

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯРОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНЖЕНЕРНАЯ ШКОЛА

«СОГЛАСОВАНО» Руководитель ОП

Л.Г. Стаценко (Ф.И.О. рук. ОП) (ССИТЯГРЯ 2019г. «УТВЕРЖДАЮ» Заведующая кафедрой Электроники и средств связи

Л.Г. Стаценко (подпись) (Ф.И.О. зав. каф.) « 6 » со стабря 20 7 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Измерительно-вычислительные комплексы»

Направление подготовки 11.04.02 Инфокоммуникационные технологии и системы связи

Форма подготовки очная

курс 2 семестр 3
лекции 12 час.
практические занятия 12 час.
лабораторные работы 12 час.
в том числе с использованием МАО лек. 0/пр. 0/лаб. 4 час.
всего часов аудиторной нагрузки 36 час.
в том числе с использованием МАО 4 час.
самостоятельная работа 72 час.
в том числе на подготовку к экзамену 0 час.
контрольные работы (количество) — не предусмотрено учебным планом курсовая работа / курсовой проект не предусмотрено учебным планом зачет 3 семестр
экзамен — не предусмотрен учебным планом

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ от 22.09.2017 №958.

Рабочая программа обсуждена на заседании кафедры электроники и средств связи, протокол №1 от «16» сентября 2019 г.

Заведующая кафедрой профессор Л.Г. Стаценко Составитель профессор В.В. Петросьянц

Оборотная сторона титульного листа РПУД

І. Рабочая прогр	амма пере	есмотрена на заседании ка	федры:
Протокол от «	»	20г. №	
Заведующий каф	едрой		
	•	(подпись)	(И.О. Фамилия)
II. Рабочая прог	рамма пер	есмотрена на заседании к	афедры:
Протокол от «	»	20 г. №	
Заведующий каф	едрой	(подпись)	
_		(подпись)	(И.О. Фамилия)

ABSTRACT

Master's degree in 11.04.02 - Infocommunication technologies and communication systems

Master's Program "Title": Radio communication and radio access systems

Course title: Measuring and computing complexes

Variable part of *Block* 1, 3 credits

Instructor: V.V. Petrosyants

At the beginning of the course a student should be able to:

GPC-4 - the ability to implement new principles of building communication systems and networks of various types, transmission, distribution, processing, and systems and networks of various types, transmission, distribution, processing and storage of information

Learning outcomes:

PC-4 Able to organize and conduct experimental tests in order to assess and improve the quality of provided communication services, compliance with the requirements of technical regulations, international and national standards and other regulatory documents

PC-5 It is capable of organizing the operation of equipment, taking measurements, verifying the quality of work, carrying out repair, prophylactic and repair work on infocommunication equipment

Course description: interfaces of Measuring and computing complexes (MCC); mathematical tools for representing interfaces; principles of design of MCC; General Purpose Inter-face Bus (GPIB); instrument interface CAMAC; PCI extension for instrumentation (PXI)

Main course literature:

- 1. Achildiev, V.M. Information measuring and opto-electronic systems based on micro-and nano-mechanical sensors of angular velocity and linear acceleration [Electronic resource]: a tutorial / V.M. Achildiev, Yu.K. Gruzevich, V.A. Soldatenkov. Electron. Dat. Moscow: MSTU. N.E. Bauman, 2016. 260 p. Access mode: https://e.lanbook.com/book/106616.
- 2. Simonov, E.N. Tomographic measuring information systems: X-ray computed tomography [Electronic resource]: a tutorial / E.N. Simonov. Electron. Dat. Moscow: MEPhI, 2011. 440 p. Access mode: https://e.lanbook.com/book/75872.
- 3. Bolotnov, S.A. Laser information-measuring systems. Part 4 [Electronic resource]: / S.A. Bolotnov, N.M. Verenikina, A.A. Alexeychenko. -

Electron. Dat. - M.: MSTU them. N.E. Bauman (Moscow State Technical University named after NE Bauman), 2008. - 33 p. Access mode: http://e.lanbook.com/books/element.php?pl1_id=52106

Form of final knowledge control: *fail exam.*

АННОТАЦИЯ

Дисциплина «Измерительно-вычислительные комплексы» ведется на 2-м курсе направления 11.04.02 «Инфокоммуникационные технологии и системы связи», профиль «Системы радиосвязи и радиодоступа», в вариативной части профессионального цикла, 3 зачетных единицы (108 часов). Настоящая дисциплина связана с дисциплинами «Цифровая передача информации», «Сетевые технологии в инфокоммуникациях». Курс содержит лекционные, практические и лабораторные занятия.

Цель

Целью дисциплины является подготовка магистров способных создавать и эксплуатировать измерительно-вычислительные комплексы (ИВК), предназначенные для получения, регистрации и обработки информации в инфокоммуникационных системах, владеющих программным обеспечением и информационно-измерительными технологиями.

Задачи:

- Знание основ теории построения измерительно-вычислительных комплексов.
- Знание основных приборных интерфейсов, используемых при создании ИВК для автоматизации, контроля и управления процессами и объектами.
- Знание основ схемотехники ИВК.
- Знание основ компьютерных технологий программирования ИВК.

Для успешного изучения дисциплины «Измерительно-вычислительные комплексы» у обучающихся должны быть сформированы следующие предварительные компетенции:

- способен разрабатывать и применять специализированное программно-математическое обеспечение для проведения исследований и решении проектно-конструкторских и научно-исследовательских задач (ОПК-4);
- способен самостоятельно выполнять экспериментальные исследования для решения научно-исследовательских и производственных задач с использованием современной аппаратуры и методов исследования (ПК-2).

В результате изучения данной дисциплины у обучающихся формируются следующие профессиональные компетенции.

Код и формулировка компетенции		Этапы формирования компетенции
ПК-4 Способен организовывать и проводить экспериментальные испытания с целью	Знает	основные методы теории построения ИВК
испытания с целью оценки и улучшения качества предоставляемых услуг связи, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов	Умеет	Создавать ИВК для решения поставленных задач
	Владеет	Технологией программирования ИВК
ПК-5 Способен к организации эксплуатации оборудования, проведению измерений, проверке качества работы, проведению ремонтно- профилактических и	Знает	Характеристики приборных интерфейсов

ремонтно- восстановительных работ инфокоммуникационн ого оборудования	Умеет	Использовать стандартные приборные интерфейсы при проведении измерений, проверке качества работы, ремонтно-профилактических и ремонтно-восстановительных работ инфокоммуникационного оборудования
	Владеет	Программным обеспечением приборных интерфейсов

Для формирования вышеуказанных компетенций в рамках дисциплины «Измерительно-вычислительные комплексы» применяются следующие методы активного/интерактивного обучения: *«диспут на занятии»*.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Раздел I. Общие вопросы построения и применения информационно-измерительных систем (6 час.)

Тема 1. Интерфейсы информационно-измерительных систем (2 час.)

Структурная схема обобщенной информационно-измерительной системы. Классификация интерфейсов. Стандарт на классификационные признаки. Классификация по нескольким совокупным признакам. Селекция информационного канала. Синхронизация. Координация. Совместимость интерфейсов.

Тема 2. Математические средства представления интерфейсов (2 час.)

Схема взаимодействия источника и приемника. Теория автоматов.

Графы. Асинхронные процессы. Матрицы переходов. Сети Петри.

Тема 3. Принципы проектирования ИВК (2 час.)

Государственная система приборов и агрегатные комплексы.

Программное обеспечение ИВК. Показатели качества ИВК. Принципы проектирования ИВК.

Раздел ІІ. Приборные интерфейсы (6 час.)

Тема 1. Приборный интерфейс IEC 635-1 (2 час.)

Функциональная схема. Конструкция. Принцип работы. Временная последовательность и алгоритм процесса синхронизации. Интерфейсные сообщения. Функции интерфейса. Классы функций и их характеристика. Интерфейсные функции. Приборные функции. Графы интерфейсных функций: приемник, источник, синхронизация источника, синхронизация приемника.

Тема 2. Приборный интерфейс САМАС (2 час.)

Структура ИВК в стандарте КАМАК. Схема передачи сигналов. Организация магистрали ветви. Универсальный контроллер интерфейса КАМАК.

Тема 3. Современные измерительные платформы (2 час.)

Принципы построения интегрированных измерительных систем. Структура интегрированной платформы РХІ. Разновидности измерительных систем на базе РХІ. Программное обеспечение.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Практические занятия (12 час.)

Занятие 1. Разработка учебного ИВК с каналом общего пользования с использованием микропроцессора (6 час.)

- 1. Разработка принципиальной схемы учебного ИВК на базе микропроцессора (2 час.).
 - 2. Разработка алгоритма работы учебного ИВК (2 час.).
- 3. Написание программы управления ИВК в машинных кодах и на языке программирования ассемблер (2 час.).

Занятие 2. Разработка учебного ИВК с каналом общего пользования с использованием микроконтроллера (6 час.)

- 4. Разработка принципиальной схемы учебного ИВК на базе микроконтроллера (2 час.).
- 5. Разработка алгоритма работы учебного ИВК (2 час.).

6. Написание программы управления учебным ИВК на языке программирования C++ (2 час.).

Лабораторные работы (12 час. из них МАО «Дискуссия» 4 час.)

Лабораторная работа №1. Управление цифровым вольтметром с КОП с помощью микроконтроллера и ПК (6 час.)

Лабораторная работа №2. Управление цифровым вольтметром с КОП с помощью интегрированной платформы РХІ (6 час. из них МАО «Дискуссия» 4 час.) (форма активного обучения, аналогичная дискуссии, но носящего сугубо технический аспект обсуждения)

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Измерительно-вычислительные комплексы» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

No	Контролируемые	Ко	ды и этапы	Оценочн	ые средства
Π/Π	разделы / темы	фој	рмирования	текущий	промежуточная
	дисциплины	ко	мпетенций	контроль	аттестация
1	Интерфейсы	ПК-4	знает	УО-1.	Зачет.
	информационно-		классификаци	Вопросы 1-12	Вопросы 1-9
	измерительных		ю интерфейсов	(Приложение	(Приложение
	систем			1).	2).
			Умеет описать	УО-1.	Зачет.
			и выбрать тип	Вопросы 13-	Вопросы 10-14
			и структуру	17	перечня
			приборного	(Приложение	типовых
			интерфейса	1).	вопросов.

			владеет методами построения и математическо го описания интерфейсов	УО-1. Вопросы 18- 21 (Приложение 1).	(Приложение 2). Зачет. Вопросы 15-30 перечня типовых вопросов. (Приложение 2).
2	Приборные интерфейсы GPIB и CAMAC	ПК-5	знает основные интерфейсные и приборные функции интерфейса GPIB	УО-1. Вопросы 18- 21 (Приложение 1).	Зачет. Вопросы 31-44 перечня типовых вопросов. (Приложение 2). Зачет.
			проектировать ИВК на схемотехничес ком и программном уровне владеет методами	Вопросы 22- 40, 46-53 (Приложение 1). УО-1. Вопросы 41-	Вопросы 45-49 перечня типовых вопросов. (Приложение 2). Зачет. Вопросы 38-44
			программирова ния ИВК	45 (Приложение 1).	перечня типовых вопросов. (Приложение 2).
3	Современные измерительные платформы	ПК-5	знает структуру и принцип функционирова ния интегрированн ой измерительной платформы РХІ	УО-1. Вопросы 54- 58 (Приложение 1).	Зачет. Вопросы 50-58 перечня типовых вопросов. (Приложение 2).
			умеет применять интерфейс РХІ для проведения измерений, проверке	УО-1. Вопросы 54- 58 (Приложение 1).	Зачет. Вопросы 53-54 перечня типовых вопросов. (Приложение 2).

качества		
работы,		
проведению		
ремонтно-		
профилактичес		
ких и		
ремонтно-		
восстановитель		
ных работ		
инфокоммуник		
ационного		
оборудования		
владеет	УО-1.	Зачет.
методикой	Вопросы 54-	Вопросы 53-58
построения	58	перечня
имитационных	(Приложение	типовых
моделей с	1).	вопросов.
использование		(Приложение
M		2).
программного		
обеспечения		
PXI		

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки характеризующие этапы знаний, умений, навыков и формирования компетенций образовательной В процессе освоения программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

1. Ачильдиев, В.М. Информационные измерительные и оптикоэлектронные системы на основе микро- и наномеханических датчиков угловой скорости и линейного ускорения [Электронный ресурс]: учебное пособие / В.М. Ачильдиев, Ю.К. Грузевич, В.А. Солдатенков. — Электрон. дан. — Москва : МГТУ им. Н.Э. Баумана, 2016. — 260 с. — Режим доступа: https://e.lanbook.com/book/106616

- 2. Симонов, Е.Н. Томографические измерительные информационные системы: рентгеновская компьютерная томография [Электронный ресурс]: учебное пособие / Е.Н. Симонов. Электрон. дан. Москва: НИЯУ МИФИ, 2011. 440 с. Режим доступа: https://e.lanbook.com/book/75872
- 3. Болотнов, С.А. Лазерные информационно-измерительные системы. Ч. 4 [Электронный ресурс] : / С.А. Болотнов, Н.М. Вереникина, А.А. Алексейченко. Электрон. дан. М. : МГТУ им. Н.Э. Баумана (Московский государственный технический университет имени Н.Э. Баумана), 2008. 33 с. Режим доступа:

http://e.lanbook.com/books/element.php?pl1_id=52106

Дополнительная литература:

1. Петросьянц В.В. Измерительно-вычислительные комплексы: Учеб. пособие для вузов.- изд. 2-е доп. и перераб. - Владивосток: ДВГТУ, 2007.-202 с. (имеется 10 учебных пособий в библиотеке ДВФУ.

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

1.http://window.edu.ru/resource/681/61681 Чемодаков А.Л. Описание структуры и алгоритмов функционирования информационно-измерительных систем: Методическое пособие. - Владивосток: МГУ им. адм. Г.И. Невельского, 2008. - 18 с.

2.<u>http://window.edu.ru/resource/820/72820</u> Сергеев С.Ф., Падерно П.И., Назаренко Н.А. Введение в проектирование интеллектуальных интерфейсов: Учебное пособие. - СПб.: СПбГУ ИТМО, 2011. - 108 с.

Перечень информационных технологий и программного обеспечения Интегрированная среда разработки IDE.

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Успешное освоение дисциплины достигается за счет следующих обязательных мероприятий:

- учебные занятия;
- самостоятельная работа;
- промежуточная аттестация.

Учебные занятия

В рамках реализации учебной дисциплины «Измерительновычислительные комплексы» предусмотрены учебные занятия трёх типов: лекции, лабораторные работы и практические занятия. Посещение учебных занятий является необходимым для успешного освоения дисциплины.

На учебных занятиях студенту необходимо вести конспект в любой удобной для него форме. Рекомендуется вести конспект лекций и практических занятий в отдельных тетрадях. Ведение конспекта преподавателем не контролируется, однако, максимально полный конспект, записанный аккуратно и разборчиво, позволит упростить организацию самостоятельной работы.

Самостоятельная работа

Самостоятельная работа организована следующим образом:

- изучение теоретического материала,
- проработка вопросов к текущему контролю типовых,
- подготовка к зачёту.

Первым этапом изучения отдельных тем дисциплины является изучение теоретического материала по конспектам лекций и учебной литературе.

К каждому практическому занятию студент должен изучить соответствующий раздел теоретического материала, знать основные положения, утверждения.

В разделе V настоящей рабочей учебной программы приведен перечень учебников и учебных пособий, рекомендуемых для изучения студентами в рамках самостоятельной работы. В блоке «Основная литература» отмечены те издания, изучение которых является достаточным для успешного освоения дисциплины. Изучение литературы из блока «Дополнительная литература» является факультативным, может помочь получить более глубокие теоретические знания в области информационно-измерительных систем.

Изучение дисциплины рекомендуется проводить поэтапно: рассматривая поочередно логически завершенные разделы курса, как правило, в литературе — это отдельные главы или параграфы.

При работе с конспектом и литературой важно начать с базовой теоретической подготовки, внимательно и вдумчиво изучив основные понятия рассматриваемого раздела. Далее необходимо ответить на вопросы по соответствующей теме раздела.

При изучении интерфейсов измерительно-вычислительных комплексов внимание следует обратить на обеспечение интерфейсами информационной, электрической и конструктивной совместимости компонентов ИВК; функциональную организацию интерфейса как самостоятельной подсистемы определяемой набором основных функций: селекции, синхронизации, координации, буферного хранения и преобразования информации, системным взаимодействием и диагностикой; полноту классификации интерфейсов обеспечиваемую учетом таких основных признаков, как логическая и функциональная организация, физическая реализация; обеспечение совместимости интерфейсов как одну из основных задач при построении ИВК.

При изучении математических средств представления интерфейсов следует обратить внимание на автоматные описания интересов; на временные диаграммы синхронизации в интерфейсе КОП.

При изучении принципов проектирования ИВК следует обратить внимание на государственную систему приборов и агрегатные комплексы; варианты построения ИВК; программное обеспечение ИВК основные показатели информационный и эксплуатационной эффективности иерархический подход к проектированию.

При изучении приборного интерфейса КОП следует уяснить: согласование компьютера и измерительных модулей требует разработки специальных контроллеров-адаптеров; схемотехническое решение контроллера-адаптера зависит от внешних контроллеров системной шины компьютера и интерфейса измерительных модулей; управляющие программы, предназначенные для решения конкретных измерительных задач в формате КОП, пишутся с учетом кодировки команд и данных, принятых в цифровых измерительных приборах со встроенным КОП.

При изучении приборного интерфейса CAMAC следует обратить внимание на вторую ступень централизации управления и обработки информации, шины интерфейса, схему передачи сигналов команд от контроллера крейта к функциональному блоку, логическую организацию универсального контроллера, логическую организацию регистра состояния и управления.

Современные модульная измерительная платформа РХІ является перспективной для создания автоматизированных контрольно-измерительных систем. Использование шины РСІ позволяет обеспечить высокую производительность, а также синхронизированную работу модульных приборов. Интерфейс РХІ обеспечивает конструктивную совместимость с интерфейсом КОП. РХІ поддерживает графическую среду программирования LABWIEW и MULTISIM.

Следующим этапом самостоятельной работы студента является выполнение индивидуальных заданий, соответствующих изученной теме. Данная форма самостоятельной работы контролируется преподавателем.

Промежуточная аттестация

Подготовка к промежуточной аттестации осуществляется в форме самостоятельной работы, описанной в предыдущем разделе, но затрагивает весь материал учебного семестра. При подготовке к зачёту следует обратить внимание на качественную сторону каждой темы, а не на ее формальноматематическое содержание. При необходимости такое содержание может быть подсказано преподавателем, задача студента — качественно объяснить его, дать все необходимые пояснения, привести примеры.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебная доска с маркерами, проектор 3-chip DLP, 10 600 ANSI-лм, WUXGA 1 920х1 200 (16:10) PT-DZ110XE Panasonic; экран 316х500 см, 16:10 с эл. приводом; крепление настенно-потолочное Elpro Large Electrol Projecta; профессиональная ЖК-панель 47", 500 Кд/м2, Full HD M4716CCBA LG; подсистема видеоисточников документ-камера CP355AF Avervision; подсистема видеокоммутации; подсистема аудиокоммутации и звукоусиления; подсистема интерактивного управления; беспроводные ЛВС обеспечены системой на базе точек доступа 802.11а/b/g/n 2х2 MIMO(2SS), 12 персональных компьютеров в локальной сети с подключением к интернету.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНЖЕНЕРНАЯ ШКОЛА

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Измерительно-вычислительные комплексы» Направление подготовки 11.04.02 Инфокоммуникационные технологии и системы связи

профиль «Системы радиосвязи и радиодоступа» **Форма подготовки очная**

Владивосток 2019

План-график выполнения самостоятельной работы по дисциплине

№ п/п,	Дата/сроки	Вид СРС	Примерные	Форма
тема работы	выполнения		нормы	контроля
			времени на	
			выполнение	
1.Подготовка	11.10.16 -	Конспект	30 часа	УО
краткого конспекта по	24.12.16			
заданной теме				
2. Подготовка к	По графику	самоподготовка	32 часов	УО
текущим аттестациям	аттестаций			
3. Подготовка к	25.12.16 -	самоподготовка	10 часов	Тест
зачету	28.12.16			

УО – устный опрос

Самостоятельная работа магистрантов представлена в виде:

- написания кратких конспектов по заданной тематике;
- ответы на вопросы для проверки усвоения материала;
- подготовки к зачету.

Характеристика заданий для самостоятельной работы студентов и методические рекомендации по их выполнению

В качестве самостоятельной работы студент подготавливает краткий конспект лекшии.

Требования к представлению и оформлению результатов самостоятельной работы

Конспект лекций магистрант выполняет в виде письменного отчета. Конспект лекций является документом магистранта, в котором приведены краткие сведения об изучаемом объекте.

Изложение в конспекте должно быть сжатым, ясным и сопровождаться рисунками.

Магистранты представляют краткие конспекты лекций перед началом занятия по соответствующей теме.

Критерии оценки выполнения самостоятельной работы

- 1. 10-9 баллов выставляется студенту, если студент выполнил все пункты задания. Фактических ошибок, связанных с пониманием проблемы, нет; графически работа оформлена правильно. При защите студент отвечает на все вопросы преподавателя.
- 2. 8-7 баллов: работа выполнена полностью; допущено одна-две ошибки в оформлении работы. При защите студент отвечает на все вопросы преподавателя.
- 3. 7-6 балл: работа выполнена полностью; допущено не более 2 ошибок при оформлении работы. При защите студент не отвечает на 1-2 вопроса преподавателя.
- 4. 6-5 баллов: работа выполнена; допущено три или более трех ошибок в оформлении работы. При защите студент не отвечает на 2-3 вопроса преподавателя.

Темы для самостоятельной работы по написанию конспектов

Конспект 1. **Введение в дисциплину. Классификация интерфейсов** (6 час.).

Следует осветить следующие вопросы.

Определение ИИС. История и современные тенденции развития ИИС. ИВК как разновидность ИИС. Структурная схема ИВК. Состав ИВК. Роль вычислительной части ИВК.

Признаки классификации интерфейсов. Классификация по способу соединения, способу передачи информации, принципу обмена информацией, режиму передачи информации.

Классификация по нескольким совокупностям признаков: области распространения, логической и функциональной организации, физической реализации. Способы селекции информационного канала. Уровни процесса

синхронизации передачи. Основные операции координации: настройка на взаимодействие, контроль взаимодействия, передача функции управления (настройка). Раздельная классификация по функциональной организации информационного и управляющего каналов. Принципы обеспечения совместимости интерфейсов. Три способа управления: централизованный, со взаимным соподчинением, с иерархичным подчинением. Назначение контроллера-адаптера. «Расширители» интерфейсов.

Вопросы для самопроверки:

- Чем отличается информационно-измерительная система от измерительно-вычислительного комплекса?
- о В чем отличие одноуровневой ИИС от двухуровневой?
- о Какие типы интерфейсов можно отнести к приборным?
- о Чем отличаются приборные интерфейсы от системных (машинных)?
- о В чем отличие классификации интерфейсов по ГОСТ от классификации по функциональному назначению?
- о Какой принцип селекции информационного канала используется в приборных интерфейсах?
- о Какой принцип синхронизации используется в интерфейсе «канал общего пользования» (КОП)?
- о Какой принцип совместимости применен для построения ИВК на базе интерфейса КОП?
- о Какого назначение контроллера-адаптера?

Литература:

Петросьянц В.В. Измерительно-вычислительные комплексы. – Владивосток: ДВГТУ, 2007. – 195 с. (с. 3 - 25).

Конспект 2. **Математические средства описания интерфейсов** (6 час.) Следует осветить следующие вопросы.

Автоматное описание интерфейсов: теория автоматов, теория графов, асинхронные процессы, сети Петри. Математическая модель конечного автомата.

Табличный, графический, матричный способы представления конечных автоматов. Графический способ описания в виде диаграмм переходов и графов состояний автоматов (ГСА). Описание интерфейсных функций КОП в виде ГСА и графа автомата. Матрицы переходов интерфейсных функций.

Вопросы для самопроверки:

- о Дайте сравнительную характеристику автоматы способов описания интерфейсов.
- о Приведите описание интерфейсных функций синхронизации с помощью графических способов представления.
- о Приведите описание интерфейсных функций синхронизации с помощью табличных способов представления.
- о Приведите описание интерфейсных функций синхронизации с помощью матричных способов представлениях .
- о Приведите описание интерфейсных функций синхронизации с помощью сети Петри.

Литература:

Петросьянц В.В. Измерительно-вычислительные комплексы. – Владивосток: ДВГТУ, 2007. – 195 с. (с. 25- 31).

Конспект 3. **Интерфейсные функции КОП. Алгоритмы работы ИВК** (6 час.)

Следует осветить следующие вопросы.

Классы функций и их характеристика. Функция интерфейса «синхронизация источника».

Функция интерфейса «синхронизация приема». Функция интерфейса «источник». Функция интерфейса «приемник». Функция интерфейса «запрос

на обслуживание». Функция интерфейса «дистанционный местный». Функция интерфейса «параллельный опрос».

Функция интерфейса «очистить устройство». Функция интерфейса «запуск устройства».

Функция интерфейса «контроллер». Алгоритмы работы программдрайверов: «Работа источника», «Работа приемника».

Вопросы для самопроверки.

- о В чем отличие интерфейсных сообщений от приборных?
- о Какой сигнал мультиплексирует шину данных на передачу приборных или интерфейсных сообщений?
- о Какая интерфейсная функция должна предшествовать интерфейсной функции «синхронизация источника»?
- Какая интерфейсная функция должна предшествовать интерфейсной функции «синхронизация приема»?
- о В каком случае нет необходимости использовать функцию параллельный опрос?
- Будут передаваться интерфейсные сообщения, если система находится в режиме местного управления?
- о Какая из программ-драйверов используется для передачи приборных сообщений?
- о Какая из программ-драйверов используется для передачи измеренных данных?

Литература:

Петросьянц В.В. Измерительно-вычислительные комплексы. — Владивосток: ДВГТУ, 2007. - 195 с. (с. 57 - 181).

Конспект 4. **Цифровые измерительные приборы с встроенным** приборным интерфейсом КОП (6 час.)

Следует осветить следующие вопросы.

Условия функционирования приборов стандарта КОП. Блок сопряжения с КОП. Формат сообщений. Коды программных сообщений и интерфейсных команд. Листинг программы управления учебным ИВК.

Вопросы для самопроверки.

- о Какие способы совмещения системных и приборных интерфейсов?
- Какой способ совмещения интерфейсов применен в ИИС на базе КОП, КАМАК и РХІ.
- о Какое программное обеспечение используется для управления информационно-измерительной системой?
- о Для чего предназначены программы-драйверы?
- о Для чего предназначен контроллер-адаптер в информационноизмерительной системе на базе интерфейса КОП. Как он работает?
- о Какое отличие формата кодов программных сообщений и интерфейсных команд?

Литература:

Петросьянц В.В. Измерительно-вычислительные комплексы. — Владивосток: ДВГТУ, 2007. - 195 с. (с. 102 - 145, 159-170).

Конспект 5. Перспективы развития ИИС (6 час.)

Следует осветить следующие вопросы.

Современные измерительные платформы, принципы построения интегрированных измерительных систем. Программное обеспечение ИИС на базе РХІ.

Вопросы для самопроверки:

- о Какие элементы интерфейсов КОП и КАМАК использованы в РХІ;
- Какое главное преимущество РХІ по сравнению с КОП и КАМАК;
- о Почему в РХІ использован крейтовый принцип построения;
- о Какие графические среды используются для
- о создания реально-виртуальной среды автоматизации измерения и управления.

Литература:

1. Чемодаков А.Л. Описание структуры и алгоритмов функционирования информационно-измерительных систем: Методическое пособие. -

Владивосток: МГУ им. адм. Г.И. Невельского, 2008. - 18 с.

http://window.edu.ru/resource/681/61681

2. Сергеев С.Ф., Падерно П.И., Назаренко Н.А. Введение в проектирование интеллектуальных интерфейсов: Учебное пособие. - СПб.: СПбГУ ИТМО, 2011. - 108 с.

http://window.edu.ru/resource/820/72820

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНЖЕНЕРНАЯ ШКОЛА

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Измерительно-вычислительные комплексы» Направление подготовки 11.04.02 Инфокоммуникационные технологии и системы связи

профиль «Системы радиосвязи и радиодоступа» **Форма подготовки очная**

Владивосток 2019

Паспорт ОС ВО ДВФУ

Код и формулировка компетенции		Этапы формирования компетенции
ПК-4 Способен организовывать и проводить экспериментальные испытания с целью	Знает	основные методы теории построения ИВК
испытания с целью оценки и улучшения качества предоставляемых услуг связи, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов	Умеет	Создавать ИВК для решения поставленных задач
	Владеет	Технологией программирования ИВК
ПК-5 Способен к организации эксплуатации оборудования, проведению измерений, проверке качества работы, проведению ремонтно- профилактических и	Знает	Характеристики приборных интерфейсов

ремонтно- восстановительных работ инфокоммуникационн ого оборудования	Умеет	Использовать стандартные приборные интерфейсы при проведении измерений, проверке качества работы, ремонтно-профилактических и ремонтновосстановительных работ инфокоммуникационного оборудования
	Владеет	Программным обеспечением приборных интерфейсов

$N_{\underline{0}}$	Контролируемые	Ко	ды и этапы	Оценочн	ые средства
Π/Π	разделы / темы	формирования		текущий	промежуточная
	дисциплины	ко	мпетенций	контроль	аттестация
1	Интерфейсы информационно- измерительных систем	ПК-4	знает классификаци ю интерфейсов Умеет описать и выбрать тип и структуру приборного интерфейса	УО-1. Вопросы 1-12 (Приложение 2). УО-1. Вопросы 13- 17 (Приложение 2).	Зачет. Вопросы 1-9 (Приложение 2). Зачет. Вопросы 10-14 перечня типовых вопросов. (Приложение
			владеет методами построения и математическо го описания интерфейсов	УО-1. Вопросы 18- 21 (Приложение 2).	2). Зачет. Вопросы 15-30 перечня типовых вопросов. (Приложение 2).
2	Приборные интерфейсы GPIB и CAMAC	ПК-5	знает основные интерфейсные и приборные функции интерфейса	УО-1. Вопросы 18- 21 (Приложение 2).	Зачет. Вопросы 31-44 перечня типовых вопросов.

			GPIB		(Приложение 2).
			умеет проектировать ИВК на схемотехничес ком и программном уровне	УО-1. Вопросы 22- 40, 46-53 (Приложение 2).	Зачет.
			владеет методами программирова ния ИВК	УО-1. Вопросы 41- 45 (Приложение 2).	Зачет. Вопросы 38-44 перечня типовых вопросов. (Приложение 2).
3	Современные измерительные платформы	ПК-5	знает структуру и принцип функционирова ния интегрированн ой измерительной платформы РХІ	УО-1. Вопросы 54- 58 (Приложение 2).	Зачет. Вопросы 50-58 перечня типовых вопросов. (Приложение 2).
			умеет применять интерфейс РХІ для проведения измерений, проверке качества работы, проведению ремонтно-профилактичес ких и ремонтно-восстановитель ных работ инфокоммуник ационного оборудования	УО-1. Вопросы 54- 58 (Приложение 2).	Зачет. Вопросы 53-54 перечня типовых вопросов. (Приложение 2).
			владеет методикой	УО-1. Вопросы 54-	Зачет. Вопросы 53-58

построения	58	перечня
имитационных	(Приложение	типовых
моделей с	2).	вопросов.
использование		(Приложение
M		2).
программного		
обеспечения		
PXI		

Шкала оценивания уровня сформированности компетенций

Код и формулировка компетенции	Этапы формирования компетенции		критерии	показатели	бал лы
ПК-4 Способен организовывать и проводить экспериментал ьные испытания с целью оценки и улучшения качества предоставляем	Знает (пороговый уровень)	основные методы теории построения ИВК	Знает приборные интерфейсы	Знает классификацию интерфейсов, синхронизацию процессов передачи информации, способы обеспечения обращения к информационным каналам совместимость интерфейсов	61-74
ых услуг связи, соответствия требованиям технических регламентов, международны х и национальных стандартов и иных нормативных документов ПК-5 Способен к организации эксплуатации оборудования,	Умеет (продвинут ый)	создавать ИВК для решения поставленны х задач	Умеет выбрать оптимальную схему построения ИВК	Умеет создавать ИВК на базе микроконтроллеров	75- 84
проведению измерений, проверке качества работы, проведению ремонтно-	Владеет (высокий)	технологией программир ования ИВК	Владеет языками программиров ания ИВК	Владеет ассемблером и С ++	85- 100

профилактичес			
ких и			
ремонтно-			
восстановитель			
ных работ			
инфокоммуник			
ационного			
оборудования			

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Текущая аттестация студентов. Текущая аттестация студентов по дисциплине «Измерительно-вычислительные комплексы» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Текущая аттестация по дисциплине «Измерительно-вычислительные комплексы» проводится в форме контрольных мероприятий (устного опроса и тестирования) по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Объектами оценивания выступают:

- учебная дисциплина (активность на занятиях, своевременность выполнения конспектов лекций, посещаемость всех видов занятий по аттестуемой дисциплине);
 - степень усвоения теоретических знаний;
- уровень овладения практическими умениями и навыками по всем видам учебной работы;
 - результаты самостоятельной работы.

Каждому объекту оценивания присваивается конкретный балл. Составляется календарный план контрольных мероприятий по дисциплине и внесения данных в АРС. По окончании семестра студент набирает определенное количество баллов, которые переводятся в пятибалльную систему оценки.

Промежуточная аттестация студентов. Промежуточная аттестация студентов по дисциплине «Измерительно-вычислительные комплексы» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Согласно учебному плану ОС ВО ДВФУ видом промежуточной аттестации по дисциплине «Измерительно-вычислительные комплексы» предусмотрен «зачет», который проводится в устной форме.

Оценочные средства для промежуточной аттестации

Перечень типовых вопросов к зачету

- 1. Чем отличается информационно-измерительная система от измерительно-вычислительного комплекса?
- 2. В чем отличие одноуровневой ИИС от двухуровневой?
- 3. Какие типы интерфейсов можно отнести к приборным?
- 4. Чем отличаются приборные интерфейсы от системных (машинных)?
- 5. В чем отличие классификации интерфейсов по ГОСТ от классификации по функциональному назначению?
- 6. Какой принцип селекции информационного канала используется в приборных интерфейсах?
- 7. Какой принцип синхронизации используется в интерфейсе «канал общего пользования» (КОП)?
- 8. Какой принцип совместимости применен для построения ИВК на базе интерфейса КОП?
- 9. Какого назначение контроллера-адаптера?
- 10. Дайте сравнительную характеристику автоматных способов описания интерфейсов.
- 11. Приведите описание интерфейсных функций синхронизации с помощью графических способов представления.

- 12. Приведите описание интерфейсных функций синхронизации с помощью табличных способов представления.
- 13. Приведите описание интерфейсных функций синхронизации с помощью матричных способов представлениях.
- 14. Приведите описание интерфейсных функций синхронизации с помощью сети Петри.
- 15. В чем отличие интерактивной методики проектирования от иерархической.
- 16. Чем отличается индивидуальная разработка от проектной компоновки.
- 17. В чем суть функционального синтеза?
- 18. Назначение морфологического анализа.
- 19. Опишите процесс параметрического синтеза.
- 20. Опишите процедуру системного проектирования.
- 21. Метрологических характеристики ИВК?
- 22. Основные показатели информационный эффективности?
- 23. Основание показатели конструктивной эффективности?
- 24. Основные показатели эксплуатационной эффективности?
- 25. Информационная надёжность?
- 26. Эксплуатационная надёжность?
- 27. Частные показатели эксплуатационной надежности?
- 28. Интегральная оценка качества функционирования ИИС?
- 29. Варианты построения ИИС?
- 30. Какие агрегатные комплексы входят в государственную систему приборов?
- 31. В чем отличие интерфейсных сообщений от приборных?
- 32. Какой сигнал мультиплексирует шину данных на передачу приборных или интерфейсных сообщений?
- 33. Опишите Какая интерфейсная функция должна предшествовать интерфейсной функции «синхронизация источника»?

- 34. Какая интерфейсная функция должна предшествовать интерфейсной функции «синхронизация приема»?
- 35. В каком случае нет необходимости использовать функцию параллельный опрос?
- 36. Будут передаваться интерфейсные сообщения, если система находится в режиме местного управления?
- 37. Какая из программ-драйверов используется для передачи приборных сообщений?
- 38. Какая из программ-драйверов используется для передачи измеренных данных?
- 39. Какие способы совмещения системных и приборных интерфейсов?
- 40. Какой способ совмещения интерфейсов применен в ИИС на базе КОП, КАМАК и РХІ.
- 41. Какое программное обеспечение используется для управления информационно-измерительной системой?
- 42. Для чего предназначены программы-драйверы?
- 43. Для чего предназначен контроллер-адаптер в информационно-измерительной системе на базе интерфейса КОП. Как он работает?
- 44. Какое отличие формата кодов программных сообщений и интерфейсных команд?
- 45. Как устроена и когда применяется вторая ступень централизации управления и обработки информации в КАМАК.
- 46. Какие шины интерфейса КАМАК используется при передаче информации в КАМАК?
- 47. Поясните принцип передачи сигналов команд от контроллера крейта к функциональному блоку.
- 48. Опишите логическую организацию универсального контроллера.
- 49. Опишите логическую организацию регистра состояния и управления.
- 50. Какие элементы интерфейсов КОП и КАМАК использованы в РХІ?

- 51. Какое главное преимущество РХІ по сравнению с КОП и КАМАК?
- 52. Почему в РХІ использован крейтовый принцип построения?
- 53. Какие графические среды используются для создания реальновиртуальной среды автоматизации измерения и управления.
- 54. Приведите функциональную схему интегрированной платформы PXI?
- 55. Каким образом осуществляется совмещение двух интерфейсов КОП и РХІ?
- 56. Какие шины используются в РХІ?
- 57. В каком формате передаются данные в интерфейсе РХІ?
- 58. Приведите пример использования модульных приборов в интерфейсе PXI?

Критерии выставления оценки студенту на зачете по дисциплине «Измерительно-вычислительные комплексы»

Баллы (рейтингов ой оценки)	Оценка зачета/ экзамена	Требования к сформированным компетенциям
	«зачтено» / «отлично»	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение.
	«зачтено»/ «хорошо»	Оценка «хорошо» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.
	«зачтено» / «удовлетвор ительно»	Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.

«не зачтено» / «неудовлетв орительно»	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы. Как правило, оценка «неудовлетворительно» ставится студентам, которые не
орительно»	«неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных
	занятий по соответствующей дисциплине.

Оценочные средства для текущей аттестации

ТЕСТЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

- 1.Сколько уровней в ИВК, построенных на основе приборных интерфейсов?
 - A. 1
 - Б. 2
 - B. 3
- 2. Магистраль приборного интерфейса состоит из следующих шин:
 - А. ШД, ШУ, ША
 - Б. ШД, ШУ, ШС
 - В. ШД, ШС, ША
 - Г. ШУ, ШС, ША
- 3. Какой способ соединения компонентов применен в интерфейсе КОП?
 - А. Магистральный
 - Б. Радиальный
 - В. Цепочечный
 - Г. Смешанный
- 4. Какой способ передачи информации применен в интерфейсе КОП?
 - А. Параллельный
 - Б. Последовательный
 - В. Параллельно-последовательный
 - 5.К каким интерфейсам относится КОП?
- А. Системному
 - Б. Магистральной-модульных ВС
 - В. Программно-модульных периферийных систем
 - Г. Распределённых систем общего назначения
 - Д. Малые интерфейсы периферийного оборудования
- 6. Какой способ селекции информационного канала применен в КОП?
 - А. Генератора временных интервалов
 - Б. Пространственной селекции
 - В. Последовательной селекции
 - Г. По выделенным линиям
- 7. Какой способ синхронизации применен в КОП?
 - А. Импульсная однопроводная
 - Б. Потенциальная однопроводная

- В. Потенциальная двухпроводная
- Г. Импульсная двухпроводная
- 8. Что означает «тайм-аут»?
 - А. Операция настройки информационного канала
 - Б. Операция настройки подключения к соединяемому устройству
 - В. Операцию контроля тупиковых ситуаций
- 9. Какой способ управления применен при объединения системного интерфейса с интерфейсом КОП?
 - А. Централизованный
 - Б. Со взаимным соподчинением
 - В. С иерархическим подчинением
 - 10. Какой принцип селекции информационного канала используется в приборных интерфейсах?
 - А. Централизованный.
 - Б. Со взаимным соподчинением.
 - В. С иерархическим подчинением.
- 11. Какие типы интерфейсов можно отнести к приборным?
 - А. Машинные.
 - Б. Магистрально-модульных ВС.
 - В. Программно-модульных периферийных систем.
 - Г. Распределенных систем управления.
- 12. Какой вариант построения ИВК на базе КОП применяется?
 - А. С системным интерфейсом и унифицированный узлами
 - Б. С приборным интерфейсом и измерительными средствами по ГОСТ 26.201.84
 - В. С приборным интерфейсом (ГОСТ 26.003.80) и серийно выпускаемый приборами и устройствами
- 13. Какой способ описания интерфейсов наиболее распространен?
- А. Табличный
 - Б. Диаграмм переходов
 - В. Графов состояний
 - Г. Матричный
 - Д. Сетей Петри
- 14. Какой способ применен при описании КОП?
 - А. Табличный
 - Б. Диаграмм переходов
 - В. Графов состояний
 - Г. Матричный
 - Д. Сетей Петри
- 15. Какие элементы содержит Сеть Петри?
 - А. Состояния и условия перехода
 - Б. Состояния, условия перехода, указатели времени
 - В. Состояния, условия перехода, указатели времени, логические элементы
 - Г. Состояния, логические элементы, условия перехода

- Д. Логические элементы, условия перехода, указатели времени
- 16. Какие элементы содержит Метод графов?
 - А. Состояния и условия перехода
 - Б. Состояния, условия перехода, указатели времени
 - В. Состояния, условия перехода, указатели времени, логические элементы
 - Г. Состояния, логические элементы, условия перехода
 - Д. Логические элементы, условия перехода, указатели времени
- 17. Какой метод описания интерфейсов более наглядный?
 - А. Табличный
 - Б. Диаграмм переходов
 - В. Графов состояний
 - Г. Матричный
 - Д. Сетей Петри
- 18. В чем отличие итеративного метода проектирования от иерархического?
 - А. Проектирование от частного к сложному
 - Б. Проектирование от общего к частному
 - В. Проектирование с использованием комбинированного подхода
- 19.В чем отличие метода проектной компоновки от индивидуального проектирования?
 - А. Использование готовых узлов
 - Б. Использование функционального подхода
 - В. Параметрический синтез функциональных узлов
- 20. Процедура параметрического синтеза включает:
 - А. разработку математической модели системы, выбора критериев и методов оптимизации.
 - Б. Использование имитационной модели, имитационное моделирование по заданным критериям.
 - В. Использование морфологических таблиц, морфологический анализ.
- 21. Какой показатель определяет производительность информационной системы?
 - А. Эксплуатационная эффективность.
 - Б. Информационная эффективность.
 - В. Конструктивная эффективность.
- 22. Какими выводами адресной шины определяется выбор портов и РУС?
 - А. Всеми выводами адресной шины.
 - Б. Выводами A_1 и A_0
 - B. Выводами с A_2 по A_8
- 23. Что такое РУС?
 - А. Регистр управляющего слова.
 - Б. Регистр управления состоянием.
 - В. Регулирование усиления сигнала.
- 24. Чем определяется направление передачи сигналов каждого из портов?
 - А. Сигналами синхронизации от внешнего источника.
 - Б. Регистром управляющего слова.

- В. Сигналом инициализации микросхемы.
- 25. Какой из портов микросхемы КР580ВВ55 состоит из 2х четырехразрядных портов?
 - А. Порт А.
 - Б. Порт В.
 - В. Порт С.
- 26. Какой из перечисленных режимов не применяется в микросхеме КР580BB55?
 - А. Стробируемый
 - Б. Режим обратной передачи.
 - В. Двунаправленной магистрали.
- 27. Что такое ШС?
 - А. Шина состояния.
 - Б. Шина синхронизации.
 - В. Шина смещения.
- 28. Какой из перечисленных сигналов не передается по шине синхронизации.
 - А. СД
 - Б. ГП
 - B. 30
- 29. Сигнал КП:
- А. Конец передачи. Выставляется в низкий уровень одновременно с передачей последнего байта данных.
- Б. Конец подпрограммы. Сигнализирует о завершении подпрограммы и возвращении к нормальной работе основной программы.
- В. Канал принят. Сигнализирует о подключении новой линии к микросхеме.
- 30. Зачем нужен сигнал ДУ.
- А. Для прерывания текущего обмена данными по магистрали управления.
 - Б. Для подтверждения принятого сигнала по шине данных.
- В. Для переключения управления модуля с местного управления на дистанционное.
- 31. Какая из следующих шин не используется в интерфейсе КОП.
 - А. Шина синхронизации.
 - Б. Шина данных.
 - В. Шина дискретизации.
- 32. Возможно ли использовать интерфейс КОП для одновременного подключения нескольких устройств?
 - А. Возможно.
 - Б. Невозможно.
- В. Возможно, при условии отключения питания у всех устройств кроме приемного.
- 33. Какие сигналы передаются по ШУ?
 - А. Данные.
 - Б. СД, ГП, ДП.

- В. ОИ, ЗО, КП, ДУ.
- 34. С помощью каких сигналов производится выбор микросхемы?
 - А. Адресных сигналов.
 - Б. Сигналов с шины данных.
 - В. Сигналов с шины синхронизации.
- 35. Можно ли использовать РУС для передачи данных.
 - А. Возможно.
 - Б. Невозможно.
 - В. Возможно, если отключить шину управления.
- 36. Можно ли использовать порт А для одновременной двунаправленной передачи данных?
 - А. Возможно.
 - Б. Невозможно.
- В. Возможно, если снимать входные сигналы со старших разрядов шины.
- 37. Из скольких линий состоит шина управления КОП?
 - А. СД, ГП, ДП.
 - Б. СД, УП, ГП.
 - В. ГП, ДП, 3О.
 - Г. СД, УП, КП.
- 38. Какой сигнал мультиплексирует шину данных на передачу приборных или интерфейсных сообщений?
 - A. 30.
 - Б. УП.
 - В. КП.
 - Г. ДУ.
- 39. Какой принцип синхронизации используется в КОП?
 - А. Синхронный.
 - Б. Асинхронный с однопроводной обратной связью..
 - В. Асинхронный с двухпроводной обратной связью.
- 40. Какой принцип селекции используется в КОП?
 - А. На основе генератора временных сигналов.
 - Б. Пространственной селекции..
 - В. Последовательной селекции.
 - Г. Селекции по выделенным линиям.
- 41. Какая интерфейсная функция используется для асинхронной передачи сигналов от контроллера к цифровому прибору?
 - А. Источник
 - Б. Приемник
 - В. Синхронизация источника
 - Г. Синхронизация приемника

42. Какая интерфейсная функция должна предшествовать интерфейсной
функции «синхронизация источника»?
А. Источник
Б. Приемник
43. Какой сигнал мультиплексирует шину данных в КОП?
А. СД
Б. ДУ
В. УП
Г. 3О
44. Из каких шин состоит магистраль КОП?
А. Данных, управления, адресации
Б. Данных, управления, синхронизации
В. Данных, синхронизации, адресации
45. Какие команды используются для передачи информации по шине данных
на периферийные устройства?
A. OUT, IN
Б. MVI, MOV
46. Какое максимальное число измерительных приборов в КОП?
A. 12
Б. 15
B. 18
47. Какие названия соответствуют КОП?
А. МЭК 625-1
Б. НР-ІВ
B. GPIB
48. Какова разрядность шины чтения и записи в интерфейсе КАМАК?
A. 8
Б. 16
B. 24
Г. 32
49. Сколько измерительных модулей в крейте КАМАК?
A. 20
Б. 25
B. 28
Г. 32
50. Сколько крейтов содержится в одной ветви?
A. 2.
Б. 4
R 5

1./.
Д. 8.
51. Сколько крейтов допускается в последовательной петлевой магистрали?
A. 16.
Б. 32.
B. 62.
Γ. 64.
Д. 108
52. Сколько ячеек крейта выделено для размещения крейт-контроллера?
A. 1.
Б. 2.
B. 3.
Γ. 4.
53. Количество линий субадреса?
A. 4.
Б. 6.
B. 8.
Γ. 16.
54. Какая шина данных используется в интерфейсе PXIe?
А. двухпроводная.
Б. 8-разрядная.
В. 16-разрядная.
Г. 32-разрядная.
55. Какое минимальное количество встраиваемых модулей в РХІе?
A. 1.
Б. 2.
B. 3.
Γ. 4.
56. Какой интерфейс входит составной частью интерфейса PXIe?
A. KAMAK.
Б. КОП.
B. LSI
Γ. ISI
57. Какое программное обеспечение базовое для платформы РХІе?
A. MathCad.
Б. MathLab.
B.WinLab.
Γ.LabView.

- 58. Какое программное обеспечение позволяет использовать виртуальнореальный режим работы платформы PXIe?
 - A. MathCad.
 - Б. MathLab.
 - B.WinLab.
 - Γ.LabView.

Критерии оценки промежуточного тестирования

Контрольные тесты предназначены для магистров очной формы обучения, изучающих курс «Измерительно-вычислительные комплексы». Тесты необходимы как для контроля знаний в процессе текущей аттестации, так и для оценки знаний, результатом которой может быть допуск к экзамену или выставление зачета.

При работе с тестами студенту предлагается выбрать один вариант ответа из трех — четырех предложенных. В то же время тесты по своей сложности неодинаковы. Среди предложенных имеются тесты, которые содержат несколько вариантов правильных ответов. Студенту необходимо указать все правильные ответы.

Тесты рассчитаны как на индивидуальное, так и на коллективное их решение. Они могут быть использованы в процессе и аудиторных занятий, и самостоятельной работы. Отбор тестов, необходимых для контроля знаний в процессе промежуточной и итоговой аттестации производится каждым преподавателем индивидуально.

Результаты выполнения тестовых заданий оцениваются преподавателем по пятибалльной шкале для выставления аттестации или по системе «зачет» — «не зачет». Оценка «отлично» выставляется при правильном ответе на более чем 90% предложенных преподавателем тестов. Оценка «хорошо» — при правильном ответе на более чем 70% тестов. Оценка «удовлетворительно» — при правильном ответе на 50% предложенных студенту тестов.