

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет»

(ДВФУ)

ИНЖЕНЕРНАЯ ШКОЛА

«СОГЛАСОВАНО»

Руководитель ОП

«Охрана окружающей среды и ресурсосбережение»

Петухов В.И.

(Ф.И.О. рук. ОП) (подпись)

«14» июня 2019 г.

«УТВЕРЖДАЮ»

Заведующий кафедрой

безопасности в чрезвычайных ситуациях и защиты окру-

жающей среды

Петухов В.И.

(полпись)

(Ф.И.О. зав. каф.) «14» июня 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Информационные технологии в сфере безопасности»

Направление подготовки 20.04.01 Техносферная безопасность

Профиль «Охрана окружающей среды и ресурсосбережения»

Форма подготовки очная

курс 1 семестр 2, лекции 0 час., практические занятия 36 час.. лабораторные работы не предусмотрены, в том числе с использованием МАО лек.0/пр.36 час., всего часов аудиторной нагрузки 36 час. самостоятельная работа 72 час. контрольные работы (количество) не предусмотрены курсовая работа/курсовой проект не предусмотрены зачет – 2 семестр

Рабочая программа составлена в соответствии с требованиями образовательного стандарта, самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора от 07.07.2015 г. № 12-13-1282

Рабочая программа обсуждена на заседании кафедры безопасности в чрезвычайных ситуациях и защиты окружающей среды, протокол № 10 от 14.06.2019 г.

Заведующий кафедрой: д.т.н., профессор Петухов В.И. Составитель: профессор, д.т.н., доцент Блиновская Я.Ю.

Оборотная сторона титульного листа РПД

І. Рабочая программа перес	мотрена на заседании	кафедры:
Протокол от «»	20 г. №	
Заведующий кафедрой	I	В.И Петухов
	(подпись)	(И.О. Фамилия)
II. Рабочая программа пере	смотрена на заселании	і кафелры:
Протокол от «»	-	
Заведующий кафедрой		
	(подпись)	(И.О. Фамилия)

Аннотация дисциплины

«Информационные технологии в сфере безопасности»

Дисциплина «Информационные технологии в сфере безопасности» разработана для студентов, обучающихся по направлению подготовки 20.04.01 «Техносферная безопасность», профиль «Охрана окружающей среды и ресурсосбережение» и является обязательной дисциплиной вариативной части Блока 1 «Дисциплины (модули)» учебного плана (Б1.В.01).

Общая трудоёмкость дисциплины составляет 108 часов (3 зачетных единицы). Учебным планом предусмотрены практические занятия (36 часов, из них 36 часов МАО) и самостоятельная работа (72 часа). Дисциплина реализуется на 1 курсе во 2 семестре. Форма контроля по дисциплине – зачет.

Дисциплина «Информационные технологии в сфере безопасности» опирается на знания, полученные в ходе изучения дисциплин бакалавриата по направлению подготовки «Техносферная безопасность»: «Основы современных образовательных технологий», «Информатика», «Информационные технологии в управлении безопасностью жизнедеятельности» и является базой для дисциплин: «Проектирование систем обеспечения безопасности», «Инженерная защита окружающей среды и ресурсосбережение».

Цель дисциплины: получение навыков работы с современными информационными технологиями, применяемыми управлении безопасностью жизнедеятельности, обучение приемам практического использования специализированных программных средств В профессиональной деятельности.

Задачи дисциплины:

- изучение возможности использования специализированных программ в профессиональной сфере;
- формирование умений и навыков, позволяющих будущим инженерам ориентироваться в современных информационных технологиях и эффек-

тивно использовать современную электронно-вычислительную технику при решении профессиональных задач.

- изучение программных средств обработки геоданных;
- освоение программных средств для выполнения расчетов в области управления техносферной безопасностью.

Для успешного изучения дисциплины «Информационные технологии в сфере безопасности» у обучающихся должны быть сформированы следующие предварительные компетенции:

- способность работать самостоятельно;
- способность организовать свою работу ради достижения поставленных целей и готовность к использованию инновационных идей.

Планируемые результаты обучения по данной дисциплине (знания, умения, владения), соотнесенные с планируемыми результатами освоения образовательной программы, характеризуют этапы формирования следующих компетенций:

Код и формулировка компетенции	Этапы формирования компетенции		
(ОПК-1) способность структурировать знания, го-	Знает	 основы построения баз геоданных и принципы работы с ними; требования к информационным моделям, используемым в обеспечении техносферной безопасности 	
товностью к решению сложных и проблем-	Умеет	использовать методы построения баз геоданных и ин формационных моделей	
ных вопросов	Владеет	основами автоматизации решения профессиональных задач	
(ПК-11) способность анализировать, оптимизировать и применять со-	Знает	 основные принципы информационных процессов; виды профессионального ПО и их функциональное назначение; методы построения информационных моделей 	
временные информационные технологии	Умеет	использовать профессиональное ПО в решении за- дач обеспечения техносферной безопасности	
при решении научных задач	Владеет	методологией построения информационных моде- лей	

Для формирования вышеуказанных компетенций в рамках дисциплины «Информационные технологии в сфере безопасности» применяются следующие методы активного / интерактивного обучения: групповая консультация, семинар-дискуссия.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Лекционные занятия учебным планом не предусмотрены

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Практические занятия (36 часов)

Занятие 1. Семинар «Программное обеспечение ГИС» (4 часа)

Цель занятия: ознакомиться с основными видами программного обеспечения и оценить их функциональные возможности для решения задач техносферной безопасности.

Большинство программных пакетов ГИС обладают схожим набором характеристик, такими как, послойное картографирование, маркирование, кодирование геоинформации, нахождение объектов в заданной области, определение разных величин, но очень сильно различаются в цене и функциональности. Выбор программного обеспечения зависит от конкретных прикладных задач, решаемых пользователем.

Темы для обсуждения:

- 1. Дать общую характеристику следующим программным продуктам:
 - MapInfo;
 - ArcGIS (ESRI);
 - AutoCAD MAP, AutoCAD Land Development;
 - Maptitude (Caliper);
 - GeoMedia (Integraph);
 - Tactician (Tactician);
 - ГеоГраф ГИС;
 - CREDO (КРЕДО-Диалог);
 - WinGIS;

- Гис-конструктор
- 2. Выявить сферы использования данных продуктов, требования к вносимым в систему данным.
- 3. Оценить функциональные возможности продуктов;
- 4. Составить таблицу, в которой представить черты сходства и различия программных продуктов.

Программный	Производительность	Для	решения	Требования	К	Возможность
продукт		каких	задач	данным		адаптации
		испол	ьзуется			программной
						среды

Занятие 2. Семинар «Использование векторизаторов в разработке ГИСпроектов» (2 часа)

Цель занятия: ознакомиться с основными видами программного обеспечения, используемого для векторизации растров.

Одним из методов ввода данных в ГИС является ручная оцифровка. Для осуществления данного процесса используют трассировщики (векторизаторы).

Задание: познакомиться с современными трассировщиками, выявив их назначение, принципы работы и отличительные особенности.

Темы для обсуждения:

- 1. Дать общую характеристику следующим программным продуктам:
 - Easy Trace;
 - Панорама редактор;
 - Векторизатор GTX;
 - Shareware;
 - Delta Vec.
- 2. Выявить сферы использования данных продуктов, требования к вносимым в систему данным.
- 3. Оценить функциональные возможности продуктов.

4. Составить сравнительную таблицу по результатам обсуждения.

Занятие 3. Семинар «Разработка концептуальной и логической структуры базы геоданных» (4 часа)

Цель занятия: разработать концептуальную и логическую структуру базы геоданных по стационарным источникам загрязнения атмосферного воздуха г. Владивостока.

Информация, представленная в ГИС, рассматривается как система связанных между собой сведений, данных, отражающих свойства процессов и объектов в окружающей среде с применением технических средств.

Задание: познакомиться с принципами проектирования баз геоданных и разработать концептуальную и логическую структуры персональной БГД по стационарным источникам загрязнения атмосферного воздуха г. Владивостока.

Вопросы для обсуждения:

- 1. Понятие базы данных
- 2. Структура базы данных
- 3. Отличительные особенности базы данных и базы геоданных
- 4. Особенности представления географической информации в базе данных
 - 5. Составить таблицу: черты сходства и различия БД и БГД
- 6. Разработать концептуальную и логическую структуры БГД по стационарным источникам загрязнения атмосферного воздуха г. Владивостока в виде схемы

Занятие 4. Практическая работа «Начало работы в QGIS» (4 часа)

Цель занятия: оформление базовой карты административного субъекта России для выполнения последующих работ.

Исходные данные: шейпы проекта OSM для административного субъекта РФ [gis-lab.info]: автомобильные дороги, железнодорожные пути, ж/д

станции, населенные пункты, реки, административно-территориальные границы субъекта.

Задание.

- Изучить данные, переименовать исходные файлы в соответствии с их содержанием, добавить в проект.
- Подобрать порядок отображения слоев, способы изображения.
- Населенные пункты отобразить градуированным символом в зависимости от их населения.
- Дороги отобразить уникальным символом в зависимости от их вида (highway, secondary, path и т.д.).
- Результаты представить в виде ГИС-проекта.

Отрабатываемые темы: добавление и организация данных в проекте, подбор способов картографического изображения, метод отображения «уникальные значения», «градуированный цвет».

Методические рекомендации для выполнения работы.

Изучение данных подразумевает просмотр их графической и атрибутивной составляющих, для этого предназначена программа QGIS Browser. Переходя по вкладкам «Метаданные», «Предпросмотр», «Атрибуты» можно определить, какие объекты содержатся в шейпах и какая непространственная информация содержится в их атрибутивных таблицах. В данном случае изначальные названия файлов также вполне прозрачны, однако так бывает далеко не всегда. И в любом случае при работе с проектом все данные и каталоги должны быть именованы так, чтобы пользователь мог однозначно их идентифицировать. Файлы с названиями «111», «new_shapefile», «sdfhsdj» не только говорят о непрофессионализме и небрежности автора проекта, но и приводят к ошибкам, потерям информации и серьезной путанице.

Следует также обратить внимание на два последних пункта задания: прежде чем отобразить объекты слоёв в зависимости от значений атрибутов нужно определить, в каком поле находятся нужные данные.

Занятие 5. Практическая работа «Первичный анализ данных в ГИСпроекте» (4 часа)

Цель занятия: отработать навыки геопространственного анализа в специализированном программном продукте

Исходные данные: результаты задания №1, файл разграфки на зоны utm-gk-zone.shp

Задание:

- Определить расстояния между краевой столицей и 10 населенными пунктами (по выбору).
- Определить координаты самой северной и самой южной точек района.
- Вычислить площади районов субъекта в км².
- Установить СК проекции.
- Скомпоновать готовую карту.

Отрабатываемые темы: картометрические функции (инструменты «измерить» и «вычислить геометрию»), идентификация, изменение структуры таблицы атрибутов, калькулятор полей.

Рекомендации:

Прежде чем вычислять значения площадей районов, необходимо добавить в таблицу атрибутов соответствующее поле. Следует обратить внимание на тип поля (Integer или Real) и на единицы измерения: по умолчанию функция #агеа возвращает значение площади в единицах измерения карты, которые устанавливаются в диалоговом окне свойств проекта на вкладке «Общие».

Занятие 6. Практическая работа «Построение карты выбросов загрязняющих веществ в городах Приморского края» (4 час.)

Цель: отработать навыки соединения и связывания табличной информации в ГИС в процессе построения карты.

Исходные данные: результаты задания №1, файл выбросы_3B.xlsx, Очищенные_выбросы.xlsx.

Задание:

- Присоединить данные из внешних таблиц.
- Вычислить процент от общего количества выбросов веществ IV класса опасности для населенных пунктов.
- Отобразить процент, приходящийся на каВыбрать всждый класс опасности способом диаграмм.
- Отобразить населенные пункты в зависимости от общего количества выбросов градуированным символом.
- Отобразить районы ПК градуированным цветом в зависимости от среднего количества выбросов за 6 лет.
- Скомпоновать результирующую карту.

Рекомендации:

Перед тем как присоединять данные следует разобраться, какой из файлов к какому слою присоединять. В одном из них содержатся данные по выбросам в населённых пунктах, в другом — по районам АТД. Для файла с данными по районам есть ещё один нюанс: некоторые объекты называются несколько иначе, и, если их не привести в соответствие с наименованиями в атрибутивной таблице, некоторые строки «потеряются». Следует также обратить внимание на тип присоединённых полей: если они будут строковыми, то использовать их для градуированного символа или диаграммы не получится.

Поскольку в таблице есть данные не для всех населённых пунктов и АТД, часть из них не отобразится. В случае с населёнными пунктами это даже удобнее, а вот с АТД — не слишком: получаются «дырки». Чтобы этого избежать следует продублировать слой с районами: нижний оставить как «подложку». Или добавить базовую карту при наличии соединения с Интернетом.

Занятие 7. Практическая работа «Формирование запросов в ГИС» (6 час.)

Цель: отработать навыки формирования разных типов запросов к картографическим данным.

Исходные данные: результаты задания №3

Задание:

Запросы по атрибуту:

- Выделить в отдельные шейпы населенные пункты и районы, для которых нашлось соответствие в присоединенных таблицах.
- Выбрать все населенные пункты, для которых выброс веществ I класса опасности составляет не менее 20% или суммарный выброс не менее 15000.
- Выбрать все районы, для которых с каждым годом увеличивалось количество выбросов.
- Скомпоновать результирующие карты.

Запросы по расположению:

- Выбрать все населённые пункты, которых находятся менее чем в
 5 километрах от населённых пунктов, для которых суммарный выброс загрязняющих веществ не менее 10000.
- Выбрать все населённые пункты, находящиеся не более двух километров от железной дороги.
- Выбрать все населённые пункты в самом большом по площади районе.
- Выбрать все дороги, которые пересекаются реками.

Рекомендации:

Большинство выборок можно сделать разными запросами или их комбинациями, и хотя как правило какой-то из вариантов является оптимальным, здесь есть определённая свобода манёвра и творческого поиска. Не обязательно сохранять все выборки в отдельные шейпфайлы. Для выполнения данного задания достаточно выяснить, какие именно объекты удовлетворяют условию.

Занятие 8. Практическая работа «Оцифровка объектов» (4 час.)

Цель: отработать навыки ручной и машинной оцифровки

Исходные данные: результаты задания № 2, карта с обозначенными створами отбора проб на гидропостах в формате jpg, карта с отмеченными заповедниками в формате jpg, таблица «сбросы.xlsx».

Задание:

- Привязать растровую карту створов к векторной основе.
- Создать новый векторный слой и отметить в нем точки створов водозабора.
- Привязать таблицу со значениями сбросов ЗВ для каждого пункта.
- Отобразить гистограммами, показывающие соотношение концентрации ЗВ разных классов опасности в каждой точке.
- Создать новый векторный слой, отметить федеральные национальные парки.
- Скомпоновать результирующую карту.

Рекомендации:

При создании новых шейп-файлов следует обратить внимание на тип геометрии (в этом задании потребуются точки и полигоны), систему координат (проще всего указывать WGS 84 и потом при необходимости перепроецировать на лету), а также название и тип хотя бы одного поля в атрибутивной таблице. При добавлении точечных объектов рекомендуется сразу добавлять номер створ, во избежание последующей путаницы. При добавлении полигональных объектов можно действовать разными способами. Самый простой – добавлять как можно больше вершин полигона для максимального соответствия в тех местах, где граница заповедника совпадает с линией побе-

режья. Второй вариант — использовать инструмент «Трассировка», он «приклеивает» курсор к выбранному объекту и «ведет» линию точно по нему. Третий вариант — сделать полигон нарочно грубо, с выходом за береговую линию и использовать инструмент геообработки «вырезание». После этого всё выходящее за береговую черту окажется отрезанным в точности по линии побережья.

Занятие 9. Практическая работа «Картографирование метеорологического потенциала загрязнения атмосферы» (4 час.)

Цель: отработать навыки геопространственного анализа и геообработки.

Исходные данные: шейп-файл РФ (например russia-admin-a.shp из набора данных OSM или базовая карта), файл с координатами метеостанций meteostations.xlsx, файл со значениями параметров, необходимых для расчета годовых значений МПА по Т.Г. Селегей: туман.xlx, осадки.xls, ветер.xls.

Задание:

- Добавить табличные данные в проект, используя модуль Spreadsheet Layer;
- Создать точечный слой метеостанций по координатам;
- Присоединить данные о метеорологических величинах, необходимых для расчета;
- Рассчитать величину МПА по формуле:

$$M\Pi A = \frac{P_{C,T} + P_{T}}{P_{O} + P_{B}}$$

где: где Рсл— повторяемость слабых ветров (0—1 м/с);

Рт — повторяемость дней с туманом;

Ро— повторяемость дней с осадками 0,5 мм и более;

Рв — повторяемость скорости ветра 6 м/с и более.

Произвести интерполяцию полученных данных несколькими методами, сравнить результаты;

– Скомпоновать результирующую карту.

Рекомендации:

При выполнении задания необходимо помнить о том, что важно назначить численные типы полям, содержащим значения метеовеличин с тем, чтобы потом можно было использовать их в расчетах. Во-вторых, необходимо учитывать, что данные есть только для части метеостанций, а от остальных, которые останутся без присоединённых данных, необходимо избавиться. Втретьих, интерполяция без использования барьерных линий не приведет к удовлетворительному результату, так что необходимо такой барьер создать: вручную или же используя другие полигональные или линейные объекты.

Для адекватного представления полученного результата следует иметь в виду физический смысл картографируемой величины. Важно помнить, что Метеорологический потенциал загрязнения атмосферы (МПА) характеризует преобладание в воздухе тех или иных процессов – накопления или рассеивания вредных веществ. МПА определяется конкретными метеоусловиями в регионе и может быть оценен для разных периодов времени. Его характеризуют следующие метеорологические параметры: направления ветров, их скорость, а также осадки и туманы. В частности, МПА может использоваться для оценки степени потенциала загрязнения в зависимости от местных локальных условий по данным метеостанций.

Занятие 10. Практическая работа «Анализ растровых данных» (4 час.)

Цель: отработать навыки работы с растровыми данными на примере модели рельфа SRTM

Uсходные данные: файлы SRTM, несколько штук для субъекта РФ. Например, файлы Z_63_3, Z_63_4, Z_64_3, Z_64_4 покрывают Приморский край, шейп-файл населённых пунктов.

Справочная информация: Shuttle radar topographic mission (SRTM) – Радарная топографическая съемка большей части территории земного шара, за исключением самых северных (>60), самых южных широт (>54), а также

океанов, произведенная за 11 дней в феврале 2000г с помощью специальной радарной системы. Двумя радиолокационными сенсорами SIR-C и X-SAR. Исходные данные распространяются квадратами размером 1х1 градус, при максимальном доступном разрешение 3 арксекунды такой квадрат является матрицей размером 1201х1201 элементов (пикселей). Один дополнительный ряд (нижний) и одна колонка (правая) являются дублирующим и повторяется на соседней матрице.

Данные являются 16 битным растром, значение пиксела – высота над уровнем моря в данной точке, оно также может принимать значение – 32768, что соответствует значению по data.

Задание:

- Объединить растры в один;
- Извлечь значение высоты в точки населенных пунктов;
- Визуализировать растр;
- Скомпоновать результирующую карту.

Рекомендации:

Объединение всех растров в один необходимо для того, чтобы сразу все точки получили значение растра одновременно. Эта операция осуществляется инструментом из меню Растр – прочее – объединение. В диалоговом окне указывается каталог, содержащий исходные растры или каждый из них отдельно, название результирующего растра и прочие параметры, если необходимо (обычно их можно оставить по умолчанию).

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Информационные технологии в сфере безопасности» представлено в Приложении 1 и включает в себя:

- план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;
- характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;
- требования к представлению и оформлению результатов самостоятельной работы;
 - критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

No॒	Контролируемые	Коды и этапы		Оценочные средства	
п/п	разделы / темы	формирования		текущий	промежуточная
	дисциплины	ко	мпетенций	контроль	аттестация
1	Информатизация техносферной безопасности	ОПК-1	знает основные принципы информационных процессов умеет использовать профессиональное ПО в решении задач обеспечения техносферной безопасности владеет методиками подходами построения информационных моделей	УО-1, УО-2, ПР-2	1-11
2	Программные продукты для решения задач безопасности и охраны окружающей среды	ОПК-1	знает виды профессионального ПО и их функциональное назначение умеет выбирать специализированное ПО в соответствии со спецификой решаемых задач владеет навыками использова-	УО-1, УО-3, ПР-1, ПР-5	12-15

$N_{\underline{0}}$	Контролируемые	Коды и этапы		Оценочн	ые средства
Π/Π	разделы / темы	формирования		текущий	промежуточная
	дисциплины	ко	мпетенций	контроль	аттестация
			ния информаци-		
			онных моделей в		
			области техно-		
			сферной безо-		
			пасности		
3	Анализ информа-	ПК-11	знает основы		
	ции в ГИС		построения баз		
			геоданных и		
			принципы рабо-		
			ты с ними и тре-		
			бования к ин-		
			формационным		
			моделям, ис-		
			пользуемым в		
			обеспечении		
			техносферной	УО-1, УО-3,	
			безопасности	ПР-1	16-35
			умеет использо-	111 1	
			вать методы по-		
			строения баз		
			геоданных и ин-		
			формационных		
			моделей		
			владеет основа-		
			ми автоматиза-		
			ции решения		
			профессиональ-		
			ных задач		

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта дея-

тельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Введение в геоинформационные системы: Учебное пособие / Блиновская Я.Ю., Задоя Д.С., 2-е изд. М.:Форум, НИЦ ИНФРА-М, 2016. 112 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Обложка. КБС) ISBN 978-5-00091-115-0 Режим доступа: http://znanium.com/catalog/product/550036
- 2. Солопова В.А. Информационные технологии в управлении безопасностью жизнедеятельности [Электронный ресурс]: конспект лекций/ Солопова В.А.— Электрон. текстовые данные.— Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2015.— 117 с.— Режим доступа: http://www.iprbookshop.ru/61890.html ЭБС «IPRbooks»
- 3. Исакова А.И. Основы информационных технологий [Электронный ресурс]: учебное пособие/ Исакова А.И.— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, 2016.— 206с.— Режим доступа: http://www.iprbookshop.ru/72154.html .— ЭБС «IPRbooks»

Дополнительная литература:

- 1. Гвоздева В.А. Базовые и прикладные информационные технологии : учебник для вузов по техническим специальностям / В. А. Гвоздева. Москва : Форум, : Инфра-М, 2015. 382 с.
- 2. Исакова А.И. Основы информационных технологий [Электронный ресурс]: учебное пособие/ Исакова А.И.— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, 2016.— 206 с.— Режим доступа: http://www.iprbookshop.ru/72154.html.— ЭБС «IPRbooks»

3. Информационные технологии в безопасности жизнедеятельности [Электронный ресурс]: учебник для вузов/ Соколов Э.М., Панарин В.М., Воронцова Н.В. - М.: Машиностроение, 2006. Режим доступа: http://www.studentlibrary.ru/book/ISBN5217033312.html

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Геоинформационный портал Межрегиональной общественной организацией содействия развитию рынка геоинформационных технологий и услуг // http://www.gisa.ru/
 - 2. Геоинформационный портал «GIS-Lab» // http://gis-lab.info/
 - 3. Мир информационных технологий // https://www.it-world.ru/

Перечень информационных технологий и программного обеспечения

- 1. Autodesk AutoCAD 2017 Русский (Russian)
- 2. CorelDRAW Graphics Suite X7 (64-Bit)
- 3. SOLIDWORKS 2016 x64 Edition SP04
- 4. ArcGIS 10.4 for Desktop
- 5. Google Earth
- 6. GRASS 7.0
- 7. MATLAB R2016a
- 8. Microsoft Visual Studio Ultimate 2013
- 9. Microsoft Office Professional Plus 2010
- 10. Microsoft Office Project Professional 2010
- 11. Microsoft Office Visio 2010
- 12. Microsoft Project Professional 2013
- 13. Microsoft Visio Professional 2013
- 14. Microsoft Office Professional Plus 2016
- 15. Microsoft Visio Professional 2016

16. КОМПАС-3D LT V12

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Для обеспечения систематической и регулярной работы по изучению дисциплины и успешного прохождения промежуточных и итоговых контрольных испытаний студенту рекомендуется:

- 1. Конспект лекций должен кратко и последовательно фиксировать основные положения, выводы, формулировки, при этом помечая важные мысли, выделяя ключевые слова, термины. Термины и понятия необходимо проверить с помощью энциклопедий, словарей, справочников и пр. Лекционные материалы используются при самостоятельной подготовке с обязательным использованием дополнительных рекомендованных источников. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос для разъяснения у преподавателя на консультации или на практическом занятии.
- 2. При подготовке к контрольным мероприятиям повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы.
- 3. При самостоятельном изучении теоретической темы делать конспекты, используя рекомендованные литературные источники.
- 4. При подготовке к практическим работам проработать теоретический материал, решение задач выполнять по алгоритму.
- 5. При подготовке к семинарским занятиям использовать несколько источников информации. Если обсуждаемый аспект носит дискуссионный характер, следует изучить существующие точки зрения и выбрать тот подход, который студент считает наиболее верным, при этом обязательно аргументировать собственную позицию.

Рекомендации по работе с научной и учебной литературой

Работа с литературой является средством более глубокого изучения дисциплины и является неотъемлемой частью профессиональной деятельности будущего выпускника. Работа с учебной и научной литературой необходима при подготовке к устному опросу на семинарских занятиях, к кон-

трольным работам, тестированию, зачету. Она включает проработку лекционного материала, рекомендованных источников и литературы по тематике лекций. В процессе работы с учебной и научной литературой можно:

- делать записи, создавать перечень основных вопросов,
- составлять тезисы (цитирование наиболее важных мест статьи или монографии, короткое изложение основных мыслей автора);
- готовить аннотации (краткое обобщение основных вопросов работы);
- создавать конспекты.

Работу с литературой следует начинать с анализа рекомендованной основной и дополнительной литературой, учебно-методическими изданиями, необходимыми для изучения дисциплины и выполнения практических работ. В случае возникших затруднений в понимании учебного материала следует обратиться к другим источникам, где изложение может оказаться более доступным.

Рекомендации по подготовке к экзамену

При подготовке к экзамену необходимо ориентироваться на лекционный материал и рекомендуемую литературу.

VI. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины предусматривает использование мультимедийной аппаратуры для демонстрации иллюстративного материала (слайд-презентации), учебных фильмов и специального программного обеспечения: SOLIDWORKS 2016 x64 Edition SP04; ArcGIS 10.4 for Desktop; Google Earth; GRASS 7.0; MATLAB R2016a; КОМПАС-3D LT V12

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНЖЕНЕРНАЯ ШКОЛА

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Информационные технологии в сфере безопасности» Направление подготовки 20.04.01 Техносферная безопасность

Образовательная программа

«Охрана окружающей среды и ресурсосбережения»

Форма подготовки очная

Владивосток

2019

План-график выполнения самостоятельной работы по дисциплине

№	Дата/сроки вы-	Вид самостоятельной	Примерные	Форма контроля
	полнения	работы	нормы вре-	
			мени на	
			выполнение	
1	3 неделя	Работа по теме «Ана-	10	Доклад
		лиз специализирован-		
		ного программного		
		обеспечения, исполь-		
		зующегося в обеспече-		
		нии техносферной		
		безопасности»		
2	6 неделя	Работа по теме «ГИС-	10	Доклад
		технологии в монито-		
		ринге качества окру-		
		жающей среды»		
3	9 неделя	Работа по теме «Осо-	12	Контрольная
		бенности представле-		
		ния информации в		
		ГИС»		
4	13 неделя	Работа по теме «Ис-	12	Доклад
		пользование данных		
		дистанционного зонди-		
		рования в обеспечении		
		безопасности»		
5	15 неделя	Работа по теме «Разра-	10	Доклад
		ботка отчетной доку-		
		ментации с помощью		
		специализированных		
		программных средств»		

Рекомендации по самостоятельной работе студентов

Самостоятельная работа студентов состоит из подготовки к практическим и семинарским занятиям, работы над рекомендованной литературой, подготовки к контрольному тестированию, а также подготовке докладов по результатам самостоятельных исследований.

Самостоятельная работа студентов предусматривает изучение теоретических основ информационного обеспечения безопасности, методической литературы, подбор картографической информации.

Результаты самостоятельной работы используются при подготовке к семинарским и практическим занятиям. Студент помимо запоминания учебного материала должен продемонстрировать умение мыслить и аргументированно отстаивать заявляемые тезисы и положения своего ответа. Для этого необходимо сочетание запоминания и понимания, простого воспроизводства учебной информации и работы мысли.

Рекомендации к семинарским занятиям

- 1. Студент должен изучить все вопросы семинара, предлагаемые по данной теме, но ответить развернуто может по одному из вопросов, наиболее интересному на его взгляд.
- 2. Студент может приготовить доклад на любой из вопросов, продолженных для семинара. Доклад готовится с применением электронной презентации материала. Во время доклада учащийся должен продемонстрировать глубокое изучение информации и умение преподнести полученные знания.
- 3. Доклад должен быть основан на достаточном объеме информации (не менее 5 источников), тщательно проработанных и отражающих исследуемый вопрос.
- 4. Желательно вести конспект изучаемого материала, в котором должны быть зафиксированы источники информации.
- 5. В докладе желательно использовать наглядные материалы: карты, схемами, таблицы и т.д.

Вопросы для самостоятельного изучения

1. Особенности использования ГИС в добывающей отрасли

- 2. Особенности использования ГИС в перерабатывающих отраслях
- 3. Особенности использования ГИС в непроизводственной сфере
- 4. Разработка концепции ГИС
- 5. Определение требований к программному обеспечению
- 6. Информационная составляющая проекта
- 7. Описание данных, необходимых для создания проекта
- 8. Оценка объема данных
- 9. Скорость обработки информации
- 10. Формы представления географической информации
- 11. Виды геоинформационного анализа
- 12. Особенности представления информации в ГИС-проекте
- 13. Пространственная привязка данных в ГИС-проекте
- 14. Визуализация и интерпретация данных мониторинга в ГИС-проекте

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНЖЕНЕРНАЯ ШКОЛА

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Информационные технологии в управлении безопасностью жизнедеятельности»

Направление подготовки 20.04.01 Техносферная безопасность Профиль «Охрана окружающей среды и ресурсосбережения»

Форма подготовки очная

Владивосток

2019

Паспорт ФОС

Код и формулировка компе-	Этапы формирования компетенции			
тенции				
способность структурировать знания, готовностью к решению сложных и проблемных вопро-	Знает	 основы построения баз геоданных и принципы работы с ними; требования к информационным моделям, используемым в обеспечении техносферной безопасности 		
сов (ОПК-1)	Умеет	использовать методы построения баз геоданных и информационных моделей		
	Владеет	основами автоматизации решения профессиональных задач		
способность анализировать, оптимизировать и применять современные информационные	Знает	 основные принципы информационных процессов; виды профессионального ПО и их функциональное назначение; методы построения информационных моделей 		
технологии (ПК-11)	Умеет	использовать профессиональное ПО в решении задач обеспечения техносферной безопасности		
	Владеет	методологией построения информационных моделей		

No॒	Контролируемые	Коды и этапы		Оценочн	ые средства
п/п	разделы / темы	формирования		текущий	промежуточная
	дисциплины	компетенций		контроль	аттестация
1	Информатизация техносферной безопасности	ОПК-1	знает основные принципы информационных процессов умеет использовать профессиональное ПО в решении задач обеспечения техносферной безопасности владеет методиками подходами построения информационных моделей	УО-1, УО-2, ПР-2	1-11
2	Программные продукты для решения задач безопасности и охраны окружающей среды	ОПК-1	знает виды профессионального ПО и их функциональное назначение умеет выбирать специализированное ПО в соответствии со спецификой решаемых задач владеет навыками использования информационных моделей в	УО-1, УО-3, ПР-1, ПР-5	12-15

No	Контролируемые	Ко	ды и этапы	Оценочн	ые средства
Π/Π	разделы / темы	формирования		текущий	промежуточная
	дисциплины	ко	мпетенций	контроль	аттестация
			области техно-		
			сферной безо-		
			пасности		
3	Анализ информа-	ПК-11	знает основы		
	ции в ГИС		построения баз		
			геоданных и		
			принципы рабо-		
			ты с ними и тре-		
			бования к ин-		
			формационным		
			моделям, ис-		
			пользуемым в		
			обеспечении		
			техносферной	УО-1, УО-3,	
			безопасности	уо-1, уо-3, ПР-1	16-35
			умеет использо-	111 -1	
			вать методы по-		
			строения баз		
			геоданных и ин-		
			формационных		
			моделей		
			владеет основа-		
			ми автоматиза-		
			ции решения		
			профессиональ-		
			ных задач	_	

Шкала оценивания уровня сформированности компетенций

Код и формулировка компетенции (ОПК-1)	Этапы форми	рования компетенции основы построения баз	Критерии Наличие знаний о	Показатели Способен сформули-
способность структури- ровать зна- ния, готов- ностью к решению	знает (порого- вый уровень)	геоданных и принципы работы с ними и требования к информационным моделям, используемым в обеспечении техносферной безопасности	принципах работы информационных систем, использующихся в сфере обеспечения безопасности	ровать требования к базам геоданным и информационным моделям в области техносферной безопасности
сложных и проблемных вопросов	умеет (продви- нутый)	использовать методы построения баз геоданных и информационных моделей	Умение построить базу геоданных и информационную модель	Способен построить БГД и информационную модель для решения задач техносферной безопасности
	владеет (высо- кий)	основами автоматизации решения профессиональных задач	Владение основами автоматизации профессиональных задач	Способен обеспечить автоматизацию систем безопасности на производственном объекте
(ПК-11) способность анализировать, оптимизировать и применять современные информаци-	знает (порого- вый уровень)	основные принципы информационных процессов, виды профессионального ПО и их функциональное назначение, методы построения информационных моделей	Знание специ- фики профес- сионального ПО	Способен подобрать необходимый программный продукт для решения профессиональных задач
онные техно- логии при решении на- учных задач	умеет (продви- нутый)	использовать профессиональное ПО в решении задач обеспечения техносферной безопас-	Умение использовать профессиональное ПО для решения за-	Способен решить профессиональные задачи с использованием актуальных

Код и фор- мулировка компетенции	Этапы форми	рования компетенции	Критерии	Показатели
		ности	дач безопасно-	профессиональных
			сти	программных
				средств
		методологией построе-	Владение мето-	Способен разрабо-
	владеет (высо-	ния информационных	дологической	тать методологию
	кий)	моделей	базой построе-	систем безопасно-
	,		ния информаци-	сти на производст-
			онных моделей	ве

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Оценочные средства для текущей аттестации

Текущая аттестация студентов по дисциплине «Информационные технологии в сфере безопасности» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Текущая аттестация по дисциплине «Информационные технологии в сфере безопасности» проводится в форме контрольных мероприятий (защиты практических работ, работы на семинарах, тестирования) по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Объектами оценивания выступают:

- учебная дисциплина: полное или частичное посещение лекционных и практических занятий, своевременное выполнение практических работ по дисциплине;
 - степень усвоения теоретических знаний: выполнение тестов;
- уровень овладения практическими умениями и навыками: выполнение практических работ по дисциплине;

 результаты самостоятельной работы: подготовка и выступление на семинарских занятиях.

Результаты текущего контроля знаний оцениваются по шкале с оценками:

- «отлично»: полное или частичное посещение лекционных и практических занятий, выполнение контрольных заданий и тестов на оценки «отлично»;
- «хорошо»: полное или частичное посещение лекционных и практических занятий, выполнение контрольных заданий и тестов на оценки «хорошо»;
- «удовлетворительно»: полное или частичное посещение лекционных и практических занятий, удовлетворительное выполнение контрольных заданий и тестов;
- «неудовлетворительно»: частичное посещение лекционных и практических занятий, неудовлетворительное выполнение контрольных задание и тестов;
- «не аттестован»: непосещение лекционных и практических занятий, не выполнение контрольных заданий и тестов.

Критерии оценки тестового задания:

100-86 баллов – «отлично»

85-76 баллов – «хорошо»

75-61 баллов – «удовлетворительно»

50-60 баллов – «неудовлетворительно»

Оценочные средства для промежуточной аттестации

Промежуточная аттестация студентов по дисциплине «Информационные технологии в сфере безопасности» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Промежуточная аттестация студентов по дисциплине «Информационные технологии в управлении техносферной безопасностью» проставляется

по итогам учебного семестра в виде экзамена в устной форме (устного опроса в форме ответов на вопросы экзаменационных билетов).

Вопросы к экзамену

- 1. В чем заключается специфика использования ГИС в сфере безопасности?
- 2. Свойства информации с точки зрения планирования систем безопасности
 - 3. Раскройте характеристики основных информационных уровней
 - 4. Географическая база данных как основной элемент ГИС
 - 5. Типы данных в ГИС и их основные характеристики
- 6. Принципы, лежащие в основе проектирования природоохранных ГИС
 - 7. Основные процедуры с данными в ГИС
 - 8. Особенности геоинформационного картографирования
 - 9. Основные подходы к определению ГИС
 - 10. Характеристика элементов ГИС
 - 11. Области применения ГИС в техносферной безопасности
- 12. Программные продукты Environmental System Research Institute и их функционал
 - 13. Quantum GIS, ее структура и функционал
- 14. Какие задачи пространственные задачи решают с помощью ArcGIS / QGIS?
- 15. Модели пространственных данных, использующихся в ГИС: их преимущества и недостатки
 - 16. Основные этапы векторизации
 - 17. Привязка растров в ГИС
 - 18. Системы координат в ГИС
 - 19. Картографические проекты в ГИС
 - 20. Принципы работы с системами координат
 - 21. Организация данных в ГИС-проекте

- 22. Табличные данные в ГИС
- 23. Компоновка тематических карт
- 24. Способы картографических изображений
- 25. Проектирование баз геоданных
- 26. Аналитические функции ГИС
- 27. Формирование запросов к данным
- 28. Пространственные запросы
- 29. Характеристика картометрических операций
- 30. Принципы буферизации
- 31. Операции группы «оверлей»
- 32. Редактирование данных в ГИС
- 33. Работа с диалоговыми окнами в ГИС
- 34. Использование графических операторов в ГИС
- 35. Аналитические операции в ГИС