

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

«СОПЛАСОВАНО»	
Руководитель ОП Заведующий (ая) кафедрой	
Физики низкоразмерных структур	
Физики низкоразмерных структур (название кафедры) кументов	
Mo X THOM I WALL	
Саранин А.А.	
(подпись) (Ф.И.О. рук. ОП) (подпись) (Ф.И.О. зав. каф.)	
« <u>19</u> » сентября 2018 г. « <u>19</u> » сентября 2018 г.	
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ	
Физика и технологии создания наноструктур	
Направление подготовки 11.04.04 - Электроника и наноэлектроника	
магистерская программа "Нанотехнологии в электронике"	
Форма подготовки очная	
курс1 семестр1	
лекции 8 час.	
практические занятия 36 час.	
лабораторные работы час.	
в том числе с использованием МАО лек. /пр. /лаб. час.	
в том числе в электронной форме лек/пр/лаб час.	
всего часов аудиторной нагрузки час.	
в том числе с использованием МАО час.	
в том числе контролируемая самостоятельная работа час.	
в том числе в электронной форме час.	
самостоятельная работа 28 час.	
в том числе на подготовку к экзамену час.	
курсовая работа / курсовой проект семестр	
зачет1 семестр	
Рабочая программа составлена в соответствии с требованиями образовательного стандарт	a
высшего образования, самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректор	
от 13.06.2017 № 12-13-1206.	a
01 13.00.2017 № 12-13-1206.	
Рабочая программа обсуждена на заседании кафедры физики низкоразмерных структур, протоко	П
№ 1 от « 19 » сентября 2018 г.	
762 _ 1 _ 01 ((<u>15</u>))/ _ <u></u>	
Заведующий (ая) кафедрой _Саранин А.А	
Составитель (ли): к. фм. н. Козлов А.Г.	

Оборотная сторона титульного листа РПУД

I. Рабочая программа пересмотрена на заседании кафедры:						
Протокол от «»	20 г	№				
Заведующий кафедрой		Саранин А.А				
	(подпись)	(И.О. Фамилия)				
ш р с		•				
II. Рабочая программа пер	есмотрена на заседани	и кафедры:				
Протокол от «»	20 г.	№				
Заведующий кафедрой		Саранин А.А.				
	(подпись)	(И.О. Фамилия)				

ABSTRACT

Master's degree in 11.04.04 Electronics and Nanoelectronics

Study Master's Program "Nanotechnology in Electronics"

Course title: Physics and technologies of nanostructures creating

Basic part of Block 1, 2 credits

Instructor:

A.G. Kozlov, PhD in Physics., engeneer of the Physics of low-dimensional structures department, School of Natural Sciences of Far Eastern Federal University.

At the beginning of the course a student should be able to:

Learning outcomes:

- OK-5 ability to generate ideas in scientific and professional activities
- OK-6 ability to lead a scientific discussion, knowledge of the norms of the scientific style of the modern Russian language
- OK-9, the ability to use in practice the skills and abilities in the organization of research and design work, in team management
- OPK-2, the ability to use the results of mastering the disciplines of the master's program

Course description: the purpose of the discipline physics and technologies of nanostructures creating is an in-depth study of the physical foundations of technologies for creating nanostructured materials and devices based on them.

Objectives of the discipline:

- the study of the physics of the phenomena underlying the technological processes of obtaining nanostructures;
- gaining knowledge of the requirements for technological processes and modern scientific equipment;
 - $-\ acquisition\ of\ skills\ for\ integrated\ consideration\ of\ technological\ processes;$
- formation of ideas about the prospects for the development of technological processes and new physicochemical phenomena that can be used to create new technological processes;
- formation of ideas about the principles, methods and equipment for the management and control of technological processes and material properties, technological and structural features of obtaining the required nanostructures;
 - obtaining knowledge and skills in applying the resulting nanostructures.

Main course literature:

1. Gusev A.I. Nanomaterials, nanostructures, nanotechnologies [Electronic resource]: a tutorial / Gusev, AI — Electron. text data.— M.: FIZMATLIT,

- 2009.— 416 c.— Access Mode: http://www.iprbookshop.ru/12979.— EBS "IPRbooks", by password
- 2. Orlova M.N. Nanoelectronics [Electronic resource]: a course of lectures / Orlova M.N., Borzykh I.V.— Electron. text data. M .: Publishing House MISiS, 2013. 50 c. Access mode: http://www.iprbookshop.ru/56246.html
- 3. Nevolin V.K. Probe nanotechnologies in electronics [Electronic resource] / Nevolin VK Electron. text data.— M.: Technosphere, 2014.— 174 c.— Access Mode: http://www.iprbookshop.ru/26894.— EBS "IPRbooks"
- 4. Educational-methodical complex on the network educational program "Physical nanostructures and nanoelectronics" [Electronic resource] / N.I. Anisimova [et al.]. Electron. text data.— SPb.: Russian State Pedagogical University. A.I. Herzen, 2013. 155 p .— Access Mode: http://www.iprbookshop.ru/21426.— EBS "IPRbooks"
- 5. Matyushkin I.V. Modeling and visualization of the MATLAB tool of nanostructure physics [Electronic resource]: study guide Matyushkin IV Electron. text data.— M.: Technosphere, 2011.— 168 c.— Access Mode: http://www.iprbookshop.ru/13280.— EBS "IPRbooks"

Form of final control: pass.

АННОТАЦИЯ

Физика и технологии создания наноструктур

Рабочая программа «Физика и технологии создания наноструктур» разработана для студентов 1 курса магистратуры направления подготовки 11.04.04 «Электроника и наноэлектроника», общая трудоемкость освоения дисциплины составляет 2 зачетных единицы, 72 часа. Дисциплина реализуется на 1 курсе, в 1 семестре.

Цель дисциплины: углубленное изучение физических основ технологий создания наноструктурированных материалов и устройств на их основе.

Задачи дисциплины:

- изучение физики явлений, лежащих в основе технологических процессов получения наноструктур;
- получение знаний о требованиях, предъявляемых к технологическим процессам и современному научному оборудованию;
- приобретение навыков комплексного рассмотрения технологических процессов;
- формирование представления о перспективах развития технологических процессов и о новых физико-химических явлениях, которые могут быть использованы для создания новых технологических процессов;
- формирование представления о принципах, методах и оборудовании для управления и контроля технологических процессов и свойств материалов, технологических и конструкционных особенностях получения требуемых наноструктур;
 - получения знаний и навыков применения получаемых наноструктур.

В результате изучения данной дисциплины у студентов формируются следующие профессиональные компетенции ОК-5; ОК-6; ОК-9; ОПК-2:

Код и формулировка компетенции	Этапы формирования компетенции			
ОК-5 способность генерировать идеи в научной и	знает	основные системные методы проведения исследований в области физики наноструктур и нанотехнологий		
профессиональной деятельности	умеет	применять основные системные методы при проведении теоретических, экспериментальных и прикладных исследований в области физики наноструктур и нанотехнологий		
	владеет	технологиями, применяемыми в области электроники и наноэлектроники		
ОК-6 способность вести научную дискуссию, владение нормами	знает	нормы современного русского языка, используемые при написании научной работы		
научного стиля современного русского	умеет	вести дискуссию по выполненному исследованию		
языка	владеет	нормами современного русского языка и методами ответов на вопросы		
ОК-9, способностью использовать на практике умения и	знает	методы организации исследовательских и проектных работ в управлении коллективом		
навыки в организации исследовательских и проектных работ, в	умеет	применять методы организации исследовательских и проектных работ, в управлении коллективом		
управлении коллективом	владеет	технологиями и инструментарием применения методов организации исследовательских и проектных работ, в управлении коллективом		
ОПК-2, способностью использовать результаты освоения дисциплин	знает	методы модуляции параметров оптического излучения, распространяющегося в волоконном световоде, применяемые для построения измерительных преобразователей.		
программы магистратуры	умеет	выявлять ключевые параметры, определяющие режимы работы волоконно-оптических измерительных преобразователей		
	владеет	навыками построения волоконно-оптических измерительных преобразователей		

I. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА - лекции (8 ч.)

Раздел 1. Вакуумные методы получения наноструктур (2 ч.)

Тема 1. Термические методы получения пленок (2ч)

Термическое нанесение пленок в вакууме: резистивный метод, молекулярнолучевая эпитаксия, твердофазная эпитаксия. Получение пленок методом магнетронного распыления, электронно-лучевого испарения

Раздел 2. Основы электронно-лучевой литографии (4 ч.)

Тема 1. Введение в литографические методы создания шаблонов наноструктур (1 ч.)

История возникновения и развития. Фотолитография. Электронно-лучевая и ионно-лучевая литография. Ультрафиолетовая литография. Лазерная литография. Импринт-литография. Теневая литография. Наносферная литография. Зондовая нанолитография. Сравнение методов.

Тема 2. Физические принципы электронно-лучевой литографии (1 ч.)

Принцип формирование шаблона на полимерной пленке электронным пучком. Физико-химические основы процесса взаимодействия электронного пучка с полимером. Этапы процесса: подготовка образца, создание цифрового шаблона, расчет параметров экспонирования, экспозиция, проявка, удаление резиста.

Тема 3. Применяемое оборудование и полимерные резисты (2 ч.)

Обзор и сравнение нанолитографов. Физический предел разрешения. Используемые резисты и их характеристики. Проектирование шаблона наноструктур. Система Raith e-Line на базе SEM Zeiss Crossbeam. Возможности системы. Принцип работы. Подготовка подложек для экспонирования (методы очистки поверхности, центрифугирование резистов, сушка в печи).

Раздел 3. Химическое и ионно-плазменное травление металлических и полупроводниковых материалов (2 ч.)

Тема 1. Кислотное травление (1 ч.)

Изотропное и анизотропное травление материалов. Используемые кислотные растворы. Проблемы и решения. Границы применимости метода.

Тема 2. Ионно-плазменное травление (1 ч.)

Реактивное ионное травление. Индуктивно-связанная плазма. Принцип действия. Используемое оборудование. Проблемы и решения. Характеристики системы PlasmaLab 80.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Практические занятия (36 час.)

Занятие 1. Подготовка к началу эксперимента (3 час.)

Формирование подложек кристаллического кремния с заданными геометрическими размерами.

Методы очистки кристаллических подложек, подготовка к загрузке в сверхвысоковакуумную камеру.

Травление прижимных пластин для молибденовых подложкодержателей.

Занятие 2. Подготовка зондов для сканирующей туннельной микроскопии (3 час.)

Химическое травление зондов W для сканирующей туннельной микроскопии.

Подготовка зондов PtIr для сканирующей туннельной микроскопии Загрузка в сверхвысоковакуумную камеру зондов различного состава для сканирующего туннельного микроскопа и их отжиг методом косвенного прогрева.

Занятие 3. Методы формирования рельефа поверхности (3 час.)

Электромиграция. Управление морфологическими параметрами кристаллической поверхности кремния. Алгоритмы высокотемпературного отжига постоянным током. Отжиг кристаллической подложки постоянным током с подпылением Cu.

Занятие 4. Методы контроля роста наноструктур (3 час.)

Знакомство с прецизионными методами контроля роста тонких металлических пленок. Дифракция быстрых электронов, осцилляции интенсивности. Кварцевый измеритель толщины пленки.

Калибровка скоростей испарения металла из эффузионных ячеек для молекулярно-лучевой эпитаксии. Определение пересчетных коэффициентов по разности скоростей осаждения.

Занятие 5. Термическое осаждение магнитных пленок (6 час.)

Термическое осаждение магнитных пленок Si(111)/Cu/Pd/Co и суперрешеток $Si(111)/Cu/[Pd/Co]_n$ методом молекулярно-лучевой эпитаксии. Послойный контроль роста наноструктур.

Занятие 6. Исследование кристаллических напряжений на интерфейсах (3 час.)

Анализ напряжений кристаллической решетки. Построение кривых релаксации напряжений параметра решетки на границе разделов Pd/Co, на основании данных с дифракции быстрых электронов.

Занятие 7. Зондовая микроскопия в сверхвысоком вакууме (3 час.)

Знакомство с методами зондовой микроскопии, сканирующая туннельная микроскопия. Сканирование поверхностей полупроводниковой подложки. Сканирование электронных плотностей с атомным разрешением,

исследование поверхностной реконструкции. Сканирование поверхности металлических пленок. Анализ шероховатостей.

Занятие 8. Химический анализ полученных структур (3 час.)

Химический анализ в условиях сверхвысокого вакуума. Рентгеновская фотоэлектронная спектроскопия. Получение, обработка и анализ энергетических спектров.

Занятие 9. Магнитометрические методы исследования магнитных свойств (3 час.)

Магнитометрические измерения тонких магнитных пленок. Магнитооптический метод. Построение карт распределения коэрцитивной силы по площади образца. Индукционный метод. Анализ магнитной анизотропии.

Занятие 10. Зондовые методы исследования рельефа и доменной структуры (3 час.)

Атомно- и магнитно-силовая микроскопия. Получение изображений доменной структуры. Обработка и анализ изображений. Исследование взаимодействия Дзялошинский-Мориа на основании анализа периода полосовой доменной структуры.

Занятие 11. Исследование доменной структуры магнитооптическим методом (3 час.)

Получение изображений доменной структуры при помощи Керрмикроскопии. Исследование взаимодействия Дзялошинский-Мориа на основании анализа скоростей перемещения доменных границ под действием смещающего поля.

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Физика и технологии создания наноструктур» представлено в Приложении 1 и включает в себя:

- план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;
- характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

- требования к представлению и оформлению результатов самостоятельной работы;
 - критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№	Контролируемые разделы / темы	Коды и этапы формирования			Оценочные средства - наименование		
п/п	дисциплины		мпетенций	текущий контроль	промежуточная аттестация		
			знает	Опрос (УО-1)	Зачет, вопросы 1-6 Опрос (УО-1)		
1	Раздел 1	ОПК-2 ОК-5	умеет	Тест (ПР-1)	Зачет, вопросы 1- 6 Опрос (УО-1)		
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 1- 6 Опрос (УО-1)		
			знает	Семинар №1(УО-4)	Зачет, вопросы 7- 8 Опрос (УО-1)		
2	Раздел 2	ОПК-2 ОК-6	умеет	Тест (ПР-1)	Зачет, вопросы 7- 8 Опрос (УО-1)		
			владеет	Кейс-задача (ПО-11)	Зачет, вопросы 7- 8 Опрос (УО-1)		
	Раздел 3	ОПК-2 ОК-9	знает	Семинар №2 (УО-4)	Зачет, вопросы 9- 13 Опрос (УО-1)		
3			умеет	Тест (ПР-1)	Зачет, вопросы 9- 13 Опрос (УО-1)		
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 9-13 Опрос (УО-1)		
	Раздел 4		знает	Опрос (УО-1)	Зачет, вопросы 14-16 Опрос (УО- 1)		
4		ОПК-2	умеет	Тест (ПР-1)	Зачет, вопросы 14-16 Опрос (УО- 1)		
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 14-16 Опрос (УО- 1)		

	Раздел 5	ОК-5	знает	Семинар №3(УО-4)	Зачет, вопросы 17-18 Опрос (УО- 1)
5			умеет	Тест (ПР-1)	Зачет, вопросы 17-18 Опрос (УО- 1)
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 17-18 Опрос (УО- 1)
6	Раздел 6	ОК-6	знает	Опрос (УО-1)	Зачет, вопросы 19-21 Опрос (УО- 1)
			умеет	Тест (ПР-1)	Зачет, вопросы 19-21 Опрос (УО- 1)
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 19-21 Опрос (УО- 1)

Контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

(электронные и печатные издания)

- 1. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии [Электронный ресурс]: учебное пособие/ Гусев А.И.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2009.— 416 с.— Режим доступа: http://www.iprbookshop.ru/12979.— ЭБС «IPRbooks», по паролю
- 2. Неволин В.К. Зондовые нанотехнологии в электронике [Электронный ресурс]/ Неволин В.К.— Электрон. текстовые данные.— М.:

- Техносфера, 2014.— 174 с.— Режим доступа: http://www.iprbookshop.ru/26894.— ЭБС «IPRbooks»
- 3. Учебно-методический комплекс по сетевой образовательной программе «Физика наноструктур и наноэлектроника» [Электронный ресурс]/ Н.И. Анисимова [и др.].— Электрон. текстовые данные.— СПб.: Российский государственный педагогический университет им. А.И. Герцена, 2013.— 155 с.— Режим доступа: http://www.iprbookshop.ru/21426.— ЭБС «IPRbooks»
- 4. Матюшкин И.В. Моделирование и визуализация средствами MATLAB физики наноструктур [Электронный ресурс]: учебное пособие/ Матюшкин И.В.— Электрон. текстовые данные.— М.: Техносфера, 2011.— 168 с.— Режим доступа: http://www.iprbookshop.ru/13280.— ЭБС «IPRbooks»
- 5. Орлова М.Н. Наноэлектроника [Электронный ресурс]: курс лекций/ Орлова М.Н., Борзых И.В.— Электрон. текстовые данные. М.: Издательский Дом МИСиС, 2013. 50 с. Режим доступа: http://www.iprbookshop.ru/56246.html

Дополнительная литература (электронные и печатные издания)

- 1. Сергеев Н.А. Физика наносистем [Электронный ресурс]: монография/ Сергеев Н.А., Рябушкин Д.С.— Электрон. текстовые данные.— М.: Логос, 2015.— 192 с.— Режим доступа: http://www.iprbookshop.ru/33418.— ЭБС «IPRbooks»
- 2. Нанотехнологии в микроэлектронике. Нанолитография процессы и оборудование : [учебно-справочное руководство] / В. Ю. Киреев. Долгопрудный : Интеллект, 2016. 2016, 319 с.
- 3. Материалы и методы нанотехнологий : учебное пособие / В. В. Старостин ; под общ. ред. Л. Н. Патрикеева. Москва : БИНОМ. Лаборатория знаний, 2010. 431 с.
- 4. Данилина Т.И. Оборудование для создания и исследования свойств объектов наноэлектроники [Электронный ресурс]: учебное пособие/ Данилина Т.И., Чистоедова И.А.— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2011.— 96 с.— Режим доступа: http://www.iprbookshop.ru/13950.— ЭБС «IPRbooks»
- 5. Минько, Н. И. Методы получения и свойства нанообъектов [Электронный ресурс]: учеб. пособие / Н. И. Минько, В. В. Строкова, И. В. Жерновский, В. М. Нарцев. 2-е изд., стер. М.: ФЛИНТА, 2013. 165 с. ISBN 978-5-9765-0326-7 (http://znanium.com/catalog.php?bookinfo=462886) ЭБС Знаниум

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Возможности нанотехнологий http://kbogdanov1.narod.ru/
- 2. Нанотехнологии в медицине http://www.starenie.ru/texnologii/nanotex.php
- 3. Новости о нанотехнологиях http://www.nanonewsnet.ru/
- 4. Перспективы использования нанотехнологий в биологии http://www.nanonewsnet.ru/blog/nikst/perspektivy-ispolzovaniya-nanotekhnologii-v-biologii
- 5. Российские нанотехнологии http://nanoru.ru/

Перечень информационных технологий и программного обеспечения

При осуществлении образовательного процесса по дисциплине а также для проведения простых расчетов и построения графиков может использоваться стандартное программное обеспечение компьютерных учебных классов (Windows, Microsoft Office).

IV. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Обучение складывается из аудиторных занятий (8 ч.) и самостоятельной работы (28 ч.). В дисциплине целесообразно использовать следующие Лекционный образовательные технологии. курс: лекций чтение сопровождении видеоматериалов. Практические занятия: рассчитаны на индивидуальную работу студентов с компьютером лабораторным И оборудованием, предусматривают решение задач c использованием стандартных и специализированных программных приложений, проведение семинаров с защитой полученных результатов. Самостоятельная работа с литературой формирует способность анализировать технические технологические проблемы, умение использовать естественнонаучные и инженерные на практике в различных видах профессиональной и социальной деятельности. Учебная деятельность студентов, включая самостоятельную работу с литературой и специализированными программными продуктами, способствует овладению научным мышлением, способностью в письменной и устной речи логически правильно оформить результаты исследований; готовностью к формированию системного подхода к анализу научной информации, восприятию инноваций; формируют способность и готовность к самосовершенствованию, самореализации, личностной и предметной рефлексии.

Для углубленного изучения теоретического материала курса дисциплины рекомендуются использовать основную и дополнительную литературу, указанную в приведенном выше перечне.

Рекомендованные источники доступны обучаемым в научной библиотеке (НБ) ДВФУ (в перечне приведены соответствующие гиперссылки этих источников), а также в электронной библиотечной системе (ЭБС) IPRbooks (приведены аналогичные гиперссылки).

Доступ к системе ЭБС IPRbooks осуществляется на сайте www.iprbookshop.ru под учётными данными вуза (ДВФУ):

логин **dvfu**, пароль **249JWmhe**.

Для подготовки к зачету определен перечень вопросов, представленный ниже, в материалах фонда оценочных средств дисциплины.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения исследований, связанных с выполнением задания по практике, а также для организации самостоятельной работы студентам доступно лабораторное оборудование и специализированные кабинеты, соответствующие действующим санитарным и противопожарным нормам, а также требованиям техники безопасности при проведении учебных и научно-производственных работ.

Наименование оборудованных помещений и помещений для самостоятельной работы	Перечень основного оборудования
	Оборудование: 1. Система электронной литографии Raith E-LINE
	(101400000026344)
	2. Сверхвысоковакуумная установка MBE system (10140000026343)
Специализированная лаборатория кафедры	3. Сверхвысоковакуумная установка PVD module (101400000025715)
ФНС: Лаборатория плёночных технологий	4. Сверхвысоковакуумная установка Multiprobe (101400000025714)
корпус L, ауд L320	5. Система измерения магнитных свойств со сверхпроводящим магнитом MPMSXL5 EVERCOOL (101400000026043, 101400000025932)
	6. Установка для комплексного исследования поверхностей и наноструктур в комплекте (10140000025712)

	-				
	7. Photolithography system Suss MicroTech MJB6				
	(Germany)				
	8. Automated vibrating sample magnetometer LakeShore				
	7401 with possibility of samples cooling and heating (USA)				
	9. Kerr microscope Evico Magnetics (Germany)				
	10. Magnetooptic magnetometer "NanoMOKE- 2" with				
	possibility of investigation of the nanoobjects with the size more				
	than 200 nm and attachment for cooling and heating samples				
	(UK).				
	11. 16 multiprocessor calculation cluster for micromagnetic				
	modeling using MagPar and OOMMF software				
	12. Microsupercomputer with graphic processors for				
	MuMax3 simulations				
	13. Automated four probe station for magnetotransport				
	properties measurements				
	Analyzer Agilent for measurement of dynamic properties of				
	magnetic nanostructures (USA)				
	Моноблок HP РгоОпе 400 All-in-One 19,5 (1600x900), Core				
Читальные залы Научной	i3-4150T, 4GB DDR3-1600 (1x4GB), 1TB HDD 7200 SATA,				
библиотеки ДВФУ с	DVD+/-RW,GigEth,Wi-Fi,BT,usb kbd/mse,Win7Pro (64-				
открытым доступом к	bit)+Win8.1Pro(64-bit),1-1-1 Wty				
фонду (корпус А -	Скорость доступа в Интернет 500 Мбит/сек.				
уровень 10)	Рабочие места для людей с ограниченными возможностями				
ypobelib 10)	здоровья оснащены дисплеями и принтерами Брайля;				
	оборудованы: портативными устройствами для чтения				
	плоскопечатных текстов, сканирующими и читающими				
	машинами видеоувелечителем с возможностью регуляции				
	цветовых спектров; увеличивающими электронными лупами				
	и ультразвуковыми маркировщиками				
D					

В целях обеспечения специальных условий обучения инвалидов и лиц с ограниченными возможностями здоровья в ДВФУ все здания оборудованы пандусами, лифтами, подъемниками, специализированными местами, оснащенными туалетными комнатами, табличками информационно навигационной поддержки.

.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Физика и технологии создания наноструктур» Направление подготовки 11.04.04 Электроника и наноэлектроника Магистерская программа «Электроника и наноэлектроника» Форма подготовки очная

Владивосток 2018

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	1-2 неделя	Ознакомление с научной литературой по методам выращивания тонких пленок. Подготовка к семинару.	3 часа	Контрольные вопросы
2	3-4 неделя	Ознакомление с научной литературой по зондовым методам исследования наноструктур. Подготовка к семинару.	3 часа	Контрольные вопросы
3	5 неделя	Подготовка отчета по практической работе №1 на тему «определение пересчетных коэффициентов по разности скоростей осаждения металла на подложку и кварцевый измеритель толщин»	2 часа	Защита отчета
4	Ознакомление с научн литературой по термическому осажден		3 часа	Контрольные вопросы
5	Подготовка отчета по практической работе №2 на тему «Построение и анализ 7 неделя кривых релаксации напряжений параметра решетки в мультислойных		2 часа	Защита отчета
6	суперрешетках» Подготовка отчета по практической работе №3 на тему «анализ шероховатости поверхности металлических слоев в суперрешетках [Co/Pd]»		2 часа	Защита отчета
7	Подготовка отчета по практической работе №4 на тему «химический анализ наноструктур на основе рентгеновская спектров»		2 часа	Защита отчета
8	10 неделя	Подготовка отчета по практической работе №5 на	2 часа	Защита отчета

		тему «анализ магнитных		
		свойств тонких пленок»		
		Подготовка отчета по		
		практической работе №6 на		
	12 неделя	тему «исследование		
9		взаимодействия	3 часа	Защита отчета
		Дзялошинский-Мориа с		
		многослойных магнитных		
		суперструктурах»		
10	14 неделя	Подготовка к зачету	6 часов	Зачет
		Итого	28 часов	

Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Задания и методические рекомендации для самостоятельной работы обеспечивают подготовку докладов к семинарам и отчетов к лабораторным работам. Их полное содержание приведено в программе и методических указаниях.

Требования к представлению и оформлению результатов самостоятельной работы

Результаты самостоятельной работы отражаются в письменных работах (докладах к семинарам и отчетах по практическим работам).

К представлению и оформлению докладов и отчетов по лабораторным работам предъявляются следующие требования.

Структура отчета по практической работе

Отчеты по практическим работам представляются в электронной форме, подготовленные как текстовые документы в редакторе MSWord.

Отчет по работе должен быть обобщающим документом, включать всю информацию по выполнению заданий, в том числе, построенные диаграммы, таблицы, приложения, список литературы и (или) расчеты, сопровождая необходимыми пояснениями и иллюстрациями в виде схем, экранных форм («скриншотов») и т. д.

Структурно отчет по практической работе, как текстовый документ, комплектуется по следующей схеме:

- ✓ *Титульный лист обязательная* компонента отчета, первая страница отчета, по принятой для практических работ форме (титульный лист отчета должен размещаться в общем файле, где представлен текст отчета);
- ✓ *Исходные данные к выполнению заданий* обязательная компонента отчета, с новой страницы, содержат указание варианта, темы и т.д.);
- ✓ *Основная часть* материалы выполнения заданий, разбивается по рубрикам, соответствующих заданиям работы, с иерархической структурой: разделы подразделы пункты подпункты и т. д.

Рекомендуется в основной части отчета заголовки рубрик (подрубрик) давать исходя из формулировок заданий, в форме отглагольных существительных;

- ✓ *Выводы* обязательная компонента отчета, содержит обобщающие выводы по работе (какие задачи решены, оценка результатов, что освоено при выполнении работы);
- ✓ Список литературы обязательная компонента отчета, с новой страницы, содержит список источников, использованных при выполнении работы, включая электронные источники (список нумерованный, в соответствии с правилами описания библиографии);
- ✓ *Приложения* необязательная компонента отчета, с новой страницы, содержит дополнительные материалы к основной части отчета.

Оформление отчета по практической работе

Отчет по практической работе относится к категории «письменная работа», оформляется по правилам оформления письменных работ студентами $\mathcal{L}B\Phi Y$.

Необходимо обратить внимание на следующие аспекты в оформлении отчетов работ:

- набор текста;

- структурирование работы;
- оформление заголовков всех видов (рубрик-подрубрик-пунктовподпунктов, рисунков, таблиц, приложений);
 - оформление перечислений (списков с нумерацией или маркировкой);
 - оформление таблиц;
- оформление иллюстраций (графики, рисунки, фотографии, схемы, «скриншоты»);
 - набор и оформление математических выражений (формул);
- оформление списков литературы (библиографических описаний) и ссылок на источники, цитирования.

Набор текста

Набор текста осуществляется на компьютере, в соответствии со следующими требованиями:

- ✓ печать на одной стороне листа белой бумаги формата A4 (размер 210 на 297 мм.);
 - ✓ интервал межстрочный полуторный;
 - ✓ шрифт Times New Roman;
- ✓ размер шрифта 14 пт., в том числе в заголовках (в таблицах допускается 10-12 пт.);
 - ✓ выравнивание текста «по ширине»;
- \checkmark поля страницы левое 25-30 мм., правое 10 мм., верхнее и нижнее 20 мм.;
- ✓ нумерация страниц в правом нижнем углу страницы (для страниц с книжной ориентацией), сквозная, от титульного листа до последней страницы, арабскими цифрами (первой страницей считается титульный лист, на котором номер не ставиться, на следующей странице проставляется цифра «2» и т. д.).
- ✓ режим автоматического переноса слов, за исключением титульного листа и заголовков всех уровней (перенос слов для отдельного абзаца

блокируется средствами MSWord с помощью команды «Формат» – абзац при выборе опции «запретить автоматический перенос слов»).

Если рисунок или таблица размещены на листе формата больше A4, их следует учитывать как одну страницу. Номер страницы в этих случаях допускается не проставлять.

Список литературы и все *приложения* включаются в общую в сквозную нумерацию страниц работы.

Рекомендации по оформлению графического материала, полученного с экранов в виде «скриншотов»

Графические копии экрана («скриншоты»), отражающие графики, диаграммы моделей, схемы, экранные формы и т. п. должны отвечать требованиям визуальной наглядности представления иллюстративного материала, как по размерам графических объектов, так и разрешающей способности отображения текстов, цветовому оформлению и другим важным пользовательским параметрам.

Рекомендуется в среде программного приложения настроить «экран» на параметры масштабирования и размещения снимаемых для иллюстрации объектов. При этом необходимо убрать «лишние» окна, команды, выделения объектов и т. п.

В перенесенных в отчет «скриншотах» рекомендуется «срезать» ненужные области, путем редактирования «изображений», а при необходимости отмасштабировать их для заполнения страницы отчета «по ширине».

«Скриншоты» в отчете оформляются как рисунки, с заголовками, помещаемыми ниже области рисунков, а в тексте должны быть ссылки на указанные рисунки.

Требования к представлению докладов на семинар

Доклад представляется в виде интерактивной презентации, сделанной с

использованием программы MS PowerPoint, с изложением сути поставленной проблемы. Обучаемый самостоятельно проводит анализ этой проблемы с использованием концепций и аналитического инструментария, делает выводы, обобщающие авторскую позицию по поставленной проблеме.

Доклад разрабатывается по тематике определенных теоретических вопросов изучаемой дисциплины при использовании учебной, учебнометодической и научной литературы, а также Интернет-ресурсов.

Презентация, содержащая доклад, должна содержать не менее 15 слайдов. На заимствованный материал должны быть даны ссылки на источники литературы и ресурсы Интернет и краткий терминологический словарь, включающий основные термины и их расшифровку (толкование) по раскрываемой теме (вопросу).

Доклад представляется на проверку в электронном виде, исходя из условий:

- ✓ презентация в формате ppt или pptx;
- ✓ объем 10-15 слайдов;
- ✓ объем словаря не менее 7-10 терминов на один вопрос задания;
- ✓ *титульный слайд* (первый слайд презентации) должен содержать название темы семинара, ФИО студента, номер группы;
- ✓ список литературы по использованным при подготовке доклада источникам, наличие ссылок в тексте доклада на источники по списку.

Критерии оценки выполнения самостоятельной работы

Оценивание докладов проводится по критериям:

- использование данных отечественной и зарубежной литературы, источников Интернет, информации нормативноправового характера и передовой практики;
- владение методами и приемами анализа теоретических и/или практических аспектов изучаемой области;

- отсутствие фактических ошибок, связанных с пониманием проблемы.

Оценивание практических работ проводится по критериям:

- полнота и качество выполненных заданий, использование стандартов в ИТ области;
- владение методами и приемами компьютерного моделирования в исследуемых вопросах, применение специализированных программных средств;
- качество оформления отчета, использование правил и стандартов оформления текстовых и электронных документов;
- использование данных отечественной и зарубежной литературы, источников Интернет, информации нормативноправового характера и передовой практики;
- отсутствие фактических ошибок, связанных с пониманием проблемы.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

НАЗВАНИЕ ШКОЛЫ (ФИЛИАЛА)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Физика и технологии создания наноструктур» Направление подготовки 11.04.04 Электроника и наноэлектроника Магистерская программа «Электроника и наноэлектроника» Форма подготовки очная

Владивосток 2018

Паспорт ФОС

Код и формулировка компетенции	Этапы формирования компетенции			
ОК-5 способность генерировать идеи в научной и	знает	основные системные методы проведения исследований в области физики наноструктур и нанотехнологий		
профессиональной деятельности	умеет	применять основные системные методы при проведении теоретических, экспериментальных и прикладных исследований в области физики наноструктур и нанотехнологий		
	владеет	технологиями, применяемыми в области электроники и наноэлектроники		
ОК-6 способность вести научную дискуссию, владение нормами	знает	нормы современного русского языка, используемые при написании научной работы		
научного стиля современного русского	умеет	вести дискуссию по выполненному исследованию		
языка	владеет	нормами современного русского языка и методами ответов на вопросы		
ОК-9, способностью использовать на практике умения и	знает	методы организации исследовательских и проектных работ в управлении коллективом		
навыки в организации исследовательских и проектных работ, в	умеет	применять методы организации исследовательских и проектных работ, в управлении коллективом		
управлении коллективом	владеет	технологиями и инструментарием применения методов организации исследовательских и проектных работ, в управлении коллективом		
ОПК-2, способностью использовать результаты освоения дисциплин	знает	методы модуляции параметров оптического излучения, распространяющегося в волоконном световоде, применяемые для построения измерительных преобразователей.		
программы магистратуры	умеет	выявлять ключевые параметры, определяющие режимы работы волоконно-оптических измерительных преобразователей		
	владеет	навыками построения волоконно-оптических измерительных преобразователей		

No	Контролируемые разделы / темы	Коды и этапы формирования компетенций		Оценочные наимен	•
п/п	дисциплины			текущий контроль	промежуточная аттестация
			знает	Опрос (УО-1)	Зачет, вопросы 1-6 Опрос (УО-1)
1	Раздел 1	ОПК-2 ОК-5	умеет	Тест (ПР-1)	Зачет, вопросы 1- 6 Опрос (УО-1)
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 1- 6 Опрос (УО-1)
			знает	Семинар №1(УО-4)	Зачет, вопросы 7- 8 Опрос (УО-1)
2	Раздел 2	ОПК-2 ОК-6	умеет	Тест (ПР-1)	Зачет, вопросы 7- 8 Опрос (УО-1)
			владеет	Кейс-задача (ПО-11)	Зачет, вопросы 7- 8 Опрос (УО-1)
			знает	Семинар №2 (УО-4)	Зачет, вопросы 9- 13 Опрос (УО-1)
3		ОПК-2 ОК-9	умеет	Тест (ПР-1)	Зачет, вопросы 9- 13 Опрос (УО-1)
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 9- 13 Опрос (УО-1)
			знает	Опрос (УО-1)	Зачет, вопросы 14-16 Опрос (УО- 1)
4	Раздел 4	ОПК-2	умеет	Тест (ПР-1)	Зачет, вопросы 14-16 Опрос (УО- 1)
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 14-16 Опрос (УО- 1)
5	Раздел 5	OK-5	знает	Семинар №3(УО-4)	Зачет, вопросы 17-18 Опрос (УО- 1)
			умеет	Тест (ПР-1)	Зачет, вопросы

					17-18 Опрос (УО- 1)
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 17-18 Опрос (УО- 1)
			знает	Опрос (УО-1)	Зачет, вопросы 19-21 Опрос (УО- 1)
6	Раздел 6	ОК-6	умеет	Тест (ПР-1)	Зачет, вопросы 19-21 Опрос (УО- 1)
			владеет	Кейс-задача (ПР- 11)	Зачет, вопросы 19-21 Опрос (УО- 1)

Шкала оценивания уровня сформированности компетенций

Код и формулировка компетенции	Этапы формирования компетенции		Критерии	Показатели
ОК-5 способность генерировать идеи в научной и профессионально й деятельности	Знает (пороговый уровень)	основные системные методы проведения исследований в области физики наноструктур и нанотехнологий	воспроизводит ь и объяснять учебный материал с требуемой степенью научной точности и полноты	способность продемонстрироват ь при защите знания методов организации исследований с учётом специфики исследований
	Умеет (продвинутый)	применять основные системные методы при проведении теоретических, экспериментальных и прикладных исследований в области физики	выполнять типичные задачи на основе воспроизведен ия стандартных алгоритмов решения	способность продемонстрироват ь при защите умение применять основные системные методы при проведении теоретических, экспериментальных и прикладных

		наноструктур и нанотехнологий		исследований
	Владеет (высокий)	технологиями, применяемыми в области электроники и наноэлектроники	решать усложненные задачи в нетипичных ситуациях на основе приобретенны х знаний, умений и навыков	способность привести на защите методологию организации всех этапов теоретических, экспериментальных и прикладных исследований
	Знает (пороговый уровень)	нормы современного русского языка, используемые при написании научной работы	воспроизводит ь и объяснять учебный материал с требуемой степенью научной точности и полноты	наличие требуемых элементов структуры отчета в представленной на защиту диссертации
ОК-6 способность вести научную дискуссию, владение нормами научного стиля современного русского языка	Умеет (продвинутый)	вести дискуссию по выполненному исследованию	выполнять типичные задачи на основе воспроизведен ия стандартных алгоритмов решения	наличие презентации и доклада по результатам выполненного исследования, умение отвечать на вопросы во время защиты
	Владеет (высокий)	нормами современного русского языка и методами ответов на вопросы	решать усложненные задачи в нетипичных ситуациях на основе приобретенны х знаний, умений и навыков	наличие в презентации и докладе информации о результатах, полученных предшественникам и, владение методами грамотного представления

				результатов и аргументации во время защиты
ОК-9, способностью использовать на практике умения и навыки в организации исследовательск их и проектных работ, в управлении коллективом	Знает (пороговый уровень)	Современные проблемы и новейших достижений физики в научно-исследовательско й работе.	воспроизводит ь и объяснять учебный материал с требуемой степенью научной точности и полноты	способность показать базовые знания и основные умения в использовании методов организации исследовательских и проектных работ в управлении коллективом
	Умеет (продвинутый)	Самостоятельно выявлять нерешенные научные проблемы и определять оптимальные пути их решения.	выполнять типичные задачи на основе воспроизведен ия стандартных алгоритмов решения	способность применить знания и практические умения в задачах, связанных с выбором и обоснованием стратегии организации исследовательских и проектных работ, в управлении коллективом
	Владеет (высокий)	Навыками обработки экспериментальн ых данных в современных программных средствах для решения научных проблем.	решать усложненные задачи в нетипичных ситуациях на основе приобретенны х знаний, умений и навыков	способность применить фактическое и теоретическое знание, практические умения по организации исследовательских и проектных работ, в управлении коллективом
ОПК-2, способностью	Знает (пороговый	методы модуляции	воспроизводит ь и объяснять	способность показать базовые

использовать	уровень)	параметров оптического	учебный материал с	знания методов модуляции
результаты освоения		излучения,	требуемой	параметров
дисциплин		распространяюще	степенью	оптического
		гося в	научной	
программы			научнои точности и	излучения,
магистратуры		волоконном	полноты	распространяю-
		световоде,	ПОЛНОТЫ	щегося в
		применяемые для		волоконном
		построения измерительных		световоде,
		*		применяемые для
		преобразователей		построения
		•		измерительных
				преобразователей
				способность
				применить знания и
		выявлять	выполнять	практические
		ключевые	типичные	умения в
		параметры,	задачи на	выявлении
	Умеет	определяющие	основе	ключевых
	(продвинутый)	режимы работы	воспроизведен	параметров,
		волоконно-	ия	определяющих
		оптических	стандартных	режимы работы
		измерительных	алгоритмов	волоконно-
		преобразователей	решения	оптических
				измерительных
				преобразователей
				способность
			решать	применить
			усложненные	фактическое и
		навыками	задачи в	теоретическое
	Владеет	построения	нетипичных	знание,
		волоконно-	ситуациях на	практические
	(высокий)	оптических	основе	умения в
		измерительных	приобретенны	построении
		преобразователей	х знаний,	волоконно-
			умений и	оптических
			навыков	измерительных
				преобразователей

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Текущая аттестация студентов

Текущая аттестация студентов по данной дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Объектами оценивания выступают:

- учебная дисциплина (активность на занятиях, своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
- уровень овладения практическими умениями и навыками по всем видам учебной работы;
 - результаты самостоятельной работы.

Оценивание результатов освоения дисциплины на этапе текущей аттестации проводится в соответствии с используемыми оценочными средствами и критериями.

Оценочные средства для промежуточной аттестации

Вопросы к зачету Опрос (УО-1)

- 1. Обзор технологий создания наноструктур.
- 2. Термические методы осаждения тонких пленок. Молекулярнолучевая эпитаксия.
- 3. Управление рельефом поверхности подложки при помощи кинетических явлений.
- 4. Управление рельефом поверхности подложки при помощи термодинамических явлений.
- 5. Электронно-лучевое осаждение субмонослойных наноструктур.
- б. Прецизионные методы контроля скоростей и режимов осаждения пленок. Кварцевый измеритель толщины.
- 7. Дифракция быстрых электронов. Осцилляции интенсивности зеркального рефлекса.
- 8. Напряжения в кристаллической решетке. Релаксация напряжений на интерфейсах.
- 9. Сканирующая туннельная микроскопия.
- 10. Принципы фотолитографии.
- 11. Принципы электронно-лучевой нанолитографии.

- 12. Процесс фото- и электронно-лучевого экспонирования. Проявление и инспектирование шаблонов.
- 13. Лифт-офф процесс. Применение в полупроводниковой электронике
 - 14. Химический анализ наноструктур. Рентгеновская фотоэлектронная спектроскопия.
 - 15. Сухое и влажное травление металлов и полупроводников.
 - 16. Характеристики системы PlasmaLab 80.
 - 17. Структурные и магнитные свойства нанопроволок.
 - 18. Магнитооптический метод исследования магнитных свойств пленок и наноструктур.
 - 19. Магнитооптический метод исследования магнитных свойств пленок и массивов наноструктур
 - 20. Доменная структура магнитных пленок со взаимодействием Дзялошинский-Мория.
 - 21. Применения нанопроволок.

Критерии выставления оценки на экзамене

Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.

Оценка «хорошо» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические

положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.

Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Оценочные средства для текущей аттестации (Круглый стол УО-4)

Темы семинаров

- 1. История развития микро- и наноинженерии, методы выращивания тонких пленок в высоком и сверхвысоком вакууме.
- 2. Методы исследования структурных свойств поверхности кристалла. Зондовые, дифракционные методы, методы химического анализа.
- 3. Литографические технологии и история их возникновения. Принципы электронно-лучевой нанолитографии. 3D нанолитография.
- 4. Магнитные свойства и доменная структура магнитных мультислойных пленок с взаимодействием Дзялошинский-Мория.

Критерии оценки доклада на семинаре

Оценивание защиты доклада проводится при представлении и защите (ответы на вопросы преподавателя и студентов) презентации в электронном виде, по двухбалльной шкале: «зачтено», «незачтено».

Оценка «зачтено» выставляется студенту, если он представляет к защите доклад, удовлетворяющее поставленным к презентации требованиям (использование данных отечественной и зарубежной литературы, источников информации нормативноправового характера и Интернет, передовой практики, представление краткого терминологического словаря по теме, оформлению, информации), аудио-визуальной ПО если студент демонстрирует владение методами и приемами теоретических аспектов работы, не допускает фактических ошибок, связанных с пониманием проблемы.

Оценка «незачтено» выставляется студенту, если он не владеет методами и приемами теоретических аспектов работы, допускает существенные ошибки в работе, связанные с пониманием проблемы, представляет презентацию с существенными отклонениями от правил оформления.

Критерии оценки отчетов по практическим работам

Оценивание защиты практической работы проводится при представлении отчета в электронном виде, по двухбалльной шкале: «зачтено», «незачтено».

Оценка «зачтено» выставляется студенту, если он представляет к защите отчет по практической работе, удовлетворяющий требованиям по поставленным заданиям, по оформлению, демонстрирует владение методами и приемами теоретических и/или практических аспектов работы.

Оценка «незачтено» выставляется студенту, если он не владеет методами и приемами теоретических и/или практических аспектов работы, допускает существенные ошибки в работе, представляет отчет с существенными отклонениями от правил оформления письменных работ.

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Для текущей и промежуточной аттестации используется рейтинговая система оценки успеваемости в соответствии рейтинг-планом по дисциплине (приложение 3). Структура рейтинг-плана по дисциплине состоит из трех основных форм контроля: посещения, практические задания, экзамен.

Баллы за посещения выставляются по схеме одно посещение – один балл.

Практические задания, как оценка самостоятельной работы студента по решению задач оцениваются следующим образом:

- 10 баллов выставляется, если студент продемонстрировал знания и владения навыками самостоятельной работы по теме задания; методами и приемами анализа теоретических и/или практических аспектов задачи. Фактических ошибок, связанных с пониманием проблемы, нет; работа оформлена правильно;
- 9-8 баллов работа характеризуется смысловой цельностью, связностью и последовательностью изложения; критические ошибки отсутствуют. Фактических ошибок, связанных с пониманием проблемы, нет. Допущены одна-две ошибки в оформлении работы.
- 7-6 баллов студент провел достаточно самостоятельный анализ основных этапов и смысловых составляющих в решении задачи; понимает базовые основы и теоретическое обоснование темы. Допущено не более 2 ошибок в смысле или содержании проблемы, оформлении работы. Возможно, требуется незначительная помощь студенту в решении.
- 0 баллов допущены критические ошибки, студент не может самостоятельно решить задачу.

Окончательная экзаменационная оценка по промежуточной аттестации формируется в автоматизированной рейтинговой системе на основе введенных преподавателем оценок по контрольным мероприятиям, входящим в рейтинг-план.