ю. Перухин. М.: НИЦ ИНФРА-М, 2014. 400 с. http://znanium.com/bookread.php?book=430323

Дополнительная литература

- 1. Алексеев Ю.К. Введение в подводную робототехнику. Учебное пособие / Ю.К. Алексеев Владивосток: Изд-во ДВГТУ, 2008. 296 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382822&theme=FEFU (24 экз.)
- 2. Модели и алгоритмы коллективного управления в группах роботов. [Электронный ресурс] / Каляев И.А., Гайдук А. Р., Капустян С. Г. М. : ФИЗМАТЛИТ, 2009. http://www.studmedlib.ru/book/ISBN9785922111416.html

- 3. Конюх В.Л. Основы робототехники: учебное пособие. Ростов-на-Дону: Феникс, 2008. 282 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:381615&theme=FEFU
- 4. Шумский А.Е. Методы и алгоритмы диагностирования и отказоустойчивого управления динамическими системами / А.Е. Шумский, А.Н. Жирабок. Владивосток: ДВГТУ, 2009. 196 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382845&theme=FEFU (19 экз.)
- 5. Калужский М.Л. Общая теория систем [Электронный ресурс] : учебное пособие / М.Л. Калужский. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2015. 176 с. 978-5-905916-78-6. Режим доступа: http://www.iprbookshop.ru/31691.html
- 6. Павлов С.Н. Системы искусственного интеллекта. Часть 1 [Электронный ресурс] : учебное пособие / С.Н. Павлов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2011. 176 с. 978-5-4332-0013-5. Режим доступа: http://www.iprbookshop.ru/13974.html
- 7. Новиков Ф.А. Системы представления знаний: Учебное пособие. СПб.: Изд-во Политехн. ун-та, 2010. 245 с. http://window.edu.ru/resource/677/76677
- 8. Гаврилов Е.Б. Цифровые системы управления. Сборник задач для индивидуальных заданий [Электронный ресурс] : учебное пособие / Е.Б. Гаврилов, Г.В. Саблина. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2010. 44 с. 978-5-7782-1435-4. Режим доступа: http://www.iprbookshop.ru/45454.html

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Необходимое материально-техническое обеспечение практики следующее:

- автоматизированное мехатронное и робототехническое оборудование, технологические линии; испытательные стенды; оборудование для сборки и разборки сборочных единиц;
- оборудование рабочего места конструктора, технолога с соответствующим программным обеспечением (Компас, AutoCAD, SolidWorks, MatLab, в т.ч. для 3D-моделирования).

Защита отчетов по практике проходит в мультимедийной аудитории, оборудованной:

- проектор 3-chip DLP, 10 600 ANSI-лм, WUXGA 1 920х1 200 (16:10) PT-DZ110XE Panasonic; экран 316х500 см, 16:10 с эл. приводом; крепление настенно-потолочное Elpro Large Electrol Projecta; профессиональная ЖК-панель 47", 500 Кд/м2, Full HD M4716CCBA LG; подсистема видеоисточников документ-камера CP355AF Avervision; подсистема видеокоммутации; подсистема аудиокоммутации и звукоусиления;

подсистема интерактивного управления; беспроводные ЛВС обеспечены системой на базе точек доступа $802.11a/b/g/n\ 2x2\ MIMO(2SS)$.

Составитель доцент, канд. техн. наук. А.А. Кацурин

Программа практики обсуждена на заседании кафедры Автоматизации и управления, протокол от «26» декабря 2019 г. № 3.

МИНИСТЕРСТВО НАУКИ И ВЫСЩЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

Инженерная школа

УТВЕРЖДАЮ
УТВЕРЖДАЮ
УТВЕРЖДАЮ

УТВЕРЖДАЮ

Инженерной школы

А.Т. Беккер

2020 г.

ПРОГРАММА

УЧЕБНОЙ ПРАКТИКИ

(Практика по получению профессиональных умений и навыков в области проектирования мехатронных и робототехнических систем)

Для направления подготовки
15.04.06 Мехатроника и робототехника
Программа академической магистратуры

Наименование образовательной программы: «Мехатроника и робототехника»

Владивосток 2020

1. НОРМАТИВНАЯ ДОКУМЕНТАЦИЯ, РЕГЛАМЕНТИРУЮЩАЯ ПРОЦЕСС ОРГАНИЗАЦИИ И ПРОХОЖДЕНИЯ ПРАКТИКИ

Программа учебной практики составлена в соответствии с требованиями:

- 1. Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Образовательного стандарта высшего образования по направлению подготовки 15.04.06 Мехатроника и робототехника (уровень магистратуры), самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора от 7 июля 2015 г. № 12-13-1282;
- 3. Приказа Министерства образования и науки Российской Федерации от 19.12.2013 г. № 1367 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры».

2. ЦЕЛИ ОСВОЕНИЯ ПРАКТИКИ ПО ПОЛУЧЕНИЮ ПРОФЕССИОНАЛЬНЫХ УМЕНИЙ И НАВЫКОВ В ОБЛАСТИ ПРОЕКТИРОВАНИЯ МЕХАТРОННЫХ И РОБОТОТЕХНИЧЕСКИХ СИСТЕМ

Целями учебной практики являются закрепление и углубление теоретических знаний, полученных во время аудиторных занятий при изучении учебных дисциплин; приобретение практических навыков и компетенций; изучение организационной структуры предприятия и действующей в ней системы управления; развитие и накопление знаний в области мехатроники и робототехники; формирование у студентов навыков ведения самостоятельной научно-производственной деятельности, исследования и экспериментирования; сбор необходимых материалов для выполнения выпускной квалификационной работы; воспитание у будущих специалистов уважения к производственному труду рабочих, ответственности за выполнение намеченных работ; приобретение опыта организаторской работы в коллективе.

3. ЗАДАЧИ УЧЕБНОЙ ПРАКТИКИ

Задачами учебной практики являются:

- 6. ознакомление с историей предприятия;
- 7. ознакомление с содержанием нормативно-технической документацией по мехатронным и робототехническим системам;
- 8. приобретение навыков работы с оборудованием, техническими средствами контроля и управления мехатронными системами;
 - 9. изучение особенностей создания проектной документации применительно к

мехатронным и робототехническим системам;

- 10. изучение комплекса производственных задач решаемых с помощью мехатронных и робототехнических систем;
 - 11. изучение вопросов экономики и организации производства.

4. МЕСТО УЧЕБНОЙ ПРАКТИКИ В СТРУКТУРЕ ОПОП

Практика по получению профессиональных умений и навыков в области проектирования мехатронных и робототехнических систем входит в вариативную часть Блока 2 Практики учебного плана (Б2.В.01) и является составной частью профессиональной подготовки магистра.

В результате освоения предшествующих частей ОПОП студенты должны были приобрести следующие знания и умения, необходимые при освоении данной практики: владение в полной мере основным физико-математическим аппаратом, необходимым для описания и исследования разрабатываемых систем и устройств.

Для выполнения программы практики магистрант должен владеть знаниями и умениями по дисциплинам «Методы и теория оптимальных систем управления», «Моделирование и экспериментальные исследования мехатронных систем», «Системы управления роботами», «Системы автоматизированного проектирования и производства», «Программное обеспечение роботов», «Промышленные и мобильные роботы», «Дистанционное управление роботами».

5. ТИПЫ, СПОСОБЫ, МЕСТО И ВРЕМЯ ПРОВЕДЕНИЯ УЧЕБНОЙ ПРАКТИКИ

Вид практики – учебная практика.

Тип практики - практика по получению профессиональных умений и навыков в области проектирования мехатронных и робототехнических систем.

Практика проводится в подразделениях промышленных предприятий или в организации, с которой у студента имеются соответствующие договоры, а также договоренности о его трудоустройстве после окончания ДВФУ. Базовыми организациями проведения практики являются ПАО «Дальприбор», ОАО «Изумруд», а также производственные подразделения научных институтов Дальневосточного отделения Российской академии наук: Институт проблем морских технологий ДВО РАН, Институт автоматики и процессов управления ДВО РАН и др.; научно-исследовательские подразделения университета.

Учебная практика в соответствии с учебным планом и календарным учебным графиком проводится на первом курсе во втором семестре.

Для лиц с ограниченными возможностями здоровья и инвалидов выбор мест прохождения практик согласуется с требованием их доступности для данных обучающихся и практика проводится с учетом особенностей их психофизического развития, индивидуальных возможностей и состояния здоровья.

6. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ПРОХОЖДЕНИЯ УЧЕБНОЙ ПРАКТИКИ

В результате прохождения практики по получению профессиональных умений и навыков в области проектирования мехатронных и робототехнических систем формируются профессиональные компетенции:

- готовностью собирать, обрабатывать, анализировать и систематизировать научнотехническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии в своей профессиональной деятельности (ОПК-4);
- способность использовать имеющиеся программные пакеты и, при необходимости, разрабатывать новое программное обеспечение, необходимое для обработки информации и управления в мехатронных и робототехнических системах, а также для их проектирования (ПК-2);
- способность разрабатывать экспериментальные макеты управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводить их исследование с применением современных информационных технологий (ПК-3);
- способность разрабатывать методики проведения экспериментов и проводить эксперименты на действующих макетах и образцах мехатронных и робототехнических систем и их подсистем; обрабатывать результаты с применением современных информационных технологий и технических средств (ПК-5);
- способность к подготовке технического задания на проектирование мехатронных и робототехнических систем их подсистем и отдельных устройств с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники, а также новых устройств и подсистем (ПК-9);
- способность участвовать в разработке конструкторской и проектной документации мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями (ПК-10).

В результате прохождения данной учебной практики обучающийся должен:

знать основные достижения отечественной и зарубежной науки, техники и технологии в мехатронике, способы обработки результатов экспериментальных исследований, методы статистической обработки данных, методы синтеза и анализа аналоговых и цифровых схем, современные методы разработки экспериментальных макетов мехатронных и робототехнических систем, методы реализации научноисследовательской деятельности в области мехатроники и робототехники, а также методы генерирования новых идей при решении исследовательских и практических задач, методические и нормативные требования на разработку проектно-конструкторской документации на проектирование мехатронных и робототехнических систем их технические подсистем, стандарты И условия необходимые ДЛЯ разработки конструкторской и проектной документации мехатронных и робототехнических систем;

уметь собирать и обрабатывать научно-техническую информацию в обрасти мехатронике, использовать существующее и разрабатывать программное обеспечение для управления мехатронными системами, применять средства математического, физического, конструкторского, технологического, электротехнического характера при разработке экспериментальных макетов, планировать и осуществлять исследовательскую деятельность с применением современных методов исследования, учитывать методические и нормативные требования при разработке проектноконструкторской документации на проектирование мехатронных и робототехнических систем их подсистем, разрабатывать конструкторскую и проектную документацию мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями;

владеть методами анализа и систематизации научно-технической информации по тематике исследования и использовать достижения отечественной и зарубежной науки, техники и технологии в мехатронике, современными программными средствами для выполнения численного эксперимента и моделирования динамических систем, навыками разработки экспериментальных макетов мехатронных и робототехнических систем и проводить их исследование, современными методами исследования, необходимыми для осуществления научно-исследовательской деятельности в области мехатроники и робототехники, методами разработки проектно-конструкторской документации на проектирование мехатронных и робототехнических систем их подсистем в соответствии с методическими и нормативными требованиями, навыками разработки конструкторской и проектной документации мехатронных и робототехнических систем.

7. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ПРАКТИКИ

Общая трудоемкость практики по получению профессиональных умений и навыков в области проектирования мехатронных и робототехнических систем составляет 4 недели, 6 зачетных единиц, 216 часов.

№ п/п	Разделы (этапы) практики	Виды учебной работы на практике, вкл самостоятельную работу студентов трудоемкость (в часах)		
1	Подготовительный этап	Инструктаж по технике безопасности, оформление на рабочее место, знакомство с общими вопросами организации предприятия и его производственного процесса, охраной труда и техникой безопасности	16	Собесе- дование
2	Производственный этап	Выполнение производственных заданий на рабочем месте или проведение теоретической / экспериментальной исследовательской работы в научном коллективе	136	Отметки в дневнике практики
3	Аналитический этап	Сбор, обработка и систематизация фактического и литературного материала	32	Отчет по практике
4	Заключительный этап	Подготовка отчета по практике, защита практики	32	Защита отчета
		Итого	216	

Во время практики студенты работают по регламенту предприятия, строго соблюдая правила внутреннего распорядка. Руководитель практики от университета совместно с руководством предприятия обеспечивают перемещение студентов по рабочим местам предприятия в соответствии с графиком.

Студенты могут оформляться на оплачиваемые рабочие места по согласованию с руководителем практики от университета. Работа студента с оплатой его труда разрешается при условии, что его оплачиваемое рабочее место удовлетворяет требованиям программы практики и способствует её выполнению.

В период практики студенты работают самостоятельно или дублёрами сотрудников разрабатывающих, устанавливающих или ремонтирующих мехатронные системы. Рекомендуется подробно ознакомиться с обязанностями 2-3 сотрудников.

После изучения взаимодействия различных отделов и подразделений предприятия студенты знакомятся с конструкцией и технологией изготовления какого-либо оборудования или изделия. Особое внимание следует уделить изучению новейшей аппаратуры и оборудования. В завершение практики у студента должно сформироваться ясное представление об организации технологической цепи разработки, ремонта, эксплуатации мехатронных устройств.

Находясь на практике, студент занимается:

- изучением организационной и функциональной структуры, состава и характеристик подсистем и видов мехатронных устройств;

- изучением организации проектно-конструкторской работы, порядка разработки, прохождения и утверждения проектной, технической, конструкторской и технологической документации на мехатронные устройства;
- изучением методов исследования, проектирования и проведения экспериментальных работ;
- методами и средствами компьютерного исследования и проектирования, необходимые при разработке приборов, материалов и устройств или их технологии;
- выработкой умений правильной оценки главных технико-экономических показателей разрабатываемой системы;
- изучением мероприятий по ТБ, охране труда, противопожарной безопасности, охране окружающей среды.

Студент должен стремиться выявить недостатки в действующих аналогичных устройствах с целью их устранения в разрабатываемом устройстве.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ НА УЧЕБНОЙ ПРАКТИКЕ

В период практики студент должен научиться определять характеристики реальных мехатронных систем, уметь по результатам эксперимента определять вероятностные характеристики и законы распределения случайных ошибок, получить навыки в составлении технического задания на проектирование мехатронных устройств, соблюдать при оформлении технической документации требования ЕСКД, ЕСТД и ГОСТов.

Руководитель практики от вуза, как правило, научный руководитель магистранта, осуществляет общее руководство практикой студента, а непосредственное руководство на конкретном объекте осуществляет руководитель практики от предприятия. Руководитель практики от вуза регулярно контролирует процесс прохождения практики и принимает участие в решении возникающих организационных, технических и других вопросов, в том числе по организации самостоятельной работы студента.

Учебно-методическим обеспечением практики является:

- основная и дополнительная литература, рекомендуемая при изучении дисциплин;
- инструкции по эксплуатации приборов и технических средств автоматизации, используемые в профессиональной деятельности предприятий;
- техническая документация на производство работ по монтажу и наладке систем автоматизации;
- пакеты специализированных прикладных программ, рекомендованных руководителями от вуза и предприятия.

Контрольные вопросы для проведения аттестации

- 1. Как реализуются организация и управление деятельностью подразделения?
- 2. Как производится планирование и финансирование разработок?

- 3. Как производится эксплуатация оборудования, оформление программ испытаний и технической документации?
- 4. Каковы основные этапы разработки конструкторско-технологической документации?
 - 5. Каков порядок представления и утверждения документов?
- 6. Опишите методы выполнения технических расчётов и определения экономической эффективности исследований и разработок.
- 7. Каковы правила эксплуатации установок, измерительных приборов и технологического оборудования, имеющегося в подразделении?
 - 8. Как обеспечивается безопасность жизнедеятельности и экологической чистоты?
 - 9. Какие средства вычислительной техники используются в подразделении?
 - 10. Как производится отчётность по основным этапам проектирования?

9. ФОРМЫ АТТЕСТАЦИИ (ПО ИТОГАМ ПРАКТИКИ)

Форма аттестации по итогам учебной практики – зачет с оценкой.

На практике студент ежедневно заполняет дневник, в который заносится вся выполняемая работа или время простоев с причиной их возникновения и т.п. Дневник систематически проверяется руководителем практики и прилагается к отчёту студента.

Важным элементом самостоятельной работы студентов во время прохождения практики является выполнение индивидуального задания. Задание выдаётся руководителем практики от кафедры. Оно может быть по тематике исследовательской работы студентов, но с обязательным учётом специфики предприятия — базы практики. Наиболее интересные материалы индивидуального задания впоследствии представляются в виде доклада для сообщений на итоговой конференции по производственной практике, а также на конкурс студенческих научно-исследовательских работ.

Текущий контроль за прохождением практики осуществляет руководитель практики, контролируя соблюдение магистрантом индивидуального графика прохождения практики, объем и качество выполнения запланированных действий.

Промежуточный контроль осуществляется в форме зачета по практике по получению профессиональных умений и навыков в области проектирования мехатронных и робототехнических систем, выставляемого руководителем практики по результатам защиты отчета по практике.

При проведении аттестации оценивается уровень сформированности следующих профессиональных компетенций:

Код и формулировка компетенции	Этапы формирования компетенции	
ОПК-4 готовность собирать, обрабатывать,	Знает	основные достижения отечественной и зарубежной науки, техники и технологии в

анализировать и		мехатронике
систематизировать научнотехническую информацию по тематике исследования,	Умеет	собирать и обрабатывать научно- техническую информацию в обрасти мехатроники
использовать достижения отечественной и зарубежной науки, техники и технологии в своей профессиональной деятельности	Владеет	методами анализа и систематизции научно- технической информации по тематике исследования и использовать достижения отечественной и зарубежной науки, техники и технологии в мехатронике
ПК-2 способность использовать имеющиеся программные пакеты и, при необходимости, разрабатывать новое	Знает	Способы обработки результатов экспериментальных исследований. Методы статистической обработки данных. Методы синтеза и анализа аналоговых и цифровых схем.
программное обеспечение, необходимое для обработки информации и управления в	Умеет	Использовать существующее и разрабатывать программное обеспечение для управления мехатронными системами.
мехатронных и робототехнических системах, а также для их проектирования	Владеет	Современными программными средствами для выполнения численного эксперимента и моделирования динамических систем.
ПК-3 способность разрабатывать экспериментальные макеты	Знает	Современные методы разработки экспериментальных макетов мехатронных и робототехнических систем
управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и	Умеет	Применять средства математического, физического, конструкторского, технологического, электротехнического характера при разработке экспериментальных макетов
проводить их исследование с применением современных информационных технологий	Владеет	Навыками разработки экспериментальных макетов мехатронных и робототехнических систем и проводить их исследование
ПК-5 способность разрабатывать методики проведения экспериментов и проводить эксперименты на действующих макетах и	Знает	Методы реализации научно- исследовательской деятельности в области мехатроники и робототехники, а также методы генерирования новых идей при решении исследовательских и практических задач
образцах мехатронных и робототехнических систем и их подсистем; обрабатывать результаты с применением современных информационных технологий и технических средств	Умеет	Планировать и осуществлять научно- исследовательскую деятельность с применением современных методов исследования
	Владеет	Современными методами исследования, необходимыми для осуществления научно-исследовательской деятельности в области мехатроники и робототехники

ПК-9 Способность к подготовке технического задания на проектирование мехатронных и робототехнических систем их подсистем и отдельных устройств с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники, а также новых устройств и подсистем	Знает	Методические и нормативные требования на разработку проектно-конструкторской документации на проектирование мехатронных и робототехнических систем их подсистем
	Умеет	Учитывать методические и нормативные требования при разработке проектноконструкторской документации на проектирование мехатронных и робототехнических систем их подсистем
	Владеет	Методами разработки проектно- конструкторской документации на на проектирование мехатронных и робототехнических систем их подсистем в соответствии с методическими и нормативными требованиями
ПК-10 Способность участвовать в разработке	Знает	Стандарты и технические условия, необходимые для разработки конструкторской и проектной документации мехатронных и робототехнических систем
конструкторской и проектной документации мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями	Умеет	Разрабатывать конструкторскую и проектную документацию мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями
	Владеет	Навыками разработки конструкторской и проектной документации мехатронных и робототехнических систем

10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ПРАКТИКИ

Основная литература 1. Дорф Р., Бишоп Р. Современные системы управления. — М.: Лаборатория

Базовых	Знаний,	2012.	_	831	c.
http://lib.	dvfu.ru:8080/lib/item?id=	-chamo:398350&the	<u>me=FEFU</u> (2 эі	(3.)	
2.	Филаретов В.Ф. Линей	ная теория автомат	тического упра	вления / В.Ф. Фила	аретов.
_	Владивосток:	ДВГТУ,	2010.	- 116	c.
http://lib.	dvfu.ru:8080/lib/item?id=	-chamo:381426&the	me=FEFU (19	экз.)	

- 3. Бессмертный И.А. Искусственный интеллект. Учебное пособие СПб: СПбГУ ИТМО, 2010. 132 с. https://e.lanbook.com/book/43663
- 4. Альтшуллер Г.С. Найти идею. Введение в теорию решения изобретательских задач. М.: Альпина Паблишер, 2014. 400 с. http://znanium.com/go.php?id=520707

- 5. Автоматизация проектирования радиоэлектронных средств: учеб. пособие / Е.Л. Гамаюнов. Владивосток: Изд-во ДВГТУ, 2010. 173 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:425908&theme=FEFU (16 экз.)
- 6. Юревич Е.И. Основы робототехники: учебное пособие для вузов. Санкт-Петербург: БХВ-Петербург, 2010. -359 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:686006&theme=FEFU (6 экз.)
- 12. Коновалов Б.И., Лебедев Ю. М. Теория автоматического управления. СПб.: Издательство «Лань», 2010. 224 с. http://e.lanbook.com/view/book/538/page1/
- 13. Певзлер Л.Д. Теория систем управления. СПб.: Издательство «Лань», 2013. 424 c. http://e.lanbook.com/view/book/38841/page2/
- 14. Предко М. Устройства управления роботами. М. ДМК Пресс, 2010. 404 с. http://e.lanbook.com/view/book/40006/
- 15. Управление техническими системами. Е.Б. Бунько, К.И. Меша, Е.Г. Мурачев и др.; Под ред. В.И. Харитонова. М.: Форум, 2010. 384 с. http://znanium.com/bookread.php?book=188363
- 16. Современная автоматика в системах управления технологическими процессами: Учебное пособие / В.П. Ившин, М.Ю. Перухин. М.: НИЦ ИНФРА-М, 2014. 400 с. http://znanium.com/bookread.php?book=430323

Дополнительная литература

- 9. Алексеев Ю.К. Введение в подводную робототехнику. Учебное пособие / Ю.К. Алексеев Владивосток: Изд-во ДВГТУ, 2008. 296 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382822&theme=FEFU (24 экз.)
- 10. Модели и алгоритмы коллективного управления в группах роботов. [Электронный ресурс] / Каляев И.А., Гайдук А. Р., Капустян С. Г. М. : ФИЗМАТЛИТ, 2009. http://www.studmedlib.ru/book/ISBN9785922111416.html
- 11. Конюх В.Л. Основы робототехники: учебное пособие. Ростов-на-Дону: Феникс, 2008. 282 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:381615&theme=FEFU
- 12. Шумский А.Е. Методы и алгоритмы диагностирования и отказоустойчивого управления динамическими системами / А.Е. Шумский, А.Н. Жирабок. Владивосток: ДВГТУ, 2009. 196 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382845&theme=FEFU (19 экз.)
- 13. Калужский М.Л. Общая теория систем [Электронный ресурс] : учебное пособие / М.Л. Калужский. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2015. 176 с. 978-5-905916-78-6. Режим доступа: http://www.iprbookshop.ru/31691.html
- 14. Павлов С.Н. Системы искусственного интеллекта. Часть 1 [Электронный ресурс] : учебное пособие / С.Н. Павлов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2011. 176 с. 978-5-4332-0013-5. Режим доступа: http://www.iprbookshop.ru/13974.html

- 15. Новиков Ф.А. Системы представления знаний: Учебное пособие. СПб.: Изд-во Политехн. ун-та, 2010. 245 с. http://window.edu.ru/resource/677/76677
- 16. Гаврилов Е.Б. Цифровые системы управления. Сборник задач для индивидуальных заданий [Электронный ресурс] : учебное пособие / Е.Б. Гаврилов, Г.В. Саблина. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2010. 44 с. 978-5-7782-1435-4. Режим доступа: http://www.iprbookshop.ru/45454.html
- 17. Чернышов В.Н., Чернышов А.В. Теория систем и системный анализ: учебное пособие. Тамбов : Изд-во Тамб. гос. техн. ун-та, 2008. 96 с. http://window.edu.ru/resource/188/64188
- 18. Калужский М.Л. Общая теория систем: Курс лекций. Омск: Изд-во ОмГАУ, 2007. 144 с. http://window.edu.ru/resource/678/76678
- 11. Гаврилов А.В. Системы искусственного интеллекта: Учебное пособие: в 2-х ч. Ч.1. Новосибирск: НГТУ, 2001. 67 с. http://window.edu.ru/resource/355/29355
- 12. Системы искусственного интеллекта. Практический курс: учебное пособие / под ред. И.Ф. Астаховой. М.: БИНОМ. Лаборатория знаний, 2008. 292 с. http://window.edu.ru/resource/335/65335
- 13. Туманов М.П. Теория управления. Теория импульсных, дискретных и нелинейных САУ: Учебное пособие. М.: МГИЭМ., 2005. 63 с. http://window.edu.ru/resource/737/24737
- 14. Зацепин М.Ф., Мартыненко Ю.Г., Тиньков Д.В. Уравнения Лагранжа, Воронца, Чаплыгина в задачах динамики мобильных роботов: Методическое пособие. М.: Издательство МЭИ, 2005. 32 с. http://window.edu.ru/resource/221/55221
- 15. Новиков Ф.А. Системы представления знаний: Учебное пособие. СПб.: Изд-во Политехн. ун-та, 2010. 245 с. http://window.edu.ru/resource/677/76677
- 16. Григорьев В.В., Быстров С.В., Бойков В.В., Болтунов Г.И., Мансурова О.К. Цифровые системы управления: Учебное пособие. СПб.: СПбГУ ИТМО, 2011.-133 с. http://window.edu.ru/resource/439/73439
- 17. Втюрин В.А. Современные проблемы науки и производства в области автоматизации: Учебное пособие. СПб.: СПбГЛТУ, 2011. 103 с. http://window.edu.ru/resource/059/77059

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ПРАКТИКИ

Необходимое материально-техническое обеспечение практики следующее:

- автоматизированное мехатронное и робототехническое оборудование, технологические линии; испытательные стенды; оборудование для сборки и разборки сборочных единиц;

- оборудование рабочего места конструктора, технолога с соответствующим программным обеспечением (Компас, AutoCAD, SolidWorks, MatLab, в т.ч. для 3D-моделирования).

Защита отчетов по практике проходит в мультимедийной аудитории, оборудованной:

- проектор 3-chip DLP, 10 600 ANSI-лм, WUXGA 1 920х1 200 (16:10) PT-DZ110XE Panasonic; экран 316х500 см, 16:10 с эл. приводом; крепление настенно-потолочное Elpro Large Electrol Projecta; профессиональная ЖК-панель 47", 500 Кд/м², Full HD M4716CCBA LG; подсистема видеоисточников документ-камера CP355AF Avervision; подсистема видеокоммутации; подсистема аудиокоммутации и звукоусиления; подсистема интерактивного управления; беспроводные ЛВС обеспечены системой на базе точек доступа 802.11a/b/g/n 2x2 MIMO(2SS).

Составитель доцент, канд. техн. наук А.А. Кацурин

Программа практики обсуждена на заседании кафедры Автоматизации и управления, протокол от «26» декабря 2019 г. № 3.

МИНИСТЕРСТВО НАУКИ И ВЫСЩЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» $(ДВ\Phi Y)$

Инженерная школа

Образовательное ТВЕРЖДАЮ Директор Школы
А.Т. Беккер
2020 г.

ПРОГРАММА

ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

(Практика по получению профессиональных умений и опыта проектно-конструкторской деятельности на предприятии)

Для направления подготовки
15.04.06 Мехатроника и робототехника
Программа академической магистратуры
Наименование образовательной программы: «Мехатроника и робототехника»

Владивосток 2020

1. НОРМАТИВНАЯ ДОКУМЕНТАЦИЯ, РЕГЛАМЕНТИРУЮЩАЯ ПРОЦЕСС ОРГАНИЗАЦИИ И ПРОХОЖДЕНИЯ ПРАКТИКИ

Программа производственной практики составлена в соответствии с требованиями:

- 1. Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Образовательного стандарта высшего образования по направлению подготовки 15.04.06 Мехатроника и робототехника (уровень магистратуры), самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора от 7 июля 2015 г. № 12-13-1282:
- 3. Приказа Министерства образования и науки Российской Федерации от 19.12.2013 г. № 1367 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры».

2. ЦЕЛИ ОСВОЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ ПО ПОЛУЧЕНИЮ ПРОФЕССИОНАЛЬНЫХ УМЕНИЙ И ОПЫТА ПРОЕКТНО-КОНСТРУКТОРСКОЙ ДЕЯТЕЛЬНОСТИ НА ПРЕДПРИЯТИИ

производственной практики являются закрепление и углубление теоретических знаний, полученных во время аудиторных занятий при изучении учебных дисциплин; приобретение практических навыков И компетенций; изучение организационной структуры предприятия и действующей в ней системы управления; развитие и накопление знаний в области мехатроники и робототехники; формирование у студентов навыков ведения самостоятельной научно-производственной деятельности, исследования и экспериментирования; сбор необходимых материалов для выполнения выпускной квалификационной работы; воспитание у будущих специалистов уважения к производственному труду рабочих, ответственности за выполнение намеченных работ; приобретение опыта организаторской работы в коллективе.

3. ЗАДАЧИ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Задачами производственной практики являются:

- 12. ознакомление с историей предприятия;
- 13. ознакомление с содержанием нормативно-технической документацией по мехатронным и робототехническим системам;
 - 14. приобретение навыков работы с оборудованием, техническими средствами

контроля и управления мехатронными системами;

- 15. изучение особенностей создания проектной документации применительно к мехатронным и робототехническим системам;
- 16. изучение комплекса производственных задач решаемых с помощью мехатронных и робототехнических систем;
 - 17. изучение вопросов экономики и организации производства.

4. МЕСТО ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ В СТРУКТУРЕ ОПОП

Практика по получению профессиональных умений и опыта проектноконструкторской деятельности на предприятии входит в вариативную часть Блока 2 Практики учебного плана (Б2.В.02) и является составной частью профессиональной подготовки магистра.

В результате освоения предшествующих частей ОП студенты должны были приобрести следующие знания и умения, необходимые при освоении данной практики: владение в полной мере основным физико-математическим аппаратом, необходимым для описания и исследования разрабатываемых систем и устройств.

Для выполнения программы практики магистрант должен владеть знаниями и умениями по дисциплинам «Методы и теория оптимальных систем управления», «Моделирование и экспериментальные исследования мехатронных систем», «Системы управления роботами», «Информационные системы в мехатронике и робототехнике», «Системы автоматизированного проектирования и производства», «Компьютерные технологии управления в мехатронных системах», «Подводная робототехника», «Программное обеспечение роботов», «Методы искусственного интеллекта в мехатронике и робототехнике», «Промышленные и мобильные роботы», «Дистанционное управление роботами», «Первичные преобразователи информации», «Навигационные системы роботов».

5. ТИПЫ, СПОСОБЫ, МЕСТО И ВРЕМЯ ПРОВЕДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Вид практики – производственная практика.

Тип практики - практика по получению профессиональных умений и опыта проектно-конструкторской деятельности на предприятии. Практика в соответствии с учебным планом и календарным учебным графиком, проводится на втором курсе в четвертом семестре, способ проведения – стационарная.

Местом проведения практики являются структурные подразделения ДВФУ или сторонние организации в соответствии с заключенными с ДВФУ договорами, обладающие необходимым кадровым и научно-техническим потенциалом. В их число входят: ПАО «Дальприбор», ОАО «Изумруд», а также производственные подразделения научных институтов Дальневосточного отделения Российской академии наук: Институт проблем морских технологий ДВО РАН, Институт автоматики и процессов управления ДВО РАН и др.

Для лиц с ограниченными возможностями здоровья и инвалидов выбор мест прохождения практик согласуется с требованием их доступности для данных обучающихся и практика проводится с учетом особенностей их психофизического развития, индивидуальных возможностей и состояния здоровья.

6. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ПРОХОЖДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

В ходе прохождения производственной практики у обучающихся формируются следующие компетенции:

готовность к руководству и участию в подготовке технико-экономического обоснования проектов создания мехатронных и робототехнических систем, их подсистем и отдельных модулей (ПК-8);

способность к подготовке технического задания на проектирование мехатронных и робототехнических систем их подсистем и отдельных устройств с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники, а также новых устройств и подсистем (ПК-9);

способность участвовать в разработке конструкторской и проектной документации мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями (ПК-10);

готовность разрабатывать методику проведения экспериментальных исследований и испытаний мехатронной или робототехнической системы; способностью участвовать в проведении таких испытаний и обработке их результатов (ПК-11).

7. СТРУКТУРА И СОДЕРЖАНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Общая трудоемкость практики по получению профессиональных умений и опыта проектно-конструкторской деятельности на предприятии составляет 4 недели, 6 зачетных единиц, 216 часов.

№ п/п	Разделы (этапы) практики	Виды учебной работы на практике, вкл самостоятельную работу студентов и трудо (в часах)	Формы текущего контроля	
1	Подготовительный	Инструктаж по технике безопасности, оформление на рабочее место, знакомство с общими вопросами организации предприятия и его производственного процесса, охраной труда и техникой безопасности	16	Собесе- дование
2	Производственный	Выполнение производственных заданий на рабочем месте или проведение теоретической / экспериментальной исследовательской работы в научном коллективе	136	Отметки в дневнике практики
3	Аналитический	Сбор, обработка и систематизация фактического и литературного материала	32	Отчет по практике
4	Заключительный	Подготовка отчета по практике, защита практики	32	Защита отчета
		Итого	216	

Во время практики студенты работают по регламенту предприятия, строго соблюдая правила внутреннего распорядка. Руководитель практики от университета совместно с руководством предприятия обеспечивают перемещение студентов по рабочим местам предприятия в соответствии с графиком.

Студенты могут оформляться на оплачиваемые рабочие места по согласованию с руководителем практики от университета. Работа студента с оплатой его труда разрешается при условии, что его оплачиваемое рабочее место удовлетворяет требованиям программы практики и способствует её выполнению.

В период практики студенты работают самостоятельно или дублёрами сотрудников разрабатывающих, устанавливающих или ремонтирующих мехатронные системы. Рекомендуется подробно ознакомиться с обязанностями 2-3 сотрудников.

После изучения взаимодействия различных отделов и подразделений предприятия студенты знакомятся с конструкцией и технологией изготовления какого-либо оборудования или изделия. Особое внимание следует уделить изучению новейшей аппаратуры и оборудования. В завершение практики у студента должно сформироваться ясное представление об организации технологической цепи разработки, ремонта, эксплуатации мехатронных устройств. В период практики студент может работать на инженерно-технических должностях.

Находясь на практике, студент занимается:

- изучением организационной и функциональной структуры, состава и характеристик подсистем и видов мехатронных устройств;
- изучением организации проектно-конструкторской работы, порядка разработки, прохождения и утверждения проектной, технической, конструкторской и технологической документации на мехатронные устройства;

- изучением методов исследования, проектирования и проведения экспериментальных работ; методами и средствами компьютерного исследования и проектирования, необходимые при разработке приборов, материалов и устройств или их технологии;
- выработкой умений правильной оценки главных технико-экономических показателей разрабатываемой системы;
- изучением мероприятий по ТБ, охране труда, противопожарной безопасности, охране окружающей среды.

Студент должен стремиться выявить недостатки в действующих аналогичных устройствах с целью их устранения в разрабатываемом устройстве.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ НА ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

В период практики студент должен научиться определять характеристики реальных мехатронных систем, уметь по результатам эксперимента определять вероятностные характеристики и законы распределения случайных ошибок, получить навыки в составлении технического задания на проектирование мехатронных устройств, соблюдать при оформлении технической документации требования ЕСКД, ЕСТД и ГОСТов.

Руководитель практики от вуза, как правило, научный руководитель магистранта, осуществляет общее руководство практикой студента, а непосредственное руководство на конкретном объекте осуществляет руководитель практики от предприятия. Руководитель практики от вуза регулярно контролирует процесс прохождения практики и принимает участие в решении возникающих организационных, технических и других вопросов, в том числе по организации самостоятельной работы студента.

Учебно-методическим обеспечением практики является:

- основная и дополнительная литература, рекомендуемая при изучении дисциплин;
- инструкции по эксплуатации приборов и технических средств автоматизации, используемые в профессиональной деятельности предприятий;
- техническая документация на производство работ по монтажу и наладке систем автоматизации;
- пакеты специализированных прикладных программ, рекомендованных руководителями от вуза и предприятия.

Контрольные вопросы для проведения аттестации

1. Как реализуются организация и управление деятельностью

подразделения?

- 2. Как производится планирование и финансирование разработок?
- 3. Как производится эксплуатация оборудования, оформление программ испытаний и технической документации?
- 4. Каковы основные этапы разработки конструкторско-технологической документации?
 - 5. Каков порядок представления и утверждения документов?
- 6. Опишите методы выполнения технических расчётов и определения экономической эффективности исследований и разработок.
 - 7. Каковы правила эксплуатации установок, измерительных приборов и технологического оборудования, имеющегося в подразделении?
 - 8. Как обеспечивается безопасность жизнедеятельности и экологической чистоты?
 - 9. Какие средства вычислительной техники используются в подразделении?
 - 10. Как производится отчётность по основным этапам проектирования?

9. ФОРМЫ АТТЕСТАЦИИ (ПО ИТОГАМ ПРАКТИКИ)

Форма аттестации по итогам производственной практики – зачет с оценкой.

На практике студент ежедневно заполняет дневник, в который заносится вся выполняемая работа или время простоев с причиной их возникновения и т.п. Дневник систематически проверяется руководителем практики и прилагается к отчёту студента.

Важным элементом самостоятельной работы студентов во время прохождения практики является выполнение индивидуального задания. Задание выдаётся руководителем практики от кафедры. Оно может быть по тематике исследовательской работы студентов, но с обязательным учётом специфики предприятия — базы практики. Наиболее интересные материалы индивидуального задания впоследствии представляются в виде доклада для сообщений на итоговой конференции по производственной практике, а также на конкурс студенческих научно-исследовательских работ.

Текущий контроль за прохождением практики осуществляет руководитель практики, контролируя соблюдение магистрантом индивидуального графика прохождения практики, объем и качество выполнения запланированных действий.

Промежуточный контроль осуществляется в форме зачета по практике по получению профессиональных умений и навыков в области проектирования мехатронных и

робототехнических систем, выставляемого руководителем практики по результатам защиты отчета по практике.

При проведении аттестации оценивается уровень сформированности следующих профессиональных компетенций:

Код и формулировка компетенции		Этапы формирования компетенции
ПК-8 Готовность к руководству и участию в подготовке технико-	Знает	Основные методы для составления технико- экономических обоснований проектов создания мехатронных и робототехнических систем
экономического обоснования проектов создания мехатронных и	Умеет	Проводить предварительное технико- экономическое обоснование проектов
робототехнических систем, их подсистем и отдельных модулей	Владеет	Методами технико-экономических обоснований для проектов создания мехатронных и робототехнических систем
ПК-9 Способность к подготовке технического задания на	Знает	Методические и нормативные требования на разработку проектно-конструкторской документации на проектирование мехатронных и робототехнических систем их подсистем
проектирование мехатронных и робототехнических систем их подсистем и отдельных устройств с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники, а также новых устройств и подсистем	Умеет	Учитывать методические и нормативные требования при разработке проектноконструкторской документации на проектирование мехатронных и робототехнических систем их подсистем
	Владеет	Методами разработки проектно-конструкторской документации на на проектирование мехатронных и робототехнических систем их подсистем в соответствии с методическими и нормативными требованиями
ПК-10 Способность участвовать в	Знает	Стандарты и технические условия, необходимые для разработки конструкторской и проектной документации мехатронных и робототехнических систем
разработке конструкторской и проектной документации мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями	Умеет	Разрабатывать конструкторскую и проектную документацию мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями
условиям	Владеет	Навыками разработки конструкторской и проектной документации мехатронных и робототехнических систем
ПК-11 Готовность разрабатывать методику проведения	Знает	Теорию и методику проведения экспериментов и правила составления обзоров и отчетов
экспериментальных исследований и испытаний мехатронной или робототехнической системы, способность участвовать в проведении таких испытаний и обработке их результатов	Умеет	Анализировать результаты проведенных экспериментов
	Владеет	Методами проведения экспериментов по заданной методике, анализа их результатов и использования при испытаниях мехатронной или робототехнической системы

Критерии оценок при защите отчёта по производственной практике:

«Отлично» — отчёт выполнен в соответствии с требованиями, предъявляемые к нему с использованием компьютерных технологий, ответы на поставленные

руководителем практики вопросы освещены в полном объёме, с достаточной степенью профессиональности и компетенции, содержание ответов свидетельствует об уверенных знаниях студента и о его умении решать профессиональные задачи.

«Хорошо» — отчёт выполнен в соответствии с требованиями, предъявляемые к нему, но есть небольшие неточности, неаккуратность в исполнении, неполный ответ на один вопрос, заданный руководителем, но при этом содержание ответов свидетельствует о достаточных знаниях студента и умение решать профессиональные задачи.

«Удовлетворительно» - отчёт выполнен с нарушением требований, предъявляемых к оформлению, пропущены разделы в отчёте, неаккуратность в исполнении, плохая ориентация студента по отчёту, неполные ответы на два вопроса, содержание ответов свидетельствует о знаниях студента и о его ограниченном умении решать профессиональные задачи.

«Неудовлетворительно» - не представлен отчёт по практике, студент не ориентируется в вопросах, задаваемых руководителем практики, не может ответить на вопросы, связанные с местом прохождения практики и выполнением им обязанностей.

10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Основная литература

- 7. Дорф Р., Бишоп Р. Современные системы управления. М.: Лаборатория Базовых Знаний, 2012. 831 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:398350&theme=FEFU (2 экз.)
- 8. Филаретов В.Ф. Линейная теория автоматического управления / В.Ф. Филаретов.
 Владивосток: ДВГТУ, 2010. 116 с.
 http://lib.dvfu.ru:8080/lib/item?id=chamo:381426&theme=FEFU (19 экз.)
- 9. Бессмертный И.А. Искусственный интеллект. Учебное пособие СПб: СПбГУ ИТМО, 2010. 132 с. https://e.lanbook.com/book/43663
- 10. Альтшуллер Г.С. Найти идею. Введение в теорию решения изобретательских задач. М.: Альпина Паблишер, 2014. 400 с. http://znanium.com/go.php?id=520707
- 11. Автоматизация проектирования радиоэлектронных средств: учеб. пособие / Е.Л. Гамаюнов. Владивосток: Изд-во ДВГТУ, 2010. 173 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:425908&theme=FEFU (16 экз.)
- 12. Юревич Е.И. Основы робототехники: учебное пособие для вузов. Санкт-Петербург: БХВ-Петербург, 2010. -359 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:686006&theme=FEFU (6 экз.)
- 17. Коновалов Б.И., Лебедев Ю. М. Теория автоматического управления. СПб.: Издательство «Лань», 2010. 224 с. http://e.lanbook.com/view/book/538/page1/
- 18. Певзлер Л.Д. Теория систем управления. СПб.: Издательство «Лань», 2013. 424 c. http://e.lanbook.com/view/book/38841/page2/

- 19. Предко М. Устройства управления роботами. М. ДМК Пресс, 2010.-404 с. http://e.lanbook.com/view/book/40006/
- 20. Управление техническими системами. Е.Б. Бунько, К.И. Меша, Е.Г. Мурачев и др.; Под ред. В.И. Харитонова. М.: Форум, 2010. 384 с. http://znanium.com/bookread.php?book=188363
- 21. Современная автоматика в системах управления технологическими процессами: Учебное пособие / В.П. Ившин, М.Ю. Перухин. М.: НИЦ ИНФРА-М, 2014. 400 с. http://znanium.com/bookread.php?book=430323

Дополнительная литература

- 19. Алексеев Ю.К. Введение в подводную робототехнику. Учебное пособие / Ю.К. Алексеев Владивосток: Изд-во ДВГТУ, 2008. 296 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382822&theme=FEFU (24 экз.)
- 20. Модели и алгоритмы коллективного управления в группах роботов. [Электронный ресурс] / Каляев И.А., Гайдук А. Р., Капустян С. Г. М. : ФИЗМАТЛИТ, 2009. http://www.studmedlib.ru/book/ISBN9785922111416.html
- 21. Конюх В.Л. Основы робототехники: учебное пособие. Ростов-на-Дону: Феникс, 2008. 282 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:381615&theme=FEFU
- 22. Шумский А.Е. Методы и алгоритмы диагностирования и отказоустойчивого управления динамическими системами / А.Е. Шумский, А.Н. Жирабок. Владивосток: ДВГТУ, 2009. 196 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382845&theme=FEFU (19 экз.)
- 23. Калужский М.Л. Общая теория систем [Электронный ресурс] : учебное пособие / М.Л. Калужский. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2015. 176 с. 978-5-905916-78-6. Режим доступа: http://www.iprbookshop.ru/31691.html
- 24. Павлов С.Н. Системы искусственного интеллекта. Часть 1 [Электронный ресурс] : учебное пособие / С.Н. Павлов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2011. 176 с. 978-5-4332-0013-5. Режим доступа: http://www.iprbookshop.ru/13974.html
- 25. Новиков Ф.А. Системы представления знаний: Учебное пособие. СПб.: Изд-во Политехн. ун-та, 2010. 245 с. http://window.edu.ru/resource/677/76677
- 26. Гаврилов Е.Б. Цифровые системы управления. Сборник задач для индивидуальных заданий [Электронный ресурс] : учебное пособие / Е.Б. Гаврилов, Г.В. Саблина. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2010. 44 с. 978-5-7782-1435-4. Режим доступа: http://www.iprbookshop.ru/45454.html

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Необходимое материально-техническое обеспечение практики следующее:

- автоматизированное мехатронное и робототехническое оборудование, технологические линии; испытательные стенды; оборудование для сборки и разборки сборочных единиц;
- оборудование рабочего места конструктора, технолога с соответствующим программным обеспечением (Компас, AutoCAD, SolidWorks, MatLab, в т.ч. для 3D-моделирования).

Защита отчетов по практике проходит в мультимедийной аудитории, оборудованной:

- проектор 3-chip DLP, 10 600 ANSI-лм, WUXGA 1 920х1 200 (16:10) PT-DZ110XE Panasonic; экран 316х500 см, 16:10 с эл. приводом; крепление настенно-потолочное Elpro Large Electrol Projecta; профессиональная ЖК-панель 47", 500 Кд/м2, Full HD M4716CCBA LG; подсистема видеоисточников документ-камера CP355AF Avervision; подсистема видеокоммутации; подсистема аудиокоммутации и звукоусиления; подсистема интерактивного управления; беспроводные ЛВС обеспечены системой на базе точек доступа 802.11a/b/g/n 2x2 MIMO(2SS).

Составитель доцент, канд. техн. наук А.А. Кацурин

Программа практики обсуждена на заседании кафедры Автоматизации и управления, протокол от «26» декабря 2019 г. № 3.

МИНИСТЕРСТВО НАУКИ И ВЫСЩЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

Инженерная школа

УТВЕРЖДАЮ

УТВЕРЖДАЮ

УТВЕРЖДАЮ

Инженерной школы

АТ Беккер

Зиним **

2020 г.

ПРОГРАММА

ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

(Научно-исследовательская работа в профессиональной области)

Для направления подготовки

15.04.06 Мехатроника и робототехника

Программа академической магистратуры

Наименование образовательной программы: «Мехатроника и робототехника»

Владивосток 2020

1. НОРМАТИВНАЯ ДОКУМЕНТАЦИЯ, РЕГЛАМЕНТИРУЮЩАЯ ПРОЦЕСС ОРГАНИЗАЦИИ И ПРОХОЖДЕНИЯ ПРАКТИКИ

Программа производственной практики составлена в соответствии с требованиями:

- 1. Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Образовательного стандарта высшего образования по направлению подготовки 15.04.06 Мехатроника и робототехника (уровень магистратуры), самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора от 7 июля 2015 г. № 12-13-1282;
- 3. Приказа Министерства образования и науки Российской Федерации от 19.12.2013 г. № 1367 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры».

2. ЦЕЛИ ОСВОЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА В ПРОФЕССИОНАЛЬНОЙ ОБЛАСТИ

Целями производственной практики является закрепление и углубление теоретических знаний, полученных во время аудиторных занятий при изучении учебных дисциплин; приобретение практических навыков И компетенций: изучение организационной структуры предприятия и действующей в ней системы управления; развитие и накопление знаний в области мехатроники и робототехники; формирование у студентов навыков ведения самостоятельной научно-производственной деятельности, исследования и экспериментирования; сбор необходимых материалов для выполнения выпускной квалификационной работы; воспитание у будущих специалистов уважения к производственному труду рабочих, ответственности за выполнение намеченных работ; приобретение опыта организаторской работы в коллективе.

3. ЗАДАЧИ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Задачами производственной практики являются:

- 18. ознакомление с содержанием нормативно-технической документацией по мехатронным и робототехническим системам;
- 19. приобретение навыков работы с оборудованием, техническими средствами контроля и управления мехатронными системами;
- 20. изучение особенностей создания проектной документации применительно к мехатронным и робототехническим системам;

- 21. изучение комплекса производственных задач решаемых с помощью мехатронных и робототехнических систем;
 - 22. изучение вопросов экономики и организации производства.

4. МЕСТО ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ В СТРУКТУРЕ ОПОП

Практика научно-исследовательская работа в профессиональной области входит в вариативную часть Блока 2 Практики учебного плана (Б2.В.02) и является составной частью профессиональной подготовки магистра.

В результате освоения предшествующих частей ОПОП студенты должны были приобрести следующие знания и умения, необходимые при освоении данной практики: владение в полной мере основным физико-математическим аппаратом, необходимым для описания и исследования разрабатываемых систем и устройств.

Для выполнения программы практики магистрант должен владеть знаниями и умениями по дисциплинам «Методы и теория оптимальных систем управления», «Моделирование и экспериментальные исследования мехатронных систем», «Системы управления роботами», «Информационные системы в мехатронике и робототехнике», «Системы автоматизированного проектирования и производства», «Компьютерные технологии управления в мехатронных системах», «Подводная робототехника», «Программное обеспечение роботов», «Методы искусственного интеллекта в мехатронике и робототехнике», «Промышленные и мобильные роботы», «Дистанционное управление роботами», «Первичные преобразователи информации», «Навигационные системы роботов».

5. ТИПЫ, СПОСОБЫ, МЕСТО И ВРЕМЯ ПРОВЕДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Вид практики – производственная практика.

Тип практики - научно-исследовательская работа в профессиональной области.

Способ проведения преддипломной практики – стационарная.

Практика в соответствии с учебным планом и календарным учебным графиком, проводится на 2 курсе в 4 семестре.

Местом проведения практики являются структурные подразделения ДВФУ или сторонние организации в соответствии с заключенными с ДВФУ договорами, обладающие необходимым кадровым и научно-техническим потенциалом. В их число входят: ПАО «Дальприбор», ОАО «Изумруд», а также производственные подразделения

научных институтов Дальневосточного отделения Российской академии наук: Институт проблем морских технологий ДВО РАН, Институт автоматики и процессов управления ДВО РАН и др.

Для лиц с ограниченными возможностями здоровья и инвалидов выбор мест прохождения практик согласуется с требованием их доступности для данных обучающихся и практика проводится с учетом особенностей их психофизического развития, индивидуальных возможностей и состояния здоровья.

6. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ПРОХОЖДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

В ходе прохождения производственной практики у обучающихся формируются следующие компетенции:

способность составлять математические модели мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри, методов искусственного интеллекта, нечеткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечетких сетей (ПК-1);

способность использовать имеющиеся программные пакеты и, при необходимости, разрабатывать новое программное обеспечение, необходимое для обработки информации и управления в мехатронных и робототехнических системах, а также для их проектирования (ПК-2);

способность разрабатывать экспериментальные макеты управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводить их исследование с применением современных информационных технологий (ПК-3);

способность осуществлять анализ научно-технической информации, обобщать отечественный и зарубежный опыт в области мехатроники и робототехники, средств автоматизации и управления, проводить патентный поиск (ПК-4);

способность разрабатывать методики проведения экспериментов и проводить эксперименты на действующих макетах и образцах мехатронных и робототехнических систем и их подсистем; обрабатывать результаты с применением современных информационных технологий и технических средств (ПК-5);

готовность к составлению аналитических обзоров и научно-технических отчетов по результатам выполненной работы, в подготовке публикаций по результатам исследований и разработок (ПК-6);

способность внедрять на практике результаты исследований и разработок, выполненных индивидуально и в составе группы исполнителей; обеспечивать защиту прав на объекты интеллектуальной собственности (ПК-7).

7. СТРУКТУРА И СОДЕРЖАНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Общая трудоемкость практики (научно-исследовательская работа в профессиональной области) составляет 8 недель, 12 зачетных единиц, 432 часа..

№ п/п	Разделы (этапы) практики	Виды учебной работы на практике, в самостоятельную работу студенто трудоемкость (в часах)	Формы текущего контроля	
1	Подготовительный	Инструктаж по технике безопасности, оформление на рабочее место, знакомство с общими вопросами организации предприятия и его производственного процесса, охраной труда и техникой безопасности		Собесе- дование
2	Производственный	Выполнение производственных заданий на рабочем месте или проведение теоретической / экспериментальной исследовательской работы в научном коллективе	352	Отметки в дневнике практики
3	Аналитический	Сбор, обработка и систематизация фактического и литературного материала	32	Отчет по практике
4	Заключительный	Подготовка отчета по практике, защита практики Итого	32 432	Защита отчета

Во время практики студенты работают по регламенту предприятия, строго соблюдая правила внутреннего распорядка. Руководитель практики от университета совместно с руководством предприятия обеспечивают перемещение студентов по рабочим местам предприятия в соответствии с графиком.

Студенты могут оформляться на оплачиваемые рабочие места по согласованию с руководителем практики от университета. Работа студента с оплатой его труда разрешается при условии, что его оплачиваемое рабочее место удовлетворяет требованиям программы практики и способствует её выполнению.

В период практики студенты работают самостоятельно или дублёрами сотрудников разрабатывающих, устанавливающих или ремонтирующих мехатронные системы. Рекомендуется подробно ознакомиться с обязанностями 2-3 сотрудников.

После изучения взаимодействия различных отделов и подразделений предприятия студенты знакомятся с конструкцией и технологией изготовления какого-либо оборудования или изделия. Особое внимание следует уделить изучению новейшей

аппаратуры и оборудования. В завершение практики у студента должно сформироваться ясное представление об организации технологической цепи разработки, ремонта, эксплуатации мехатронных устройств. В период практики студент может работать на инженерно-технических должностях.

Находясь на практике, студент занимается:

- изучением организационной и функциональной структуры, состава и характеристик подсистем и видов мехатронных устройств;
- изучением организации проектно-конструкторской работы, порядка разработки, прохождения и утверждения проектной, технической, конструкторской и технологической документации на мехатронные устройства;
- изучением методов исследования, проектирования и проведения экспериментальных работ;
 - методами и средствами компьютерного исследования и

проектирования, необходимые при разработке приборов, материалов и устройств или их технологии;

- выработкой умений правильной оценки главных технико-экономических показателей разрабатываемой системы;
- изучением мероприятий по ТБ, охране труда, противопожарной безопасности, охране окружающей среды.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ НА ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

В период практики студент должен научиться определять характеристики реальных мехатронных систем, уметь по результатам эксперимента определять вероятностные характеристики и законы распределения случайных ошибок, получить навыки в составлении технического задания на проектирование мехатронных устройств, соблюдать при оформлении технической документации требования ЕСКД, ЕСТД и ГОСТов.

Руководитель практики от вуза, как правило, научный руководитель магистранта, осуществляет общее руководство практикой студента, а непосредственное руководство на конкретном объекте осуществляет руководитель практики от предприятия. Руководитель практики от вуза регулярно контролирует процесс прохождения практики и принимает участие в решении возникающих организационных, технических и других вопросов, в том числе по организации самостоятельной работы студента.

Учебно-методическим обеспечением практики является:

- основная и дополнительная литература, рекомендуемая при изучении дисциплин;
- инструкции по эксплуатации приборов и технических средств автоматизации, используемые в профессиональной деятельности предприятий;
- техническая документация на производство работ по монтажу и наладке систем автоматизации;
- пакеты специализированных прикладных программ, рекомендованных руководителями от вуза и предприятия.

Контрольные вопросы для проведения аттестации

- 1. Как реализуются организация и управление деятельностью подразделения?
- 2. Как производится планирование и финансирование разработок?
- 3. Как производится эксплуатация оборудования, оформление программ испытаний и технической документации?
- 4. Каковы основные этапы разработки конструкторско-технологической документации?
 - 5. Каков порядок представления и утверждения документов?
- 6. Опишите методы выполнения технических расчётов и определения экономической эффективности исследований и разработок.
- 7. Каковы правила эксплуатации установок, измерительных приборов и технологического оборудования, имеющегося в подразделении?
 - 8. Как обеспечивается безопасность жизнедеятельности и экологической чистоты?
 - 9. Какие средства вычислительной техники используются в подразделении?
 - 10. Как производится отчётность по основным этапам проектирования?

9. ФОРМЫ АТТЕСТАЦИИ (ПО ИТОГАМ ПРАКТИКИ)

Форма аттестации по итогам практики – зачет с оценкой.

На практике студент ежедневно заполняет дневник, в который заносится вся выполняемая работа или время простоев с причиной их возникновения и т.п. Дневник систематически проверяется руководителем практики и прилагается к отчёту студента.

Важным элементом самостоятельной работы студентов во время прохождения практики является выполнение индивидуального задания. Задание выдаётся руководителем практики от кафедры. Оно может быть по тематике исследовательской работы студентов, но с обязательным учётом специфики предприятия — базы практики. Наиболее интересные материалы индивидуального задания впоследствии представляются в виде доклада для сообщений на итоговой конференции по производственной практике, а

также на конкурс студенческих научно-исследовательских работ.

Текущий контроль за прохождением практики осуществляет руководитель практики, контролируя соблюдение магистрантом индивидуального графика прохождения практики, объем и качество выполнения запланированных действий.

Промежуточный контроль осуществляется в форме зачета по практике по получению профессиональных умений и навыков в области проектирования мехатронных и робототехнических систем, выставляемого руководителем практики по результатам защиты отчета по практике.

При проведении аттестации оценивается уровень сформированности следующих профессиональных компетенций:

Код и формулировка компетенции	Этапы формирования компетенции			
математические модели мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри,	Знает	Современные методы описания технических объектов математическими моделями и программные средства для их исследования		
	Умеет	Описывать технологические процессы математическими моделями и применять программные средства для их исследования		
методов искусственного интеллекта, нечеткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечетких сетей	Владеет	Навыками построения математических моделей и применения программных средств в области мехатроники и робототехники		
ПК-2 способность использовать имеющиеся программные пакеты и, при необходимости, разрабатывать новое программное обеспечение, необходимое для обработки информации и управления в мехатронных и робототехнических системах, а также для их проектирования	Знает	Способы обработки результатов экспериментальных исследований. Методы статистической обработки данных. Методы синтеза и анализа аналоговых и цифровых схем.		
	Умеет	Использовать существующее и разрабатывать программное обеспечение для управления мехатронными системами.		
	Владеет	Современными программными средствами для выполнения численного эксперимента и моделирования динамических систем.		
ПК-3 способность разрабатывать экспериментальные макеты управляющих,	Знает	Современные методы разработки экспериментальных макетов мехатронных и робототехнических систем		
информационных и исполнительных модулей мехатронных и	Умеет	Применять средства математического, физического, конструкторского, технологического, электротехнического		

робототехнических систем и проводить их исследование с		характера при разработке экспериментальных макетов
применением современных информационных технологий	Владеет	Навыками разработки экспериментальных макетов мехатронных и робототехнических систем и проводить их исследование
ПК-4 способность осуществлять анализ научно-	Знает	Способы анализа состояния научно- технической проблемы в области мехатроники и робототехники
технической информации, обобщать отечественный и зарубежный опыт в области мехатроники и робототехники,	Умеет	Подбирать и анализировать литературные и патентные источники по мехатронике и робототехнике
средств автоматизации и управления, проводить патентный поиск	Владеет	Методами анализа состояния научно- технической проблемы в области мехатроники и робототехники на основе литературных и патентных источников
ПК-5 способность разрабатывать методики проведения экспериментов и проводить эксперименты на действующих макетах и образцах мехатронных и робототехнических систем и их подсистем; обрабатывать результаты с применением современных информационных технологий и технических средств	Знает	Методы реализации научно- исследовательской деятельности в области мехатроники и робототехники, а также методы генерирования новых идей при решении исследовательских и практических задач
	Умеет	Планировать и осуществлять научно- исследовательскую деятельность с применением современных методов исследования
	Владеет	Современными методами исследования, необходимыми для осуществления научно-исследовательской деятельности в области мехатроники и робототехники
ПК-6 готовность к составлению аналитических обзоров и научно-технических отчетов по	Знает	Требования к оформлению аналитических обзоров и научно- технических отчетов по результатам выполненной работы
результатам выполненной работы, в подготовке публикаций по результатам	Умеет	Оформить и доложить результаты выполненной работы
исследований и разработок	Владеет	Методами аргументированной защиты результаты выполненной работы
ПК-7 способность внедрять на практике результаты	Знает	Методы и средства проектирования систем управления мехатронными и робототехническими объектами
исследований и разработок, выполненных индивидуально и в составе группы исполнителей; обеспечивать защиту прав на объекты интеллектуальной собственности	Умеет	Применять на практике знания о методах и средствах проектирования систем управления в области мехатроники и робототехники, формулировать выводы и практические рекомендации на основе проводимых исследований
	Владеет	Навыками проектирования систем

JF	ления мехатронн отехническими объекта	
1		

Критерии оценок при защите отчёта по производственной практике:

«Отлично» — отчёт выполнен в соответствии с требованиями, предъявляемые к нему с использованием компьютерных технологий, ответы на поставленные руководителем практики вопросы освещены в полном объёме, с достаточной степенью профессиональности и компетенции, содержание ответов свидетельствует об уверенных знаниях студента и о его умении решать профессиональные задачи.

«Хорошо» – отчёт выполнен в соответствии с требованиями, предъявляемые к нему, но есть небольшие неточности, неаккуратность в исполнении, неполный ответ на один вопрос, заданный руководителем, но при этом содержание ответов свидетельствует о достаточных знаниях студента и умение решать профессиональные задачи.

«Удовлетворительно» - отчёт выполнен с нарушением требований, предъявляемых к оформлению, пропущены разделы в отчёте, неаккуратность в исполнении, плохая ориентация студента по отчёту, неполные ответы на два вопроса, содержание ответов свидетельствует о знаниях студента и о его ограниченном умении решать профессиональные задачи.

«Неудовлетворительно» - не представлен отчёт по практике, студент не ориентируется в вопросах, задаваемых руководителем практики, не может ответить на вопросы, связанные с местом прохождения практики и выполнением им обязанностей.

10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Основная литература

- 13. Дорф Р., Бишоп Р. Современные системы управления. М.: Лаборатория Базовых Знаний, 2012. 831 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:398350&theme=FEFU (2 экз.)
- 14. Филаретов В.Ф. Линейная теория автоматического управления / В.Ф. Филаретов.

 Владивосток: ДВГТУ, 2010. 116 с.

 http://lib.dvfu.ru:8080/lib/item?id=chamo:381426&theme=FEFU (19 экз.)
- 15. Бессмертный И.А. Искусственный интеллект. Учебное пособие СПб: СПбГУ ИТМО, 2010. 132 с. https://e.lanbook.com/book/43663
- 16. Альтшуллер Г.С. Найти идею. Введение в теорию решения изобретательских задач. М.: Альпина Паблишер, 2014. 400 с. http://znanium.com/go.php?id=520707
- 17. Автоматизация проектирования радиоэлектронных средств: учеб. пособие / Е.Л. Гамаюнов. Владивосток: Изд-во ДВГТУ, 2010. 173 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:425908&theme=FEFU (16 экз.)

- 18. Юревич Е.И. Основы робототехники: учебное пособие для вузов. Санкт-Петербург: БХВ-Петербург, 2010. -359 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:686006&theme=FEFU (6 экз.)
- 22. Коновалов Б.И., Лебедев Ю. М. Теория автоматического управления. СПб.: Издательство «Лань», 2010. 224 с. http://e.lanbook.com/view/book/538/page1/
- 23. Певзлер Л.Д. Теория систем управления. СПб.: Издательство «Лань», 2013. 424 c. http://e.lanbook.com/view/book/38841/page2/
- 24. Предко М. Устройства управления роботами. М. ДМК Пресс, 2010.-404 с. http://e.lanbook.com/view/book/40006/
- 25. Управление техническими системами. Е.Б. Бунько, К.И. Меша, Е.Г. Мурачев и др.; Под ред. В.И. Харитонова. М.: Форум, 2010. 384 с. http://znanium.com/bookread.php?book=188363
- 26. Современная автоматика в системах управления технологическими процессами: Учебное пособие / В.П. Ившин, М.Ю. Перухин. М.: НИЦ ИНФРА-М, 2014. 400 с. http://znanium.com/bookread.php?book=430323

Дополнительная литература

- 27. Алексеев Ю.К. Введение в подводную робототехнику. Учебное пособие / Ю.К. Алексеев Владивосток: Изд-во ДВГТУ, 2008. 296 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382822&theme=FEFU (24 экз.)
- 28. Модели и алгоритмы коллективного управления в группах роботов. [Электронный ресурс] / Каляев И.А., Гайдук А. Р., Капустян С. Г. М. : ФИЗМАТЛИТ, 2009. http://www.studmedlib.ru/book/ISBN9785922111416.html
- 29. Конюх В.Л. Основы робототехники: учебное пособие. Ростов-на-Дону: Феникс, 2008. 282 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:381615&theme=FEFU
- 30. Шумский А.Е. Методы и алгоритмы диагностирования и отказоустойчивого управления динамическими системами / А.Е. Шумский, А.Н. Жирабок. Владивосток: ДВГТУ, 2009. 196 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382845&theme=FEFU (19 экз.)
- 31. Калужский М.Л. Общая теория систем [Электронный ресурс] : учебное пособие / М.Л. Калужский. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2015. 176 с. 978-5-905916-78-6. Режим доступа: http://www.iprbookshop.ru/31691.html
- 32. Павлов С.Н. Системы искусственного интеллекта. Часть 1 [Электронный ресурс] : учебное пособие / С.Н. Павлов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2011. 176 с. 978-5-4332-0013-5. Режим доступа: http://www.iprbookshop.ru/13974.html
- 33. Новиков Ф.А. Системы представления знаний: Учебное пособие. СПб.: Изд-во Политехн. ун-та, 2010. 245 с. http://window.edu.ru/resource/677/76677
- 34. Гаврилов Е.Б. Цифровые системы управления. Сборник задач для индивидуальных заданий [Электронный ресурс] : учебное пособие / Е.Б. Гаврилов, Г.В.

Саблина. — Электрон. текстовые данные. — Новосибирск: Новосибирский государственный технический университет, 2010. — 44 с. — 978-5-7782-1435-4. — Режим доступа: http://www.iprbookshop.ru/45454.html

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Необходимое материально-техническое обеспечение практики следующее:

- автоматизированное мехатронное и робототехническое оборудование, технологические линии; испытательные стенды; оборудование для сборки и разборки сборочных единиц;
- оборудование рабочего места конструктора, технолога с соответствующим программным обеспечением (Компас, AutoCAD, SolidWorks, MatLab, в т.ч. для 3D-моделирования).

Защита отчетов по практике проходит в мультимедийной аудитории, оборудованной:

- проектор 3-chip DLP, 10 600 ANSI-лм, WUXGA 1 920х1 200 (16:10) PT-DZ110XE Panasonic; экран 316х500 см, 16:10 с эл. приводом; крепление настенно-потолочное Elpro Large Electrol Projecta; профессиональная ЖК-панель 47", 500 Кд/м2, Full HD M4716CCBA LG; подсистема видеоисточников документ-камера CP355AF Avervision; подсистема видеокоммутации; подсистема аудиокоммутации и звукоусиления; подсистема интерактивного управления; беспроводные ЛВС обеспечены системой на базе точек доступа 802.11a/b/g/n 2х2 MIMO(2SS).

Составитель доцент, канд. техн. наук. А.А. Кацурин

Программа практики обсуждена на заседании кафедры Автоматизации и управления, протокол от «26» декабря 2019 г. № 3.

МИНИСТЕРСТВО НАУКИ И ВЫСЩЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

Инженерная школа

УТВЕРЖДАЮ

Директор

А.Т. Беккер

2020 г.

ПРОГРАММА

производственной практики

(Преддипломная практика)

Для направления подготовки
15.04.06 Мехатроника и робототехника
Программа академической магистратуры

Наименование образовательной программы: «Мехатроника и робототехника»

Владивосток 2020

1. НОРМАТИВНАЯ ДОКУМЕНТАЦИЯ, РЕГЛАМЕНТИРУЮЩАЯ ПРОЦЕСС ОРГАНИЗАЦИИ И ПРОХОЖДЕНИЯ ПРАКТИКИ

Программа производственной преддипломной практики составлена в соответствии с требованиями:

- 1. Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Образовательного стандарта высшего образования по направлению подготовки 15.04.06 Мехатроника и робототехника (уровень магистратуры), самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора от 7 июля 2015 г. № 12-13-1282;
- 3. Приказа Министерства образования и науки Российской Федерации от 19.12.2013 г. № 1367 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры».

2. ЦЕЛИ ОСВОЕНИЯ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

Целью преддипломной практики является развитие и накопление знаний в области мехатроники и робототехники; формирование у студентов навыков ведения самостоятельной научно-производственной деятельности, исследования и экспериментирования; сбор и окончательное оформление необходимых материалов для выполнения выпускной квалификационной работы.

3. ЗАДАЧИ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

Задачами преддипломной практики являются:

- 23. ознакомление с содержанием нормативно-технической документацией по мехатронным и робототехническим системам;
- 24. изучение особенностей создания конструкторской и технологической документации мехатронных и робототехнических систем;
- 25. приобретение навыков работы с оборудованием, техническими средствами контроля и управления мехатронными системами;
- 26. изучение особенностей создания проектной документации применительно к мехатронным и робототехническим системам;
- 27. изучение методов исследования, проектирования и проведения экспериментальных работ;
- 28. сбор материалов, необходимых для аттестационной работы, изучением новейших достижений по тематике диссертации.

4. МЕСТО ПРЕДДИПЛОМНОЙ ПРАКТИКИ В СТРУКТУРЕ ОПОП

Преддипломная практика входит в вариативную часть Блока 2 Практики учебного плана (Б2.В.02) и является составной частью профессиональной подготовки магистра.

В результате освоения предшествующих частей ОП студенты должны были приобрести следующие знания и умения, необходимые при освоении данной практики: владение в полной мере основным физико-математическим аппаратом, необходимым для описания и исследования разрабатываемых систем и устройств.

Преддипломная практика базируется на всех предшествующих дисциплинах учебного плана, особенно «Системы управления роботами», «Подводная робототехника», «Программное обеспечение роботов», «Промышленные и мобильные роботы». Преддипломная практика необходима для выполнения выпускной квалификационной работы.

5. ТИПЫ, СПОСОБЫ, МЕСТО И ВРЕМЯ ПРОВЕДЕНИЯ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

Вид практики – производственная практика.

Тип практики – преддипломная практика.

Способ проведения преддипломной практики – стационарная.

Преддипломная практика в соответствии с учебным планом и календарным учебным графиком, проводится на 2 курсе в 4 семестре.

Местом проведения практики являются структурные подразделения ДВФУ или сторонние организации в соответствии с заключенными с ДВФУ договорами, обладающие необходимым кадровым и научно-техническим потенциалом. В их число входят: ПАО «Дальприбор», ОАО «Изумруд», а также производственные подразделения научных институтов Дальневосточного отделения Российской академии наук: Институт проблем морских технологий ДВО РАН, Институт автоматики и процессов управления ДВО РАН и др.

Для лиц с ограниченными возможностями здоровья и инвалидов выбор мест прохождения практик согласуется с требованием их доступности для данных обучающихся и практика проводится с учетом особенностей их психофизического развития, индивидуальных возможностей и состояния здоровья.

6. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ПРОХОЖДЕНИЯ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

В результате прохождения практики формируются профессиональные компетенции:

способность составлять математические модели мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри, методов искусственного интеллекта, нечеткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечетких сетей (ПК-1);

способность использовать имеющиеся программные пакеты и, при необходимости, разрабатывать новое программное обеспечение, необходимое для обработки информации и управления в мехатронных и робототехнических системах, а также для их проектирования (ПК-2);

способность осуществлять анализ научно-технической информации, обобщать отечественный и зарубежный опыт в области мехатроники и робототехники, средств автоматизации и управления, проводить патентный поиск (ПК-4);

способность участвовать в разработке конструкторской и проектной документации мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями (ПК-10);

готовность разрабатывать методику проведения экспериментальных исследований и испытаний мехатронной или робототехнической системы; способностью участвовать в проведении таких испытаний и обработке их результатов (ПК-11).

7. СТРУКТУРА И СОДЕРЖАНИЕ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

Общая трудоемкость преддипломной практики составляет 4 недели, 6 зачетных единиц (216 час.).

№ п/п	Разделы (этапы) практики	Виды учебной работы на практике, вклю самостоятельную работу студентов и трудо (в часах)	Формы текущего контроля	
1	Подготовительный этап	Инструктаж по технике безопасности, оформление на рабочее место, знакомство с общими вопросами организации предприятия и его производственного процесса, охраной труда и техникой безопасности	16	Собесе-дование
2	Производственный этап	Выполнение производственных заданий на рабочем месте или проведение теоретической / экспериментальной исследовательской работы в научном коллективе	136	Отметки в дневнике практики
3	Аналитический этап	Сбор, обработка и систематизация фактического и литературного материала	32	Отчет по практике
4	Заключительный этап	Подготовка отчета по практике, защита практики	32	Защита отчета

	Итого	216	

Во время практики студенты работают по регламенту предприятия, строго соблюдая правила внутреннего распорядка. Руководитель практики от университета совместно с руководством предприятия обеспечивают перемещение студентов по рабочим местам предприятия в соответствии с графиком.

Студенты могут оформляться на оплачиваемые рабочие места по согласованию с руководителем практики от университета. Работа студента с оплатой его труда разрешается при условии, что его оплачиваемое рабочее место удовлетворяет требованиям программы практики и способствует её выполнению.

В период практики студенты работают самостоятельно или дублёрами сотрудников разрабатывающих, устанавливающих или ремонтирующих мехатронные системы. Рекомендуется подробно ознакомиться с обязанностями 2-3 сотрудников.

После изучения взаимодействия различных отделов и подразделений предприятия студенты знакомятся с конструкцией и технологией изготовления какого-либо оборудования или изделия. Особое внимание следует уделить изучению новейшей аппаратуры и оборудования. В завершение практики у студента должно сформироваться ясное представление об организации технологической цепи разработки, ремонта, эксплуатации мехатронных устройств. В период практики студент может работать на инженерно-технических должностях.

Находясь на практике, студент занимается:

- изучением организационной и функциональной структуры, состава и характеристик подсистем и видов мехатронных устройств;
- изучением организации проектно-конструкторской работы, порядка разработки, прохождения и утверждения проектной, технической, конструкторской и технологической документации на мехатронные устройства;
- изучением методов исследования, проектирования и проведения экспериментальных работ;
- методами и средствами компьютерного исследования и проектирования, необходимые при разработке приборов, материалов и устройств или их технологии;
- выработкой умений правильной оценки главных технико-экономических показателей разрабатываемой системы;
- изучением мероприятий по ТБ, охране труда, противопожарной безопасности, охране окружающей среды.

Студент должен стремиться выявить недостатки в действующих аналогичных устройствах с целью их устранения в разрабатываемом устройстве.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ НА ПРЕДДИПЛОМНОЙ ПРАКТИКЕ

В период практики студент должен научиться определять характеристики реальных мехатронных систем, уметь по результатам эксперимента определять вероятностные характеристики и законы распределения случайных ошибок, получить навыки в составлении технического задания на проектирование мехатронных устройств, соблюдать при оформлении технической документации требования ЕСКД, ЕСТД и ГОСТов.

Руководитель практики от вуза, как правило, научный руководитель магистранта, осуществляет общее руководство практикой студента, а непосредственное руководство на конкретном объекте осуществляет руководитель практики от предприятия. Руководитель практики от вуза регулярно контролирует процесс прохождения практики и принимает участие в решении возникающих организационных, технических и других вопросов, в том числе по организации самостоятельной работы студента.

Учебно-методическим обеспечением преддипломной практики является:

- основная и дополнительная литература, рекомендуемая при изучении дисциплин;
- инструкции по эксплуатации приборов и технических средств автоматизации, используемые в профессиональной деятельности предприятий;
- техническая документация на производство работ по монтажу и наладке систем автоматизации;
- пакеты специализированных прикладных программ, рекомендованных руководителями от вуза и предприятия.

Контрольные вопросы для проведения аттестации

- 1. Как производится отчётность по основным этапам проектирования?
- 2. Какие средства вычислительной техники используются в подразделении?
- 3. Как производится эксплуатация оборудования, оформление программ испытаний и технической документации?
- 4. Каковы основные этапы разработки конструкторско-технологической документации?
 - 5. Каков порядок представления и утверждения документов?
- 6. Опишите методы выполнения технических расчётов и определения экономической эффективности исследований и разработок.
- 7. Каковы правила эксплуатации установок, измерительных приборов и технологического оборудования, имеющегося в подразделении?
 - 8. Как обеспечивается безопасность жизнедеятельности и экологической чистоты?

9. ФОРМЫ АТТЕСТАЦИИ (ПО ИТОГАМ ПРАКТИКИ)

Форма аттестации по итогам преддипломной практики – зачет с оценкой.

На практике студент ежедневно заполняет дневник, в который заносится вся выполняемая работа или время простоев с причиной их возникновения и т.п. Дневник систематически проверяется руководителем практики и прилагается к отчёту студента.

Важным элементом самостоятельной работы студентов во время прохождения практики является выполнение индивидуального задания. Задание выдаётся руководителем практики от кафедры. Оно может быть по тематике исследовательской работы студентов, но с обязательным учётом специфики предприятия — базы практики. Наиболее интересные материалы индивидуального задания впоследствии представляются в виде доклада для сообщений на итоговой конференции по производственной практике, а также на конкурс студенческих научно-исследовательских работ.

Текущий контроль за прохождением практики осуществляет руководитель практики, контролируя соблюдение магистрантом индивидуального графика прохождения практики, объем и качество выполнения запланированных действий.

При проведении аттестации оценивается уровень сформированности следующих профессиональных компетенций:

Код и формулировка компетенции	Этапы формирования компетенции			
ПК-1 способность составлять математические модели мехатронных и робототехнических систем, их	Знает	Современные методы описания технических объектов математическими моделями и программные средства для их исследования		
подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри,	Умеет	Описывать технологические процессы математическими моделями и применять программные средства для их исследования		
методов искусственного интеллекта, нечеткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечетких сетей	Владеет	Навыками построения математических моделей и применения программных средств в области мехатроники и робототехники		
ПК-2 способность использовать	Знает	Способы обработки результатов экспериментальных исследований. Методы статистической обработки данных. Методы синтеза и анализа аналоговых и цифровых схем.		
имеющиеся программные пакеты и, при необходимости, разрабатывать новое программное обеспечение, необходимое для обработки информации и управления в мехатронных и	Умеет	Использовать существующее и разрабатывать программное обеспечение для управления мехатронными системами.		
робототехнических системах, а также для их проектирования	Владеет	Современными программными средствами для выполнения численного эксперимента и моделирования динамических систем.		

ПК-4 способность осуществлять анализ научно-технической информации, обобщать отечественный и зарубежный опыт в области мехатроники и робототехники, средств автоматизации и управления, проводить патентный поиск	Знает	психологические и юридические основы творчества и методы анализа научнотехнической информации
	Умеет	выявлять технические противоречия и преодолевать психологическую инерцию
	Владеет	основными приемами устранения технических противоречий, правилами составления заявки на изобретение и методами осуществления анализа научно-технической информации, обобщения отечественного и зарубежного опыта в области мехатроники и робототехники
ПК-10 Способность участвовать в	Знает	Стандарты и технические условия, необходимые для разработки конструкторской и проектной документации мехатронных и робототехнических систем
разработке конструкторской и проектной документации мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями	Умеет	Разрабатывать конструкторскую и проектную документацию мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями
	Владеет	Навыками разработки конструкторской и проектной документации мехатронных и робототехнических систем
ПК-11 Готовность разрабатывать методику проведения	Знает	Теорию и методику проведения экспериментов и правила составления обзоров и отчетов
экспериментальных исследований и испытаний мехатронной или	Умеет	Анализировать результаты проведенных экспериментов
робототехнической системы, способность участвовать в проведении таких испытаний и обработке их результатов	Владеет	Методами проведения экспериментов по заданной методике, анализа их результатов и использования при испытаниях мехатронной или робототехнической системы

10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

Основная литература

19.	Дорф Р.,	Бишоп	Р. Совреме	нные сист	гемы уп	равления.	– M.:	Лаборатори	RI	
Базовых	Знаний,		2012. –		_	831		c.		
http://lib.dvfu.ru:8080/lib/item?id=chamo:398350&theme=FEFU (2 экз.)										
20. Филаретов В.Ф. Линейная теория автоматического управления / В.Ф. Филаретов.										
_	Владивосток: ДВ		ДВГТУ	У, 2010.		_	1	16	c.	
http://lib.dvfu.ru:8080/lib/item?id=chamo:381426&theme=FEFU (19 экз.)										
21. Бессмертный И.А. Искусственный интеллект. Учебное пособие – СПб: СПбГУ										
ИТМО, 2010. 132 с. https://e.lanbook.com/book/43663										
22.	22. Альтшуллер Г.С. Найти идею. Введение в теорию решения изобретательских									

23. Автоматизация проектирования радиоэлектронных средств: учеб. пособие / Е.Л. Гамаюнов. — Владивосток: Изд-во ДВГТУ, 2010. — 173 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:425908&theme=FEFU (16 экз.)

задач. – М.: Альпина Паблишер, 2014. 400 с. http://znanium.com/go.php?id=520707

- 24. Юревич Е.И. Основы робототехники: учебное пособие для вузов. Санкт-Петербург: БХВ-Петербург, 2010. -359 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:686006&theme=FEFU (6 экз.)
- 27. Коновалов Б.И., Лебедев Ю. М. Теория автоматического управления. СПб.: Издательство «Лань», 2010. 224 с. http://e.lanbook.com/view/book/538/page1/
- 28. Певзлер Л.Д. Теория систем управления. СПб.: Издательство «Лань», 2013. 424 с. http://e.lanbook.com/view/book/38841/page2/
- 29. Предко М. Устройства управления роботами. М. ДМК Пресс, 2010.-404 с. http://e.lanbook.com/view/book/40006/
- 30. Управление техническими системами. Е.Б. Бунько, К.И. Меша, Е.Г. Мурачев и др.; Под ред. В.И. Харитонова. М.: Форум, 2010. 384 с. http://znanium.com/bookread.php?book=188363
- 31. Современная автоматика в системах управления технологическими процессами: Учебное пособие / В.П. Ившин, М.Ю. Перухин. М.: НИЦ ИНФРА-М, 2014. 400 с. http://znanium.com/bookread.php?book=430323

Дополнительная литература

- 35. Алексеев Ю.К. Введение в подводную робототехнику. Учебное пособие / Ю.К. Алексеев Владивосток: Изд-во ДВГТУ, 2008. 296 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382822&theme=FEFU (24 экз.)
- 36. Модели и алгоритмы коллективного управления в группах роботов. [Электронный ресурс] / Каляев И.А., Гайдук А. Р., Капустян С. Г. М. : ФИЗМАТЛИТ, 2009. http://www.studmedlib.ru/book/ISBN9785922111416.html
- 37. Конюх В.Л. Основы робототехники: учебное пособие. Ростов-на-Дону: Феникс, 2008. 282 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:381615&theme=FEFU
- 38. Шумский А.Е. Методы и алгоритмы диагностирования и отказоустойчивого управления динамическими системами / А.Е. Шумский, А.Н. Жирабок. Владивосток: ДВГТУ, 2009. 196 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:382845&theme=FEFU (19 экз.)
- 39. Калужский М.Л. Общая теория систем [Электронный ресурс] : учебное пособие / М.Л. Калужский. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2015. 176 с. 978-5-905916-78-6. Режим доступа: http://www.iprbookshop.ru/31691.html
- 40. Павлов С.Н. Системы искусственного интеллекта. Часть 1 [Электронный ресурс] : учебное пособие / С.Н. Павлов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2011. 176 с. 978-5-4332-0013-5. Режим доступа: http://www.iprbookshop.ru/13974.html
- 41. Новиков Ф.А. Системы представления знаний: Учебное пособие. СПб.: Изд-во Политехн. ун-та, 2010. 245 с. http://window.edu.ru/resource/677/76677
- 42. Гаврилов Е.Б. Цифровые системы управления. Сборник задач для индивидуальных заданий [Электронный ресурс] : учебное пособие / Е.Б. Гаврилов, Г.В.

Саблина. — Электрон. текстовые данные. — Новосибирск: Новосибирский государственный технический университет, 2010. — 44 с. — 978-5-7782-1435-4. — Режим доступа: http://www.iprbookshop.ru/45454.html

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

Необходимое материально-техническое обеспечение практики следующее:

- автоматизированное мехатронное и робототехническое оборудование, технологические линии; испытательные стенды; оборудование для сборки и разборки сборочных единиц;
- оборудование рабочего места конструктора, технолога с соответствующим программным обеспечением (Компас, AutoCAD, SolidWorks, MatLab, в т.ч. для 3D-моделирования).

Защита отчетов по практике проходит в мультимедийной аудитории, оборудованной:

- проектор 3-chip DLP, 10 600 ANSI-лм, WUXGA 1 920х1 200 (16:10) PT-DZ110XE Panasonic; экран 316х500 см, 16:10 с эл. приводом; крепление настенно-потолочное Elpro Large Electrol Projecta; профессиональная ЖК-панель 47", 500 Кд/м2, Full HD M4716CCBA LG; подсистема видеоисточников документ-камера CP355AF Avervision; подсистема видеокоммутации; подсистема аудиокоммутации и звукоусиления; подсистема интерактивного управления; беспроводные ЛВС обеспечены системой на базе точек доступа 802.11a/b/g/n 2x2 MIMO(2SS).

Составитель доцент, к.т.н. А.А. Кацурин

Программа практики обсуждена на заседании кафедры Автоматизации и управления, протокол от «26» декабря 2019 г. № 3.