

НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

образовательное учреждение высшего

образования

«Дальневосточный федеральный университет» (ДВ Φ У)

ШКОЛА БИОМЕДИЦИНЫ

«СОГЛАСОВАНО» Руководитель ОП		«УТВЕРЖДАЮ» Департамент фундаментальной и клинической медицины		
	В.И.Короченцев (Ф.И.О. рук. ОП)	Γ	Сельцер Б.И	
(подпись) «»	(Ф.И.О. рук. ОП) 2017г.	«»	2017r.	
	РАБОЧАЯ ПРОГРАММА	УЧЕБНОЙ ДИСЦИПЛ	ины	
	Цифровые и ана	алоговые устройства		
Напр	оавление подготовки 12.03.04	Биотехнические системь	и и технологии	
	профиль «Медицинские	информационные систем	PI»	
	Форма под	цготовки очная		
в том числе с ис всего часов ауди в том числе с ис самостоятельна: контрольные ра курсовая работа зачет <u>5</u> семестр	нятия <u>36</u> час. аботы <u>-не предусмотрены учебн</u> пользованием МАО <u>-</u> час. иторной нагрузки <u>54</u> час. пользованием МАО <u>-</u> час.	отрены учебным планом		
	мма составлена в соответстви го ДВФУ, утвержденного прика			
Рабочая програ «»	мма обсуждена на заседании2017г.	кафедры Приборостроен	ия, протокол № от	
	федрой: д.фм.н., профессор В. арший преподаватель Е.М.Тито			

Оборотная сторона титульного листа РПУД

І. Рабочая программа пер	есмотрена на засед	ании кафедры:		
Протокол от «»	20	_ г. №		
Заведующий кафедрой		B.И.Короченцев (И.О. Фамилия)		
	(подпись)	(И.О. Фамилия)		
П. Рабочая программа пе	ресмотрена на засед	дании кафедры:		
Протокол от «»	20	_ г. №		
Заведующий кафедрой		В.И.Короченцев		
	(подпись)	(И.О. Фамилия)		

ABSTRACT

Bachelor's degree in 12.03.04 Biotechnical Systems and Technologies.

Study profile "Medical information systems".

Course title: Digital and analog devices.

Variable part of Block 1, 3 credits.

Instructor: Volkov P.A.

At the beginning of the course a student should be able to: reveal naturalscience essence of the problems arising during professional activity, to attract the corresponding physical and mathematical apparatus to their decision (GPC-2); the ability to solve problems of analyzing and calculating the characteristics of electrical circuits (GPC-3).

Learning outcomes: the ability to solve problems of analyzing and calculating the characteristics of electrical circuits; the ability to search, store, process and analyze information from various sources and databases, to represent it in the required format using the information, computer and network technology (GPC-6); the ability to own the rules and methods of installation, configuration and adjustment of nodes biotechnical systems, including those associated with the inclusion of a human operator in the control loop biomedical and environmental electronics (SPC-8).

Course description: The concept of analog devices; operational amplifiers: parameters, basic op-amp circuits, amplifiers, filters, comparators; concept of digital devices; logical elements; digital ICs; combinational schemes; sequential circuits; development and analysis of digital devices.

Main course literature:

- 1. Volovich, G.I. Skhemotekhnika analogovykh i analogovo-tsifrovykh elektronnykh ustroystv [Circuitry analog and analog-digital electronic devices]. Moscow, DMK Press, 2018, 636p. (rus)
- 2. Rafikov, R.A. Elektronnyye tsepi i signaly. Analogovyye signaly i ustroystva [Electronic circuits and signals. Analog Signals and Devices]. St. Petersburg, Lan, 2017, 440p. (rus)
- 3. Bishop, O. Elektronnyye skhemy i sistemy [Electronic circuits and systems]. Moscow, DMK Press, 2016, 576p. (rus)

Form of final control: pass-fail exam.

Аннотация к рабочей программе дисциплины «Цифровые и аналоговые устройства»

Дисциплина предназначена для изучения студентами 3 курса в 6 семестре, обучающимися по направлению подготовки 12.03.04 Биотехнические системы и технологии, профиль «Медицинские информационные системы». Трудоемкость дисциплины составляет 3 з.е. (108 ч). Дисциплина входит в вариативную часть, дисциплины по выбору.

Дисциплина связана со следующими курсами: «Электротехника и электроника», «Микропроцессорная техника».

Целью дисциплины является изучение типовых функциональных узлов, модулей и компонентов цифровых и аналоговых устройств, их построение и работу.

Задачи:

- 1. Изучение принципов построения и применения цифровых устройств электроники; элементной базы цифровых устройств; основ расчета цифровых устройств;
- 2. Изучение принципов построения и применения аналоговых устройств электроники; основ расчета аналоговых устройств;
- 3. Ознакомление с правилами и методами монтажа, настройки и регулировки цифровых и аналоговых устройств.

В результате изучения данной дисциплины у студентов формируются следующие общепрофессиональные и профессиональные компетенции (элементы компетенций): способность осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий (ОПК-6); способность владеть настройки И правилами И методами монтажа, регулировки **У**ЗЛОВ биотехнических систем, в том числе связанных с включением человекаконтур управления биомедицинской экологической И электронной техники (ПК-8).

Код и		Этапы формирования компетенции		
формулировка компетенции				
(ОПК-6) Способность осуществлять поиск, хранение, обработку и анализ информации из различных	Знает	способы поиска, хранения, обработки и анализа информации из различных источников и баз данных, способы представления ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий		
источников и баз данных, представлять	Умеет	осуществлять поиск, хранение, обработку и анализ		

ее в требуемом формате с использованием информационных,		информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий
компьютерных и сетевых технологий	Владеет	навыками поиска, хранения, обработки и анализа информации из различных источников и баз данных, навыками представления ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий
(ПК-8) Способность владеть правилами и методами монтажа, настройки и	Знает	правила и методы монтажа, настройки и регулировки узлов биотехнических систем, в том числе связанных с включением человека- оператора в контур управления биомедицинской и экологической электронной техники
регулировки узлов биотехнических систем, в том числе связанных с включением человека-оператора в	Умеет	производить монтаж, настройку и регулировку узлов биотехнических систем, в том числе связанных с включением человека-оператора в контур управления биомедицинской и экологической электронной техники
контур управления биомедицинской и экологической электронной техники	Владеет	правилами и методами монтажа, настройки и регулировки узлов биотехнических систем, в том числе связанных с включением человека- оператора в контур управления биомедицинской и экологической электронной техники

Для формирования вышеуказанных компетенций в рамках дисциплины «Цифровые и аналоговые устройства» применяются следующие методы активного/интерактивного обучения: лекция-конференция, консультирование.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Раздел I. Аналоговые устройства (6 час.)

Тема 1. Операционные усилители (2 час.)

Общие сведения. Идеальный операционной усилитель. Стандартная схема операционного усилителя. Параметры операционных усилителей. Типы операционных усилителей. Дифференциальное включение. Инвертирующее включение. Однополярное питание операционных усилителей.

Тема 2. Функциональные устройства аналоговой электроники (4 час.)

Линейные аналоговые вычислительные схемы. Активные электрические фильтры. Измерительные усилители. Схемы нелинейного преобразования сигналов. Измерительные схемы. Компараторы.

Раздел II. Цифровые устройства (12 час.)

Тема 1. Введение в цифровую технику (2 час.)

Системы счисления. Цифровые микросхемы. Виды. Области применения. Описание. Логические элементы. Транзисторно-транзисторная логика. Логика на комплементарных МОП транзисторах. Bi-CMOS логика.

Тема 2. Комбинационные устройства (2 час.)

Законы алгебры логики. Синтез комбинационных схем по произвольной таблице истинности. Декодеры. Кодеры. Мультиплексоры. Демультиплексоры.

Тема 3. Триггеры (2 час.)

Построение триггерных схем. RS-триггеры. Статические D-триггеры. Метастабильность триггеров. Динамические D-триггеры. Т-триггеры. JK-триггер.

Тема 4. Счетчики (2 час.)

Асинхронные двоичные счётчики. Недвоичные счётчики с обратной связью. Недвоичные счётчики с предварительной записью. Синхронные кольцевые счётчики. Синхронные двоичные счётчики.

Тема 5. Регистры (2 час.)

Параллельные регистры. Последовательные регистры. Универсальные регистры.

Тема 6. Цифроаналоговые и аналого-цифровые преобразователи (2 час.)

Общие сведения. Параллельные ЦАП. Последовательные ЦАП. Применение ЦАП. Параллельные АЦП. Последовательные АЦП. Применение АЦП.

ІІ. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Практические занятия (36 час.)

Занятие 1. Основные схемы включения операционного усилителя (2 час.)

- 1. Схема повторителя напряжения.
- 2. Схема инвертирующего усилителя.
- 3. Схема неинвертирующего усилителя.
- 4. Дифференциальное включение.

Занятие 2. Однополярное питание операционных усилителей (2 час.)

- 1. Общие сведения.
- 2. Смещение операционного усилителя с однополярным питанием.
- 3. Введение искусственной нулевой точки.

4. Применение преобразователей напряжения.

Занятие 3. Схемы линейного преобразования сигналов (2 час.)

- 1. Источники напряжения, управляемые током.
- 2. Источники тока, управляемые напряжением.
- 3. Инверторы сопротивления.
- 4. Гираторы.

Занятие 4-5. Активные электрические фильтры (4 час.)

- 1. Основные понятия.
- 2. Фильтры нижних частот.
- 3. Фильтры верхних частот.
- 4. Полосовые фильтры.
- 5. Полосо-подавляющие фильтры.
- 6. Реализация фильтров на операционных усилителях.

Занятие 6. Измерительные усилители (2 час.)

- 1. Измерительный усилитель на одном операционном усилителе.
- 2. Измерительный усилитель на двух операционных усилителях.
- 3. Измерительный усилитель на трех операционных усилителях.
- 4. Применение измерительных усилителей.

Занятие 7. Схемы нелинейного преобразования сигналов (2 час.)

- 1. Логарифмирующие преобразователи.
- 2. Экспоненциальные преобразователи.
- 3. Прецизионные выпрямители.
- 4. Интегрирующая схема.
- 5. Дифференцирующая схема.

Занятие 8. Измерительные схемы (2 час.)

- 1. Измерение заряда.
- 2. Измерители амплитуды.
- 3. Фотоэлектрические измерения.
- 4. Мостовые измерительные схемы.
- 5. Измерение температуры.
- 6. Компараторы.

Занятие 9. Алгебра логики и логические функции (2 час.)

- 1. Алгебра логики. Упрощение логических выражений.
- 2. Представление логических функций.

- 3. Запись логической функции по таблице в виде СДНФ.
- 4. Запись логической функции по таблице в виде СКНФ.

Занятие 10-11. Построение логической схемы (4 час.)

- 1. Минимизация логических функций.
- 2. Преобразование логической функции в базис И-НЕ.
- 3. Преобразование логической функции в базис ИЛИ-НЕ.

Занятие 12. Логические элементы и схемы (2 час.)

- 1. Основные логические элементы.
- 2. Переход от логической функции к логической схеме.

Занятие 13. Преобразователи кодов (2 час.)

- 1. Дешифратор.
- 2. Шифратор.
- 3. Демультиплексор.
- 4. Мультиплексор.

Занятие 14. Триггеры (2 час.)

- 1. Асинхронный RS-триггер.
- 2. Синхронный RS-триггер.
- 3. Т-триггер.
- 4. D-триггер.
- 5. ЈК-триггер.

Занятие 15. Счетчики (2 час.)

- 1. Асинхронный счетчик.
- 2. Синхронный счетчик.
- 3. Реверсивный счетчик.
- 4. Десятичный счетчик.

Занятие 16. Регистры (2 час.)

- 1. Параллельный регистр со статическим входом тактирования.
- 2. Параллельный регистр с динамическим входом тактирования.
- 3. Сдвиговые регистры.
- 4. Универсальные регистры.

Занятие 17. Цифроаналоговые преобразователи (2 час.)

- 1. Параллельные ЦАП.
- 2. Последовательные ЦАП.

3. Применение ЦАП.

Занятие 18. Аналого-цифровые преобразователи (2 час.)

- 1. Параллельные АЦП.
- 2. АЦП последовательного счета.
- 3. АЦП последовательного приближения.
- 4. Интегрирующие АЦП.
- 5. Применение АЦП.

Лабораторные работы

Учебным планом проведение лабораторных занятий не предусмотрено.

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Цифровые и аналоговые устройства» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№ п/п	Контролируемые модули/ разделы /	Коды и этапы		е средства - нование
	темы дисциплины	формирования компетенций	текущий контроль	промежуточная аттестация
1	Аналоговые устройства	ОПК-6, ПК-8	УО, КЗ1	Зачет. Вопросы 1-15
2	Цифровые устройства	ОПК-6, ПК-8	УО, КЗ2	Зачет. Вопросы 16-36

УО - устный опрос, КЗ – контрольное задание.

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений,

навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Волович, Г.И. Схемотехника аналоговых и аналогово-цифровых электронных устройств [Электронный ресурс] / Г.И. Волович. Электрон. дан. Москва : ДМК Пресс, 2015. 636 с. Режим доступа: https://e.lanbook.com/book/107891 . Загл. с экрана.
- 2. Рафиков, Р.А. Электронные цепи и сигналы. Аналоговые сигналы и устройства [Электронный ресурс] : учебное пособие / Р.А. Рафиков. Электрон. дан. Санкт-Петербург : Лань, 2015. 440 с. Режим доступа: https://e.lanbook.com/book/95135 . Загл. с экрана.
- 3. Бишоп, О. Электронные схемы и системы [Электронный ресурс] : учебное пособие / О. Бишоп ; пер. с англ. Рабодзей А.Н.. Электрон. дан. Москва : ДМК Пресс, 2015. 576 с. Режим доступа: https://e.lanbook.com/book/93262 . Загл. с экрана.
- 4. Алексеев, Ю. Г. Королёв, А. Ю. Нисс, В. С. Паршуто, А. Э. Сорока, Е. В. Источник питания для исследования импульсных электрохимических процессов,

 2015

https://lib.dvfu.ru:8443/lib/item?federatedId=130420807&theme=FEFU

Дополнительная литература

- 1. Смирнов, Ю.А. Основы микроэлектроники и микропроцессорной техники [Электронный ресурс] : учебное пособие / Ю.А. Смирнов, С.В. Соколов, Е.В. Титов. Электрон. дан. Санкт-Петербург : Лань, 2013. 496 с. Режим доступа: https://e.lanbook.com/book/12948. Загл. с экрана.
- 2. Аверченков, О.Е. Основы схемотехники аналого-цифровых устройств [Электронный ресурс] : учебное пособие / О.Е. Аверченков. Электрон. дан.
- Москва : ДМК Пресс, 2012. 80 с. Режим доступа https://e.lanbook.com/book/4139. Загл. с экрана.
- 3. Аверченков, О.Е. Интегральные операционные усилители и их применение [Электронный ресурс] : учебное пособие / О.Е. Аверченков. Электрон. дан.
- Москва : ДМК Пресс, 2012. 87 с. Режим доступа https://e.lanbook.com/book/4138. Загл. с экрана.
- 4. Марченко, А.Л. Лабораторный практикум по электротехнике и электронике в среде Multisim [Электронный ресурс] : учебное пособие / А.Л. Марченко,

- С.В. Освальд. Электрон. дан. Москва : ДМК Пресс, 2010. 448 с. Режим доступа: https://e.lanbook.com/book/897. Загл. с экрана.
- 5. Марченко, А.Л. Основы электроники [Электронный ресурс] : учебное пособие / А.Л. Марченко. Электрон. дан. Москва : ДМК Пресс, 2010. 296 с. Режим доступа: https://e.lanbook.com/book/889. Загл. с экрана.

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. STMicroelectronics микроэлектронная компания, занимающихся разработкой, изготовлением и продажей различных полупроводниковых электронных и микроэлектронных компонентов: www.st.com.
- 2. Analog Devices компания, разрабатывающая, производящая и реализующая высокопроизводительные микросхемы обработки аналоговых, цифровых и смешанных сигналов: www.analog.com.
- 3. NXP Semiconductors поставщик высокопроизводительных смешанных цифро-аналоговых и стандартных полупроводниковых компонентов: www.nxp.com.
- 4. «Ангстрем» российская группа компаний, производитель интегральных схем: www.angstrem.ru.
- 5. Научная электронная библиотека eLIBRARY.RU: http://elibrary.ru.

Перечень информационных технологий и программного обеспечения

Программное обеспечение, доступное студентам для выполнения заданий по дисциплине, а также для организации самостоятельной работы:

Место расположения компьютерной техники, на котором установлено программное обеспечение, количество рабочих мест	Перечень программного обеспечения
Компьютерный класс кафедры Приборостроения, Ауд. Е628, 21	 Місгоѕоft Office Professional Plus 2016 – офисный пакет, включающий программное обеспечение для работы с различными типами документов; 7Zір 9.20 - свободный файловый архиватор с высокой степенью сжатия данных; ABBYY FineReader 11 - программа для оптического распознавания символов; Elcut 6.3 Student - программа для проведения инженерного анализа и двумерного моделирования методом конечных элементов (МКЭ); Adobe Acrobat XI Pro – пакет программ для создания и просмотра электронных публикаций в формате PDF; AutoCAD Electrical 2015 Language Pack – English - трёхмерная система автоматизированного проектирования и черчения;

- Mathcad I	Prime	3.1	Академи	ческий	- сис	тема
компьютерной	і алгеб	ры, ор	иентирог	ванная на	а подгот	овку
интерактивны	х до	кумен	гов с	вычисл	пениями	И
визуальным со	прово	ждение	em.			

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

На изучение дисциплины отводится 54 часа аудиторных занятий и 54 часа самостоятельной работы.

Для освоения дисциплины следует изучить источники из списка основной и дополнительной литературы, электронных образовательных ресурсов, охватывающих данную тему, рассматривать практические примеры по темам, выполнять задания на практических занятиях, выполнить контрольные задания, знакомиться с понятиями и определениями, находить ответы на вопросы для самоконтроля.

Рекомендации по подготовке к зачету.

По окончанию лекционного и практического курса следует заключительный этап самостоятельной работы студента по подготовке к зачету. При подготовке к зачету студенту следует повторить лекционный материал, изучить источники из списка литературы, подготовиться к ответу на все вопросы, включенные в «Перечень вопросов к зачету». Во время подготовки к зачету студент должен систематизировать знания, полученные им при изучении основных тем дисциплины в течение семестра. Это позволяет объединить отдельные темы в единую систему дисциплины.

Следует выделить последний день (либо часть его) перед зачетом для дополнительного повторения всего объема вопросов в целом. Это позволяет студенту самостоятельно перепроверить усвоение материала.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения лекционных и практических занятий, а также для организации самостоятельной работы студентам доступно следующее обеспечение:

Наименование оборудованных помещений и помещений для самостоятельной работы	Перечень основного оборудования					
Лаборатория	Частотомер Ф-551А; частотомер Ч3-34; Частотомер Ч3-					
Гидроакустических систем	32;					
кафедры приборостроения,	Ноутбук Lenovo ThinkPad X121e Black 11.6"					
ауд. Е 627	HD(1366x768) AMD E300.2GB DDR3.320GB					

	П.б
Лаборатория Шумо и	Лабораторные установки для проведения работ
	Акустический дефектоскоп УД2-12,
виброзащиты кафедры	Шумомер svan, акустический калибратор, генераторы
приборостроения, ауд. Е 629	звуковой частоты, милливольтметры, шумомеры ВШВ
приобростросния, ауд. Е 029	3М, комплект пружин для исследования виброизоляции,
	вибростол, осциллограф.
	Моноблок HP РгоОпе 400 All-in-One 19,5 (1600х900),
Компьютерный класс, Ауд.	Core i3-4150T, 4GB DDR3-1600 (1x4GB), 1TB HDD 7200
E628	SATA, DVD+/-RW,GigEth,Wi-Fi,BT,usb
	kbd/mse,Win7Pro (64-bit)+Win8.1Pro(64-bit),1-1-1 Wty
П	Моноблок HP РгоОпе 400 All-in-One 19,5 (1600x900),
Читальные залы Научной	Core i3-4150T, 4GB DDR3-1600 (1x4GB), 1TB HDD 7200
библиотеки ДВФУ с	SATA, DVD+/-RW,GigEth,Wi-Fi,BT,usb
открытым доступом к фонду	kbd/mse,Win7Pro (64-bit)+Win8.1Pro(64-bit),1-1-1 Wty
(корпус А - уровень 10)	Скорость доступа в Интернет 500 Мбит/сек.
	проектор 3-chip DLP, 10 600 ANSI-лм, WUXGA 1 920х1
	200 (16:10) PT-DZ110XE Panasonic; экран 316х500 см,
	16:10 с эл. приводом; крепление настенно-потолочное
	Elpro Large Electrol Projecta; профессиональная ЖК-
	панель 47", 500 Кд/м2, Full HD M4716CCBA LG;
Мунутуруонуйууод оулугарууд	
Мультимедийная аудитория	подсистема видеоисточников документ-камера
	CP355AF Avervision; подсистема видеокоммутации;
	подсистема аудиокоммутации и звукоусиления;
	подсистема интерактивного управления; беспроводные
	ЛВС обеспечены системой на базе точек доступа
	802.11a/b/g/n 2x2 MIMO(2SS)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА БИОМЕДИЦИНЫ

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине

«Цифровые и аналоговые устройства» Направление подготовки 12.03.04 Биотехнические системы и технологии профиль «Медицинские информационные системы»

Форма подготовки очная

Владивосток 2017

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1. Операционные усилители	1-2 неделя семестра	Изучение теоретических вопросов, подготовка к лекциям.	5 ч	устный опрос, КЗ1
2. Функциональные устройства аналоговой электроники	3-6 неделя семестра	Изучение теоретических вопросов, подготовка к лекциям.	10 ч	устный опрос, КЗ1
3. Введение в цифровую технику	7-8 неделя семестра	Изучение теоретических вопросов, подготовка к лекциям.	5 ч	устный опрос, КЗ2
4. Комбинационные устройства	9-10 неделя семестра	Изучение теоретических вопросов, подготовка к лекциям.	5 ч	устный опрос, КЗ2
5. Триггеры	11-12 неделя семестра	Изучение теоретических вопросов, подготовка к лекциям.	5 ч	устный опрос, КЗ2
6. Счетчики	13-14 неделя семестра	Изучение теоретических вопросов, подготовка к лекциям.	5 ч	устный опрос, КЗ2
7. Регистры	15-16 неделя семестра	Изучение теоретических вопросов, подготовка к лекциям.	5 ч	устный опрос, КЗ2
8. Цифроаналоговые и аналого-цифровые преобразователи	17 неделя семестра	Изучение теоретических вопросов, подготовка к лекциям.	5 ч	устный опрос, КЗ2
Сдача зачета	18 неделя семестра	Подготовка к сдаче зачета, сдача зачета.	9 ч	зачет

Рекомендации по самостоятельной работе студентов

Внеаудиторная самостоятельная работа включает в себя следующие

формы учебной деятельности:

- изучение основного и дополнительного теоретического материала по учебникам, пособиям, монографиям, периодической литературе;
- самостоятельное изучение дополнительного тематического материала курса;
 - подготовка к сдаче зачета.

Для самостоятельной работы предусмотрены следующие задания.

Задание к занятию 1. «Операционные усилители» (5 час.)

Изучить источники из списка литературы и электронных образовательных ресурсов, охватывающих данную тему, выбрать практические примеры по темам, ознакомиться с понятиями и определениями, сформулировать интересующие вопросы, найти ответы на вопросы для самоконтроля:

- 1. Что такое операционный усилитель.
- 2. Перечислите основные характеристики идеального операционного усилителя.
- 3. Перечислите выводы ОУ и укажите их назначение.
- 4. Зависимость коэффициента усиления от частоты.
- 5. Правила анализа схемы с операционным усилителем.
- 6. Блок-схема операционного усилителя.
- 7. Основные схемы включения операционного усилителя.

Задание к занятию 2-3. «Функциональные устройства аналоговой электроники» (10 час.)

Изучить источники из списка литературы и электронных образовательных ресурсов, охватывающих данную тему, выбрать практические примеры по темам, ознакомиться с понятиями и определениями, сформулировать интересующие вопросы, найти ответы на вопросы для самоконтроля:

- 1. Источник напряжения, управляемый током: схема, расчетные соотношения.
- 2. Источник тока, управляемый напряжением: схема, расчетные соотношения.
- 3. Виды и характеристики фильтров.
- 4. Реализация фильтров на операционных усилителях.
- 5. Измерительные усилители на операционных усилителях: схемы и свойства.
- 6. Логарифмирующий преобразователь: схема и свойства.
- 7. Экспоненциальный преобразователь: схема и свойства.
- 8. Выпрямители на операционных усилителях: схемы и свойства.
- 9. Компаратор на операционном усилителе: схема и свойства.

Задание к занятию 4. «Введение в цифровую технику» (5 час.)

Изучить источники из списка литературы и электронных образовательных ресурсов, охватывающих данную тему, выбрать практические примеры по темам, ознакомиться с понятиями и определениями, сформулировать интересующие вопросы, найти ответы на вопросы для самоконтроля:

- 1. Как перевести десятичное число в двоичное.
- 2. Как перевести двоичное число в десятичное.
- 3. Условно-графическое обозначение логических элементов.
- 4. Таблицы истинности логических элементов.
- 5. Свойства и применение ТТЛ логики.
- 6. Свойства и применение КМОП логики.
- 7. Свойства и применение ЭСЛ логики.
- 8. Свойства и применение Bi-CMOS логики.

Задание к занятию 5. «Комбинационные устройства» (5 час.)

Изучить источники из списка литературы и электронных образовательных ресурсов, охватывающих данную тему, рассмотреть примеры по теме, ознакомиться с понятиями и определениями, найти ответы на вопросы для самоконтроля:

- 1. Упрощение логических выражений.
- 2. Создание функций алгебры логики.
- 3. Способы упрощения логических выражений.
- 4. Преобразование логических выражений в базис.
- 5. Реализация логического выражения в схеме.
- 6. Определение, функции, условное изображение дешифратора.
- 7. Определение, функции, условное изображение шифратора.
- 8. Определение, функции, условное изображение мультиплексора.
- 9. Определение, функции, условное изображение демультиплексора.

Задание к занятию 6. «Триггеры» (5 час.)

Изучить источники из списка литературы и электронных образовательных ресурсов, охватывающих данную тему, рассмотреть примеры по теме, ознакомиться с понятиями и определениями, найти ответы на вопросы для самоконтроля:

- 1. Определите понятие "триггер".
- 2. Перечислите разновидности цифровых триггеров.
- 3. Каково условное графическое обозначение ЈК-триггера.
- 4. Каково условное графическое обозначение D-триггера.
- 5. Каково условное графическое обозначение RS-триггера.
- 6. Как функционирует JK-триггер при комбинации J = 1, K = 1 на входе.
- 7. Что означает динамическое управление триггерами

Задание к занятию 7. «Счетчики» (5 час.)

Изучить источники из списка литературы и электронных образовательных ресурсов, охватывающих данную тему, рассмотреть примеры по теме, ознакомиться с понятиями и определениями, найти ответы на вопросы для самоконтроля:

- 1. Назначение счетчиков.
- 2. Виды счетчиков.
- 3. Схемотехника счетчиков.

Задание к занятию 8. «Регистры» (5 час.)

Изучить источники из списка литературы и электронных образовательных ресурсов, охватывающих данную тему, рассмотреть примеры по теме, ознакомиться с понятиями и определениями, найти ответы на вопросы для самоконтроля:

- 1. Приведите структурную схему параллельного регистра.
- 2. Виды параллельных регистров.
- 3. Назначение параллельного регистра.
- 4. Приведите структурную схему сдвигающего регистра.
- 5. Назначение сдвигающего регистра.
- 6. Виды универсальных регистров.

Задание к занятию 9. «Цифроаналоговые и аналого-цифровые преобразователи» (5 час.)

Изучить источники из списка литературы и электронных образовательных ресурсов, охватывающих данную тему, рассмотреть примеры по теме, ознакомиться с понятиями и определениями, найти ответы на вопросы для самоконтроля:

- 1. Опишите работу 8-разрядного параллельного АЦП.
- 2. Что является основным достоинством параллельного АЦП?
- 3. Объясните принцип использования последовательного приближения в АЦП.
- 4. Опишите работу ЦАП с матрицей R-2R.
- 5. Сколько нужно компараторов для параллельного п-разрядного АЦП.

Критерии оценки устного ответа

100-85 баллов - если ответ показывает прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; свободное владение монологической речью, логичность и последовательность ответа; умение приводить примеры современных проблем изучаемой области.

85-76 - баллов - ответ, обнаруживающий прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; свободное владение монологической речью, логичность и последовательность ответа. Однако допускается одна - две неточности в ответе.

75-61 - балл - оценивается ответ, свидетельствующий в основном о знании процессов изучаемой предметной области, отличающийся недостаточной глубиной и полнотой раскрытия темы; знанием основных вопросов теории; слабо сформированными навыками анализа явлений, процессов, недостаточным умением давать аргументированные ответы и приводить примеры; недостаточно свободным владением монологической речью, логичностью и последовательностью ответа. Допускается несколько ошибок в содержании ответа; неумение привести пример развития ситуации, провести связь с другими аспектами изучаемой области.

60-50 баллов - ответ, обнаруживающий незнание процессов изучаемой предметной области, отличающийся неглубоким раскрытием темы; незнанием основных вопросов теории, несформированными навыками анализа явлений, процессов; неумением давать аргументированные ответы, слабым владением монологической речью, отсутствием логичности и последовательности. Допускаются серьезные ошибки в содержании ответа; незнание современной проблематики изучаемой области.

Методические указания по подготовке к зачету

По окончанию лекционного И практического курса следует заключительный этап самостоятельной работы студента по подготовке к зачету. При подготовке к зачету студенту следует повторить лекционный материал, изучить источники из списка литературы, подготовиться к ответу на все вопросы, включенные в «Перечень вопросов к зачету» и «Перечень типовых практических заданий для зачета». Во время подготовки к зачету студент должен систематизировать знания, полученные им при изучении основных тем дисциплины в течение семестра. Это позволяет объединить отдельные темы в единую систему дисциплины. Следует выделить последний день (либо часть его) перед зачетом для дополнительного повторения всего объема вопросов в целом. Это позволяет студенту самостоятельно перепроверить усвоение материала.

Критерии оценивания студента на зачете

Баллы Оц	ценка Требования к сформиров	занным компетенциям
----------	------------------------------	---------------------

(рейтингов	зачета	
ой оценки)		
86-100	«зачтено»	Выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с практическими заданиями, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение.
76-85	«зачтено»	Выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических заданий, владеет необходимыми навыками и приемами их выполнения.
61-75	«зачтено»	Выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практического задания.
0-60	«незачтено»	Выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, не выполняет практическое задание.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА БИОМЕДИЦИНЫ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Цифровые и аналоговые устройства»

Направление подготовки 12.03.04 Биотехнические системы и технологии

профиль «Медицинские информационные системы»

Форма подготовки очная

Владивосток 2017

Паспорт ФОС

Код и формулировка компетенции		Этапы формирования компетенции
(ОПК-6) Способность осуществлять поиск, хранение, обработку	Знает	способы поиска, хранения, обработки и анализа информации из различных источников и баз данных, способы представления ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий
и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с	Умеет	осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий
использованием информационных, компьютерных и сетевых технологий	Владеет	навыками поиска, хранения, обработки и анализа информации из различных источников и баз данных, навыками представления ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий
(ПК-8) Способность владеть правилами и методами монтажа, настройки и	Знает	правила и методы монтажа, настройки и регулировки узлов биотехнических систем, в том числе связанных с включением человека- оператора в контур управления биомедицинской и экологической электронной техники
регулировки узлов биотехнических систем, в том числе связанных с включением человека-оператора в	Умеет	производить монтаж, настройку и регулировку узлов биотехнических систем, в том числе связанных с включением человека-оператора в контур управления биомедицинской и экологической электронной техники
контур управления биомедицинской и экологической электронной техники	Владеет	правилами и методами монтажа, настройки и регулировки узлов биотехнических систем, в том числе связанных с включением человека- оператора в контур управления биомедицинской и экологической электронной техники

№ п/п	Контролируемые модули/ разделы /	Коды и этапы	•	ие средства - нование
	темы дисциплины	формирования	текущий	промежуточная
		компетенций	контроль	аттестация
1	Аналоговые	ОПК-6, ПК-8	УО, КЗ1	Зачет.
	устройства			Вопросы 1-15
2	Цифровые	ОПК-6, ПК-8	УО, КЗ2	Зачет.
	устройства			Вопросы 16-36

УО - устный опрос, КЗ – контрольное задание.

Шкала оценивания уровня сформированности компетенций

Код и формулировка компетенции	Этапы формиро компетенции	вания	критерии	показатели	баллы
(ОПК-6) Способность осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и	как осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий		знание методов поиска, хранения, обработки и анализа информации из различных источников и баз данных, представлять ее в требуемом формате с использование м информационн ых технологий		45-64
сетевых технологий	умеет (продвинутый)	осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий	умение осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате	способность извлекать информацию из различных источников и баз данных, представлять ее в требуемом формате. Способность представлять информацию в требуемом формате с использованием информационны х, компьютерных и сетевых	65-84
	владеет (высокий)	навыками работы по поиску, хранению и обработке информации	владение навыками работы по поиску, хранению и обработке информации	технологий способность анализировать, сравнивать, и обосновывать используемые методы информационны х технологий	85-100
(ПК-8) Способность владеть правилами и методами монтажа, настройки и регулировки узлов биотехнических систем, в том числе связанных с включением человека- оператора в контур управления биомедицинской и экологической	знает (пороговый уровень)	правила и методы монтажа, настройки и регулировки узлов биотехнических систем, в том числе связанных с включением человека- оператора в контур управления биомедицинской и экологической электронной техники	знание правил и методов монтажа, настройки и регулировки узлов биотехнически х систем, в том числе связанных с включением человека- оператора в контур управления биомедицинско	Способность назвать правила и методы монтажа, настройки и регулировки узлов биотехнических систем, в том числе связанных с включением человека- оператора в контур управления биомедицинской	45-64

электронной			йи	и экологической	
техники			экологической	электронной	
			электронной	техники	
			техники		
			умение	Способность	65-84
			применять	применять	
			правила и	правила и	
		применять	методы	методы монтажа,	
		правила и методы	монтажа,	настройки и	
		монтажа,	настройки и	регулировки	
		настройки и	регулировки	узлов	
		регулировки узлов	узлов	биотехнических	
		биотехнических	биотехнически	систем, в том	
		систем, в том	х систем, в том	числе связанных	
	умеет	числе связанных с	числе	с включением	
	(продвинутый)	включением	связанных с	человека-	
		человека-	включением	оператора в	
		оператора в	человека-	контур	
		контур управления биомедицинской и	оператора в	управления биомедицинской	
		экологической	контур управления	и экологической	
		электронной	биомедицинско	электронной	
		техники	йи	техники	
			экологической		
			электронной		
			техники		
			владение	Овладение	85-100
			правилами и	правилами и	
		правилами и	методами	методами	
		методами	монтажа,	монтажа,	
		монтажа,	настройки и	настройки и	
		настройки и	регулировки	регулировки	
		регулировки узлов	узлов	узлов	
		биотехнических	биотехнически	биотехнических	
		систем, в том	х систем, в том	систем, в том	
	владеет	числе связанных с	числе	числе связанных	
	(высокий)	включением	связанных с включением	с включением человека-	
		человека-	человека-	оператора в	
		оператора в	оператора в	контур	
		контур управления	контур	управления	
		биомедицинской и	управления	биомедицинской	
		экологической	биомедицинско	и экологической	
		электронной	йи	электронной	
		техники	экологической	техники	
			электронной		
			техники		

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Текущая аттестация студентов. Текущая аттестация студентов по дисциплине «Цифровые и аналоговые устройства» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Текущая аттестация по дисциплине «Цифровые и аналоговые устройства» проводится в форме контрольных мероприятий (устного опроса, выполнения контрольных заданий) по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Объектами оценивания выступают:

- учебная дисциплина (активность на занятиях, своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
- степень усвоения теоретических знаний;
- уровень овладения практическими умениями и навыками по всем видам учебной работы;
- -результаты самостоятельной работы.

Учебная дисциплина оценивается количеством посещенных занятий по дисциплине.

Степень усвоения теоретических знаний оценивается с помощью устного опроса по каждой теме.

Уровень овладения практическими умениями и навыками по всем видам учебной работы с помощью выполнения контрольных заданий 1 и контрольных заданий 2. На основе типовых контрольных заданий 1 формируются варианты для контрольного задания 1, состоящие из 4 заданий. На основе типовых контрольных заданий 2 формируются варианты для контрольного задания 2, состоящие из 4 заданий. Варианты компонуются так, чтобы задания были из разных тем.

Результаты самостоятельной работы оцениваются устным опросом и проверкой выполнения контрольных заданий.

Критерии оценки устного ответа

- 100-85 баллов если ответ показывает прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; свободное владение монологической речью, логичность и последовательность ответа; умение приводить примеры современных проблем изучаемой области.
- 85-76 баллов ответ, обнаруживающий прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; свободное владение монологической речью, логичность и последовательность ответа. Однако допускается одна две неточности в ответе.
- 75-61 балл оценивается ответ, свидетельствующий в основном о знании процессов изучаемой предметной области, отличающийся недостаточной глубиной и полнотой раскрытия темы; знанием основных вопросов теории; слабо сформированными навыками анализа явлений,

процессов, недостаточным умением давать аргументированные ответы и приводить примеры; недостаточно свободным владением монологической речью, логичностью и последовательностью ответа. Допускается несколько ошибок в содержании ответа; неумение привести пример развития ситуации, провести связь с другими аспектами изучаемой области.

60-50 баллов - ответ, обнаруживающий незнание процессов изучаемой предметной области, отличающийся неглубоким раскрытием темы; незнанием основных вопросов теории, несформированными навыками анализа явлений, процессов; неумением давать аргументированные ответы, слабым владением монологической речью, отсутствием логичности и последовательности. Допускаются серьезные ошибки в содержании ответа; незнание современной проблематики изучаемой области.

Промежуточная аттестация студентов. Промежуточная аттестация студентов по дисциплине «Цифровые и аналоговые устройства» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Согласно учебному плану, видом промежуточной аттестации по дисциплине «Цифровые и аналоговые устройства» предусмотрен «зачет», который проводится в устной форме: устный опрос в форме ответов на вопросы для зачета и выполнение практических заданий. Для каждого обучающегося из перечня вопросов к зачету случайным образом выбирается три вопроса из разных тем, к ним добавляется одно практическое задание, сформированное на основе перечня типовых практических заданий для зачета.

Оценочные средства для промежуточной аттестации Перечень вопросов к зачету.

- 1. Операционный усилитель. Основные параметры.
- 2. Основные схемы включения операционного усилителя.
- 3. Однополярное питание операционных усилителей.
- 4. Источники напряжения, управляемые током.
- 5. Источники тока, управляемые напряжением.
- 6. Инверторы сопротивления.
- 7. Активные электрические фильтры.
- 8. Реализация фильтров на операционных усилителях.
- 9. Измерительные усилители.
- 10. Логарифмирующие преобразователи.
- 11. Экспоненциальные преобразователи.
- 12.Интегрирующая схема.
- 13. Дифференцирующая схема.

- 14.Измерительные схемы на ОУ.
- 15. Аналоговые компараторы.
- 16. Алгебра логики. Упрощение логических выражений.
- 17. Запись логической функции по таблице в виде СДНФ.
- 18. Запись логической функции по таблице в виде СКНФ.
- 19. Минимизация логических функций.
- 20. Преобразование логической функции в базис.
- 21.Основные логические элементы. Переход от логической функции к логической схеме.
- 22. Дешифратор.
- 23. Шифратор.
- 24. Демультиплексор.
- 25. Мультиплексор.
- 26. Триггеры.
- 27.Счетчики.
- 28. Параллельный регистр.
- 29. Сдвиговый регистр.
- 30. Универсальный регистр.
- 31.Параллельные ЦАП.
- 32.Последовательные ЦАП.
- 33.Параллельные АЦП.
- 34.АЦП последовательного счета.
- 35.АЦП последовательного приближения.
- 36.Интегрирующие АЦП.

Перечень типовых практических заданий для зачета

- 1. Предложить схему фильтра нижних частот 4 порядка на операционных усилителях, имеющую следующие параметры: частота среза на уровне -3 дБ: 10 Гц; усиление в полосе пропускания: 1; однополярное питание; напряжение источника питания 3 В.
- 2. Предложить схему фильтра нижних частот 2 порядка на операционных усилителях, имеющую следующие параметры: частота среза на уровне -3 дБ: 300 Гц; усиление в полосе пропускания: 10; однополярное питание; напряжение источника питания 12 В.
- 3.Предложить схему фильтра нижних частот 2 порядка на операционных усилителях, имеющую следующие параметры: частота среза на уровне -3 дБ: 1000 Гц; усиление в полосе пропускания: 20; двухполярное питание; напряжение источника питания 12 В.
- 4. Предложить схему фильтра нижних частот 4 порядка на операционных усилителях, имеющую следующие параметры: частота среза на уровне -3 дБ:

- 2000 Гц; усиление в полосе пропускания: 2; двухполярное питание; напряжение источника питания 9 В.
- 5. Предложить схему фильтра верхних частот 2 порядка на операционных усилителях, имеющую следующие параметры: частота среза на уровне -3 дБ: 300 Гц; усиление в полосе пропускания: 10; однополярное питание; напряжение источника питания 3 В.
- 6. Предложить схему фильтра верхних частот 4 порядка на операционных усилителях, имеющую следующие параметры: частота среза на уровне -3 дБ: 5000 Гц; усиление в полосе пропускания: 100; однополярное питание; напряжение источника питания 12 В.
- 7. Предложить схему фильтра верхних частот 2 порядка на операционных усилителях, имеющую следующие параметры: частота среза на уровне -3 дБ: 20000 Гц; усиление в полосе пропускания: 1; двухполярное питание; напряжение источника питания 15 В.
- 8. Предложить схему фильтра верхних частот 2 порядка на операционных усилителях, имеющую следующие параметры: частота среза на уровне -3 дБ: 1000 Гц; усиление в полосе пропускания: 5; двухполярное питание; напряжение источника питания 10 В.
- 9. Предложить схему повторителя напряжения на операционном усилителе, параметры для расчета: входное напряжение: от -2 В до 2 В, максимальная частота входного сигнала: 100 кГц.
- 10. Предложить схему инвертирующего усилителя на операционном усилителе, параметры для расчета: входное напряжение: от -7 В до 7 В, коэффициент усиления: 2, максимальная частота входного сигнала: 3 кГц.
- 11. Предложить схему неинвертирующего усилителя на операционном усилителе, параметры для расчета: входное напряжение: от -1 В до 1 В, коэффициент усиления: 10, максимальная частота входного сигнала: 20 кГц.
- 12. Предложить схему дифференциального усилителя на операционном усилителе, параметры для расчета: разность входных напряжений Uвх1-Uвх2 от -1.25 B до 1.25 B, соответствующее ей выходное напряжение: от -2.5 B до 2.5 B.
- 13. Предложить схему преобразователя входного тока в напряжение на операционном усилителе, параметры для расчета: минимальный входной ток:
- 0 А, максимальный входной ток: 50 мкА, соответствующее выходное напряжение: от 0 В до 5 В, максимальная частота входного сигнала: 10 кГц.
- 14. Предложить схему, измеряющую однополярный ток на операционном усилителе, параметры для расчета: минимальный входной ток: 0 A, максимальный входной ток: 1 A, соответствующее выходное напряжение: от 0 B до 4.9 B

- 15. Предложить схему, выполняющую интегрирование входного сигнала на операционном усилителе, параметры для расчета: минимальная частота 100 Гц, частота единичного усиления: 1 кГц, максимальная частота: 100 кГц, минимальное выходное напряжение: -2.45 В, максимальное выходное напряжение: 2.45 В.
- 16. Записать логическую функцию Y четырех переменных X0, X1, X2, X3, представленную в виде ниже приведенной таблицы, в СКНФ. Упростить выражение для СКНФ, используя диаграмму Вейча. Преобразовать упрощенное выражение в базис ИЛИ-НЕ. Нарисовать схему, реализующую преобразованное выражение.

			Вход	ı	Выход
Nº	Х3	X2	X1	X0	Υ
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

17. Записать логическую функцию Y четырех переменных X0, X1, X2, X3, представленную в виде ниже приведенной таблицы, в СКНФ. Упростить выражение для СКНФ, используя диаграмму Вейча. Преобразовать упрощенное выражение в базис ИЛИ-НЕ. Нарисоват схему, реализующую преобразованное выражение.

			Вход	ı	Выход
Nº	Х3	X2	X1	X0	Υ
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1

ĺ	13	1	1	0	1	1
	14	1	1	1	0	1
	15	1	1	1	1	0

18. Записать логическую функцию Y четырех переменных X0, X1, X2, X3, представленную в виде ниже приведенной таблицы, в СКНФ. Упростить выражение для СКНФ, используя диаграмму Вейча. Преобразовать упрощенное выражение в базис ИЛИ-НЕ. Нарисоват схему, реализующую преобразованное выражение.

Pec	Р	Вход					
Nº	Х3	X2	X1	X0	Υ		
0	0	0	0	0	0		
1	0	0	0	1	1		
2	0	0	1	0	1		
3	0	0	1	1	1		
4	0	1	0	0	0		
5	0	1	0	1	1		
6	0	1	1	0	1		
7	0	1	1	1	0		
8	1	0	0	0	0		
9	1	0	0	1	1		
10	1	0	1	0	1		
11	1	0	1	1	1		
12	1	1	0	0	0		
13	1	1	0	1	1		
14	1	1	1	0	1		
15	1	1	1	1	0		

19. Записать логическую функцию Y четырех переменных X0, X1, X2, X3, представленную в виде ниже приведенной таблицы, в СКНФ. Упростить выражение для СКНФ, используя диаграмму Вейча. Преобразовать упрощенное выражение в базис ИЛИ-НЕ. Нарисовать схему, реализующую преобразованное выражение.

			Вход		Выход
Nº	Х3	X2	X1	X0	Υ
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

20. Записать логическую функцию Y четырех переменных X0, X1, X2, X3, представленную в виде ниже приведенной таблицы, в СДНФ. Упростить выражение для СДНФ, используя диаграмму Вейча. Преобразовать упрощенное выражение в базис И-НЕ. Нарисовать схему, реализующую преобразованное выражение.

	1 1					
		Выход				
Nº	Х3	X2	X1	X0	Υ	
0	0	0	0	0	1	
1	0	0	0	1	1	
2	0	0	1	0	0	
3	0	0	1	1	0	
4	0	1	0	0	1	
5	0	1	0	1	1	
6	0	1	1	0	0	
7	0	1	1	1	0	
8	1	0	0	0	0	
9	1	0	0	1	0	
10	1	0	1	0	0	
11	1	0	1	1	0	
12	1	1	0	0	0	
13	1	1	0	1	0	
14	1	1	1	0	0	
15	1	1	1	1	0	

21. Записать логическую функцию Y четырех переменных X0, X1, X2, X3, представленную в виде ниже приведенной таблицы, в СДНФ. Упростить выражение для СДНФ, используя диаграмму Вейча. Преобразовать упрощенное выражение в базис И-НЕ. Нарисовать схему, реализующую преобразованное выражение.

			Вход	Вход					
Nº	Х3	X2	X1	X0	Υ				
0	0	0	0	0	1				
1	0	0	0	1	1				
2	0	0	1	0	0				
3	0	0	1	1	0				
4	0	1	0	0	0				
5	0	1	0	1	0				
6	0	1	1	0	1				
7	0	1	1	1	1				
8	1	0	0	0	0				
9	1	0	0	1	0				
10	1	0	1	0	1				
11	1	0	1	1	0				
12	1	1	0	0	0				
13	1	1	0	1	0				
14	1	1	1	0	1				
15	1	1	1	1	0				

22. Записать логическую функцию Y четырех переменных X0, X1, X2, X3, представленную в виде ниже приведенной таблицы, в СДНФ. Упростить выражение для СДНФ, используя диаграмму Вейча. Преобразовать

упрощенное выражение в базис И-НЕ. Нарисовать схему, реализующую преобразованное выражение.

	_		Выход		
Nº	Х3	X2	Вход Х1	X0	Υ
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

23. Записать логическую функцию Y четырех переменных X0, X1, X2, X3, представленную в виде ниже приведенной таблицы, в СДНФ. Упростить выражение для СДНФ, используя диаграмму Вейча. Преобразовать упрощенное выражение в базис И-НЕ. Нарисовать схему, реализующую преобразованное выражение.

1	1				1
		Вход			Выход
Nº	Х3	X2	X1	X0	Υ
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

Критерии оценивания студента на зачете

		· · · · · · · · · · · · · · · · · · ·
Баллы	Оценка	The foregree a change property was well a constant and a
(рейтингов	зачета	Требования к сформированным компетенциям
ой опенки)		

86-100	«зачтено»	Выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с практическими заданиями, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение.	
76-85	«зачтено»	Выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических заданий, владеет необходимыми навыками и приемами их выполнения.	
61-75	«зачтено»	Выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практического задания.	
0-60	«незачтено»	Выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, не выполняет практическое задание.	

Оценочные средства для текущей аттестации Типовые контрольные задания для текущей аттестации

Типовые контрольные задания 1

- 1. Опишите, что такое скорость нарастания напряжения на выходе ОУ.
- 2. Перечислите выводы ОУ и укажите их назначение.
- 3. Опишите, как изменяется коэффициент усиления ОУ с разомкнутой цепью ОС при изменении частоты входного сигнала от постоянного тока до 100 МГц?
- 4. Разработайте схему инвертирующего усилителя с коэффициентом усиления 200 с использованием идеального ОУ.
- 5. Разработайте схему неинвертирующего усилителя с коэффициентом усиления 101 с использованием идеального ОУ.
- 6. Объясните, почему в инвертирующем усилителе на ОУ возникает виртуальная земля.
- 7. Что такое напряжение смещения нуля, как его измерить и как устранить.
- 8. Объясните значение: произведения полосы пропускания на коэффициент усиления.
- 9. Объясните значение: частота единичного усиления.

- 10.Опишите работу повторителя напряжения на ОУ и приведите пример его применения.
- 11.В каком случае предпочтительнее использовать неинвертирующий усилитель, а не инвертирующий.
- 12.Перечислите основные характеристики идеального операционного усилителя.
- 13.Почему в усилительных устройствах ОУ не используется без цепей отрицательной обратной связи
- 14.Перечислите и обоснуйте достоинства активных фильтров, по сравнению с пассивными фильтрами.
- 15. Разработайте фильтр низкой частоты первого порядка с частотой среза 15 кГп.
- 16. Разработайте фильтр высокой частоты первого порядка с частотой среза 20 Гц.
- 17. Расскажите о принципе работы фильтра низкой частоты второго порядка и объясните, почему его характеристики лучше, чем у фильтра первого порядка.
- 18. Разработайте полосовой фильтр, состоящий из фильтров низких и высоких частот первого порядка. Нижняя частота среза должна быть 2 кГц, верхняя частота среза 5 кГц, коэффициент усиления на центральной частоте 1,5.
- 19.Объясните принцип работы полосового фильтра с отрицательными обратными связями. Почему его АЧХ отличается от АЧХ полосового фильтра, построенного путем последовательного соединения фильтров низкой и высокой частот?
- 20. Начертите структуры трех различных типов активных фильтров.
- 21. Разработайте схему для смешивания трех звуковых сигналов, причем два из них имеют равную амплитуду, а третий половину от их амплитуды. В выходном сигнале все три входных сигнала должны быть представлены в равных долях.
- 22. Объясните, как применение дифференциальных усилителей позволяет выделять слабые сигналы на фоне больших помех.
- 23.Опишите, как с помощью моста Уитстона измерить неизвестное сопротивление.
- 24.Объясните, как работает интегратор на операционном усилителе при постоянном входном напряжении.
- 25.Как можно использовать интегратор в качестве генератора пилообразного напряжения?
- 26.Опишите работу инвертирующего триггера Шмитта на операционном усилителе.

- 27. Опишите работу неинвертирующего триггера Шмитта на операционном усилителе.
- 28.В чем состоит преимущество применения дифференциального усилительного каскада в качестве входного каскада ОУ.
- 29. Что такое дифференциальный входной сигнал ОУ.
- 30. Что такое синфазный входной сигнал ОУ.
- 31.Как определяется КОСС.
- 32. Нарисуйте примерные графики статической передаточной характеристики Uвых=f(Uвх) для инвертирующего и неинвертирующего включений ОУ с учетом смещения нуля и насыщения усилителя.
- 33. Какое из входных сопротивлений ОУ (синфазное или дифференциальное) больше и почему.
- 34.В чем заключается преимущество нескорректированного ОУ перед аналогичным ОУ с полной внутренней коррекцией.
- 35. Чем определяются величины резисторов и их соотношение на неинвертирующем входе ОУ в дифференциальном включении.
- 36.Почему резистор, компенсирующий смещение нуля, обусловленное входными токами ОУ, не применяют в усилителях с полевыми транзисторами.
- 37. Можно ли в схеме с двухполярным питанием применить ОУ, предназначенный для использования в схемах с однополярным питанием.
- 38. Можно ли в схеме с однополярным питанием применить ОУ, предназначенный для использования в схемах с двухполярным питанием. Если можно, то, при каких ограничениях.
- 39. Увеличение сопротивлений резисторов в цепях обратной связи ОУ уменьшает нагрузку усилителя и снижает потребление энергии. Почему же эти сопротивления не выбирают очень большими. Чем определяется максимальная величина резистора обратной связи.
- 40. Приведите примеры использования ОУ в устройствах, выполняющих различные математические операции.
- 41. Какой характер имеет входное сопротивление интегратора в области низких частот, высоких частот.
- 42. Если на вход ОУ, включенного по схеме интегратора, подается напряжение симметричной прямоугольной формы (меандр), то сигнал какой формы можно ожидать на выходе.
- 43. Каковы преимущества активных частотных фильтров перед пассивными.
- 44. Дайте качественное сравнение фильтров Баттерворта и Бесселя.

- 45.В чем преимущество фильтра более высокого порядка по сравнению с фильтром более низкого порядка, имеющим ту же полосу пропускания.
- 46. Чем определяется динамический диапазон логарифмирующего преобразователя.
- 47. Каково преимущество схемы логарифмирующего преобразователя с биполярным транзистором по сравнению со схемой с диодом.
- 48. Чем объясняется нежелательность применения пассивных выпрямителей на диодах в измерительных схемах.
- 49.В чем преимущество инвертирующих измерительных однополупериодных выпрямителей перед неинвертирующими.
- 50. Каковы преимущества интегрального компаратора по сравнению со схемой компаратора на ОУ.
- 51.К каких случаях применение ОУ в качестве компаратора может быть предпочтительно.

Типовые контрольные задания 2

- 1. Запишите десятичное число 30 в двоичном коде.
- 2. Запишите двоичное число 0111010 в десятичном коде.
- 3. Укажите уровни напряжения интегральных микросхем триггеров серии ТТЛ, принимаемые за логическую 1 и логический 0 при напряжении питания 5 В.
- 4. Составьте таблицы истинности и нарисуйте схемное обозначение трехвходовых логических элементов: а) И, ИЛИ, И-НЕ и ИЛИ-НЕ; б) 2ИЛИ-НЕ.
- 5. Определите число возможных бинарных комбинаций типа 0 и 1 для логической функции с числом аргументов: a) n = 3; б) n = 5.
- 6. Каково выражение логической функции двух переменных x1 и x2, реализуемой элементом «стрелка Пирса».
- 7. Каково выражение логической функции двух переменных x1 и x2, реализуемой элементом «штрих Шеффера».
- 8. Условно-графическое обозначение элемента ИЛИ.
- 9. Условно-графическое обозначение элемента И.
- 10. Условно-графическое обозначение элемента НЕ.
- 11. Начертите таблицу истинности элемента 2ИЛИ
- 12. Начертите таблицу истинности элемента 2И
- 13. Начертите таблицу истинности элемента НЕ
- 14. Начертите таблицу истинности для элементов И, И-НЕ, ИЛИ и НЕ-ИЛИ.
- 15. Сравните серии ИС 4000В с 74LSXX по требованиям к их источникам питания.

- 16.Сравните серии ИС 4000В с 74LSXX по быстродействию и помехоустойчивости.
- 17. Укажите, в каких случаях для реализации схемы больше подходят биполярные ИС, а в каких КМОП.
- 18.Объясните, как достигается быстродействие ЭСЛ ИС, какие проблемы при этом возникают.
- 19. Упростите выражение и начертите его таблицу истинности: $\overline{A \bullet B + \overline{A} \bullet \overline{B}}.$
- 20.Начертите схему, соответствующую логическому выражению: $Z = \overline{A} \bullet B \bullet C + A \bullet \overline{B} \bullet C + A \bullet B \bullet \overline{C} + A \bullet B \bullet C.$
- 21. Упростите выражение, и начертите эквивалентную схему: $Z = AB + A\overline{B} + \overline{A}B$
- 22. Упростите выражение, и начертите эквивалентную схему: $Z = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$
- 23. Упростите выражение, и начертите эквивалентную схему: $Z = A \cdot 1 + A \cdot 1 + B \cdot 0$
- 24. Упростите выражение, и начертите эквивалентную схему: $Z = (A + B) \cdot (A + C)$
- 25. Упростите выражение, и начертите эквивалентную схему: $Z = \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D$
- 26.В чём заключается минимизация ФАЛ с помощью диаграммы Вейча.
- 27.В чём заключается минимизация недоопределённой ФАЛ.
- 28. Какое устройство следует использовать для решения задачи: преобразования двоично-десятичного кода в десятичный для управления индикатором.
- 29. Какое устройство следует использовать для решения задачи: преобразование десятичных чисел в двоичные.
- 30. Какое устройство следует использовать для коммутации в заданном порядке сигналов, поступающих с нескольких входных шин на одну выходную.
- 31. Какое устройство следует использовать для распределения в требуемой последовательности по нескольким выходам сигналов с одного информационного входа.
- 32. Сколько выходов у дешифратора при трех информационных входах.
- 33.Сколько выходов у шифратора при четырех информационных входах.

- 34. Разработайте 3-разрядный преобразователь двоичного кода в десятеричный, используя только элементы ИЛИ-НЕ.
- 35. Объясните, как работает мультиплексор с двумя входами.
- 36. Разработайте 3-входовый мультиплексор с входом блокировки и двумя выходами инвертирующим и неинвертирующим.
- 37. Разработайте 4-входовый мультиплексор с использованием только элементов ИЛИ-НЕ.
- 38.Опишите приемы, используемые для построения систем с произвольными таблицами истинности, используемые в случаях, когда схема на логических элементах оказывается чрезмерно сложной.
- 39. Объясните, как работает триггер, собранный из двух элементов И-НЕ.
- 40. Начертите графики изменений состояний входа и выхода, описывающие работу счетного триггера.
- 41.Объясните, как соединить D-триггеры для построения асинхронного счетчика.
- 42. Какой основной недостаток у асинхронного счетчика? Объясните, как в синхронном счетчике этот недостаток преодолен.
- 43. Опишите работу десятичного счетчика с выходами «1 на 10»
- 44. Начертите схему регистра сдвига с последовательным входом и параллельным выходом. В схеме используйте 4 триггера D-типа. Объясните, как эта схема работает.
- 45. Объясните, как работает счетчик Джонсона.
- 46. Дайте определение и условное изображение дешифратора.
- 47. Дайте определение и условное изображение шифратора.
- 48. Каковы назначение и функциональная схема мультиплексора.
- 49. Каковы назначение и функциональная схема демультиплексора.
- 50.Определите понятие "триггер".
- 51.Перечислите разновидности цифровых триггеров.
- 52.Проанализируйте работу асинхронного RS-триггера.
- 53. Какая комбинация входных сигналов является запрещенной для асинхронного RS-триггера.
- 54. Каково условное графическое обозначение ЈК-триггера.
- 55. Каково условное графическое обозначение RS-триггера.
- 56. Как функционирует JK-триггер при комбинации J = 1, K = 1 на входе.
- 57. Изложите особенности работы универсального ЈК-триггера.
- 58. Что означает динамическое управление тригтерами
- 59. Чем отличается динамическое управление триггерами от статического управления.
- 60.В каком виде фиксируется в счетчике число поступивших на его вход импульсов.

- 61.Укажите, чему равен модуль М пересчета двоичного п-разрядного счетчика.
- 62. Укажите необходимое число выходов двоичного счетчика для выдачи результатов счета 28 импульсов.
- 63.Сколько триггеров должен иметь двоично-кодированный счетчик с коэффициентом пересчета M=8.
- 64.Поясните принцип функционирования трёхразрядного счётчика импульсов.
- 65. Приведите схему десятичного счётчика импульсов.
- 66. Приведите структурную схему параллельного регистра.
- 67. Приведите структурную схему сдвигающего регистра.
- 68.Опишите работу 8-разрядного параллельного АЦП.
- 69. Что является основным достоинством параллельного АЦП?
- 70. Объясните принцип использования последовательного приближения в АЦП.
- 71. Опишите работу ЦАПа с матрицей R-2R.
- 72. Сколько нужно компараторов для параллельного 6-разрядного АЦП.

Критерии оценки выполнения контрольного задания 1, 2

- 100 баллов выставляется студенту, если правильно выполнено 4 задания в варианте.
- 75 баллов выставляется студенту, если правильно выполнено 3 задания в варианте.
- 50 баллов выставляется студенту, если правильно выполнено 2 задания в варианте.
- 25 баллов выставляется студенту, если правильно выполнено 1 задание в варианте.
- 0 баллов выставляется студенту, если ни одно задание не выполнено правильно.