

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

СОГЛАСОВАНО

УТВЕРЖДАЮ

Руководитель ОП

Заведующий кафедрой

97)

алгебры, геометрии и анализа Р.П. Шепелева

«08» gelpans, 20/6 r.

« 03 » grebpais 20 Br.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Математика

Направление подготовки 38.03.01 Экономика профиль «Бухгалтерский учет, анализ и аудит» Форма подготовки заочная

курс 1 семестр лекции 8 час. практические занятия _12 _ час. лабораторные работы - час. в том числе с использованием МАО лек. _-_ / пр. _8 _ / лаб. _-_ час. в том числе с использованием МАО лек. _-_ / пр. _8 _ / лаб. _-_ час. в том числе с использованием МАО _8 _ час. самостоятельная работа 196 час. в том числе на подготовку к экзамену 9 час. контрольные работы (количество) курсовая работа / курсовой проект _-_ семестр зачет _-_ семестр экзамен 1 курс

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ от 12 ноября 2015 г. № 1327.

Рабочая программа обсуждена на заседании кафедры алгебры, геометрии и анализа, протокол № 6 от 03 02 20 6 г.

Заведующий кафедрой: Шепелева Р.П.

Составители: д-р экон. наук, профессор Головко Н.И.

Оборотная сторона титульного листа РПУД

Іротокол от «»	20 г. №	
аведующий кафедрой _		
	(подпись)	
. D. 4		
I. Рабочая программа	пересмотрена на заседании ка	афедры:
Іротокол от «»	20 г. №	
аведующий кафедрой _		
	(подпись)	

«Математика»

Учебный курс «Математика» предназначен для студентов направления подготовки 38.03.01 Экономика, профиль «Бухгалтерский учет, анализ и аудит».

Дисциплина «Математика» включена в состав базовой части блока «Дисциплины (модули)».

Трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов. Учебным планом предусмотрены лекционные занятия часов), практические занятия (12 часов, В числе MAO 8 часов), TOM самостоятельная работа студентов (196 часа, в том числе 9 часов на подготовку к экзамену). Дисциплина реализуется на 1 курсе.

Дисциплина «Математика» основывается на знаниях, умениях и навыках, полученных в результате изучения дисциплин школьного курса математики, и позволяет подготовить студентов к освоению ряда таких дисциплин, как «Менеджмент», «Микроэкономика», «Основы экономической статистики», «Статистические методы исследования в экономике», «Экономический анализ», «Финансово-экономические расчеты», «Анализ финансовой отчетности».

Содержание дисциплины охватывает следующий круг вопросов: элементы линейной алгебры, векторы, аналитическая геометрия математический анализ, дифференциальное плоскости, введение В исчисление функций неопределенный интеграл, одного аргумента, дифференциальное функций определенный интеграл, исчисление переменных, дифференциальные уравнения, числовые и нескольких функциональные ряды, теория вероятностей и математическая статистика.

Цель - формирование и конкретизация знаний по основам математики, а также применение математических методов при изучении естественнонаучных и профессиональных дисциплин.

Задачи:

- изучение основных математических структур и методов;
- изучение математического моделирования.

Для успешного изучения дисциплины «Математика» у обучающихся должны быть сформированы следующие предварительные компетенции:

- владение культурой мышления, способностью к восприятию, обобщению и экономическому анализу информации, постановке цели и выбору путей ее достижения; способность отстаивать свою точку зрения, не разрушая отношения;
- способность к коммуникации в устной и письменной формах на русском и иностранном языках для решения задач межличностного и межкультурного взаимодействия;
- способностью осуществлять деловое общение (публичные выступления, переговоры, проведение совещаний, деловая переписка, электронные коммуникации);
- способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.

В результате изучения данной дисциплины у обучающихся формируются следующие общекультурные, общепрофессиональные и профессиональные компетенции:

Код и	Эт	апы формирования компетенции					
формулировка							
компетенции							
ОПК-3 способность	Знает	инструментальные средства для					
выбрать		обработки экономических данных					
инструментальные	Умеет	HIDOONG HANDING POOL POOL TOTAL POOL TOTAL					
средства для	умеет	проанализировать результаты расчетов и					
обработки		обосновать полученные выводы					
экономических	Владеет	навыками выбрать инструментальные					
данных в		средства для обработки экономических					

COOTDATATRIHI		HOLHILLY B COOTBOTOTOLIL C HOOTOBUOY
соответствии с		данных в соответствии с поставленной
поставленной		задачей, проанализировать результаты
задачей,		расчетов и обосновать полученные
проанализировать		выводы.
результаты расчетов		
и обосновать		
полученные выводы		
	Знает	содержание процессов самоорганизации и самообразования, их особенностей и технологий реализации, исходя из целей совершенствования профессиональной деятельности
ОК-7 способность к самоорганизации и самообразованию	Умеет	планировать цели и устанавливать приоритеты при выборе способов принятия решений с учетом условий, средств, личностных возможностей и временной перспективы достижения; осуществления деятельности
	Владеет	технологиями организации процесса самообразования; приемами целеполагания во временной перспективе, способами планирования, организации, самоконтроля и самооценки деятельности
ПК-3 способность выполнять необходимые для	Знает	основные вычислительные приёмы и способы, необходимые для составления экономических разделов планов
составления экономических разделов планов расчеты, обосновывать их и представлять	Умеет	применять основные методы и приемы решения практических задач; использовать математические и естественнонаучные методы для решения профессиональных задач
результаты работы в соответствии с принятыми в организации	Владеет	навыками выполнять необходимые для составления экономических разделов планов расчеты, обосновывать их и

		_
стандартами		представлять результаты работы в
		соответствии с принятыми в организации
		стандартами
		•
	Знает	основные понятия и методы
ПК-2 способность на		математических и естественнонаучных
основе типовых		дисциплин в объеме, необходимом для
методик и		профессиональной деятельности;
действующей		
нормативно-		приемы исследования и решения
правовой базы		математически формализованных задач с
рассчитать		простейшими численными методами
экономические и	Умеет	рассчитать экономические и социально-
социально-	0 3.2002	экономические показатели,
экономические		характеризующие деятельность
показатели,		
характеризующие		хозяйствующих субъектов
деятельность	Владеет	навыками расчета экономических и
		социально-экономических показателей,
хозяйствующих		
субъектов		характеризующих деятельность
		хозяйствующих субъектов

Для формирования вышеуказанных компетенций в рамках дисциплины «Математика» применяются следующие методы активного/ интерактивного обучения: проблемные лекции, рейтинговая система практических занятий, экспресс-опросы, кросс-опросы, составление планконспектов дисциплины.

3. ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ

В результате теоретического изучения курса линейной алгебры и аналитической геометрии студент должен знать: глубоко и прочно основные понятия и теоремы курса; последовательно, грамотно и без логических пробелов излагать программный материал; формулировать и доказывать наиболее важные для овладения курсом математические утверждения.

В результате практического изучения курса линейной алгебры и аналитической геометрии студент должен уметь: решать типовые задачи, не затрудняясь при видоизменении условий задачи.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

4.1. Очная форма обучения

	Всего	Распределение по
Вид учебной работы	часов	семестрам
		1
Общая трудоемкость дисциплины	144	144
Лекции	36	36
Лабораторные работы	_	_
Практические занятия	36	36
Всего самостоятельная работа	72	72
В том числе: курсовое проектирование	-	-
Другие виды (РГЗ, рефераты и др.)	-	-
Вид итогового контроля		экзамен

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. - 5.2 Распределение учебного материала по видам занятий. Содержание лекционного курса.

No		Распределение				
	Наименование раздела дисциплины	по видам (час)				
ПП		Лек	П3	CP3		
1	Введение: Теория определителей и матриц, системы линейных алгебраических уравнений, метод Крамера, Гаусса, исследование совместности системы, обратная матрица. Комплексные числа: алгебраическая, тригонометрическая, показательная формы. Формула Эйлера. Действия над КЧ. Многочлены. Корни многочлена. Основная теорема алгебры, следствия из неё.	12	12	24		
2	Векторная алгебра: Вектор — направленный отрезок. Длина вектора. Коллинеарность, компланарность, равенство векторов. Линейные операции над векторами. Линейная зависимость векторов. Базис, координаты, размерность. Теоремы о свойствах базиса и координат. Ортогональная проекция вектора на ось	8	8	16		

	и плоскость. Скалярное, векторное, смешанное произведение векторов.			
3	Аналитическая геометрия: Основные задачи аналитической геометрии. Линейные преобразования на плоскости. Алгебраические линии и поверхности. Геометрический смысл уравнения 1-го порядка на плоскости. Различные виды уравнения прямой. Геометрический смысл ур-я 1-го порядка в пространстве, виды уравнения плоскости. Прямая в пространстве — пересечение двух плоскостей, общее и каноническое ур-я. Основные задачи на прямую и плоскость, решаемые методами векторной алгебры. Вывод канонических уравнений эллипса, гиперболы, параболы на основе характеристических свойств этих кривых. Исследования свойств кривых 2-го порядка. Приведение кривой 2-го порядка к каноническому виду, классификация кривых 2-го порядка. Поверхности второго порядка.	10	12	24
4	Математика: Линейное пространство. Линейная зависимость. Базис, координаты, размерность. Теорема о свойствах базиса и координат. Подпространство. Эвклидовы пространства. Неравенства Коши и треугольника. Ортогональный и ортонормированный базис. Ортогонализация Грамма-Шмидта. Линейные отображения. Ранг матрицы, структура общего решения однородной и неоднородной СЛАУ, фундаментальная система решений. Собственные числа и векторы линейного преобразования. Характеристическое уравнение.	6	4	8
	Всего	36	36	72

5.3. Содержание практических занятий

№ пз	Номер раздел	Наименование практического занятия
	a	
1	1	Конечные суммы.

2		Определители 2, 3-го порядка. Решение систем линейных
		алгебраических уравнений. Метод Крамера.
2		
3		Метод Гаусса.
4		Действия с матрицами - сложение, умножение, вычисление
		обратной матрицы.
5		СР - СЛАУ. Комплексные числа.
6		Многочлены.
7		Линейные операции над векторами. Линейная зависимость
		векторов.
8	2	Скалярное произведение векторов
9		Векторное произведение векторов.
10		Смешанное произведение векторов. СР-векторная алгебра.
11		Прямая на плоскости.
12		Прямая на плоскости. Плоскость.
13	0	Прямая в пространстве. Плоскость.
14	3	КР - прямая на плоскости
15		Кривые второго порядка.
16		Кривые второго порядка. Приведение к каноническому виду.
17	4	Решение СЛАУ в векторном виде.
18	۲	Собственные числа и собственные векторы.

6. Курсовое проектирование (не предусмотрено)

7. ГРАФИК ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

Вид учебных		№ недели																
занятий	1	2	3	4	5	6	7	8	9	10	1	1	1	14	1	1	1	1
											1	2	3		5	6	7	8
Лекции (час)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
ЛЗ																		
ПЗ (час)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
КПР																		
ИДЗ (№)		1				2		3	4		5		6		7			
KP (CP)					$N_{\underline{0}}$					№				$N_{\underline{0}}$				
					1					2				3				
Распределение		5-			6-	1		1	1	6-	2-		1-	6-	1-			
баллов		1			10	-		-	-	10	5		5	10	5			
		0				5		5	5									
Аттестация							Α							A2				
(промежуточн							1											
ая)																		

8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Основная литература

1) Кремер, Н. Ш. Высшая математика для экономистов / Н. Ш. Кремер, Б. А. Путко, И. М. Тришин, М. Н. Фридман ; под ред. Н. Ш. Кремера. М.: Издательство ЮНИТИ-ДАНА, 2015. – 479 с.

http://znanium.com/catalog/product/872573

2) Красс, М.С. Математика для экономического бакалавриата: Учебник / М.С. Красс, Б.П. Чупрынов. - М.: НИЦ ИНФРА-М, 2013. - 472 с. http://znanium.com/catalog/product/400839

3) Гулиян, Б. Ш. Математика. Базовый курс [Электронный ресурс] : учебник / Б. Ш. Гулиян, Р. Я. Хамидуллин. - 2-е изд., перераб. и доп. - М.: МФПА, 2011. - 712 с.

http://znanium.com/catalog/product/451279

4) Исаева, С. И. Математика [Электронный ресурс] : Учеб. пособие / С. И. Исаева, Л. В. Кнауб, Е. В. Юрьева. – Красноярск: Сиб. федер. ун-т, 2011. - 156 с.

http://znanium.com/catalog/product/441942

5) Журбенко, Л. Н. Математика в примерах и задачах: Учебное пособие/Журбенко Л. Н., Никонова Г. А., Никонова Н. В., Дегтярева О. М. - М.: НИЦ ИНФРА-М, 2016. - 372 с.

http://znanium.com/catalog/product/484735

Дополнительная литература

6) Мхитарян, В. С. Теория вероятностей и математическая статистика [Электронный ресурс] : учеб. пособие / В. С. Мхитарян, Е. В. Астафьева, Ю. Н. Миронкина, Л. И. Трошин; под ред. В. С. Мхитаряна. - 2-е изд., перераб. и доп. - М.: Московский финансово-промышленный университет «Синергия», 2013. - 336 с.

http://znanium.com/catalog/product/451329

7) Математика [Электронный ресурс] : учебное пособие / Н. Б. Карбачинская, Е. С. Лебедева, Е. Е. Харитонова, М. М. Чернецов ; под ред.

- М. М. Чернецов. Электрон. текстовые данные. М. : Российский государственный университет правосудия, 2015. 342 с. http://www.iprbookshop.ru/49604.html
- 8) Королев, В. Т. Математика и информатика. Часть первая. Математика [Электронный ресурс] / В. Т. Королев, Д. А. Ловцов, В. В. Радионов ; под ред. Д. А. Ловцов. Электрон. текстовые данные. М. : Российский государственный университет правосудия, 2015. 248 с.

http://www.iprbookshop.ru/45225.html

9) Математика: Учебное пособие / Ю.М. Данилов, Н.В. Никонова, С.Н. Нуриева; Под ред. Л.Н. Журбенко, Г.А. Никоновой. - М.: НИЦ ИНФРА-М, 2014. - 496 с.

http://znanium.com/catalog/product/471655

10) Математика [Электронный ресурс] : задачник. Направление подготовки 040700 — Организация работы с молодежью; 034400 — Физическая культура для лиц с отклонениями в состоянии здоровья (Лечебная физическая культура); 100400 — Туризм (Технология и организация спортивно-оздоровительных услуг), 050100 — Педагогическое образование (профили: «Биология и химия», «Экономика и география»); 050400 — Психологопедагогическое образование; 030300 — Психология / М. С. Ананьева, И. Н. Власова, М. Л. Лурье [и др.]. — Электрон. текстовые данные. — Пермь : Пермский государственный гуманитарно-педагогический университет, 2014. — 78 с.

http://www.iprbookshop.ru/32059.html

11) Матвеева, Т. А. Математика [Электронный ресурс] : курс лекций / Т. А. Матвеева, Н. Г. Рыжкова, Л. В. Шевелева ; под ред. Д. В. Александров. — Электрон. текстовые данные. — Екатеринбург : Уральский федеральный университет, ЭБС АСВ, 2014. — 216 с.

http://www.iprbookshop.ru/69623.html

12) Математика [Электронный ресурс] : учебно-методическое пособие для студентов факультета математики и информатики (направления подготовки

«Прикладная информатика в дизайне, прикладная информатика в образовании) / сост. С. Н. Матвеев, Ф. С. Сиразов. — Электрон. текстовые данные. — Набережные Челны : Набережночелнинский государственный педагогический университет, 2015. — 86 с.

http://www.iprbookshop.ru/76443.html

13) Кундышева, Е. С. Математика [Электронный ресурс] : Учебник для экономистов / Е. С. Кундышева. — 4-е изд. — М.: Издательско-торговая корпорация «Дашков и К°», 2015. — 564 с.

http://znanium.com/catalog.php?bookinfo=512127

- 14) Греков Е.В., Математика [Электронный ресурс] : учебник для фармацевт. и мед. вузов / Е.В. Греков М. : ГЭОТАР-Медиа, 2015. 304 с. http://www.studentlibrary.ru/book/ISBN9785970432815.html
- 15) Палий, И.А. Теория вероятностей: Учебное пособие / И.А. Палий. М.: ИНФРА-М, 2012. 236 с.

http://znanium.com/catalog/product/225156

МАТЕРИАЛЬНО_ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для изучения дисциплины необходима аудитория 54 посадочных мест, автоматизированное рабочее место преподавателя, переносная магнитномаркерная доска, Wi-FI

Ноутбук Acer ExtensaE2511-30BO

Экран с электроприводом 236*147 см Trim Screen Line; Проектор DLP, 3000 ANSI Lm, WXGA 1280x800, 2000:1 EW330U Mitsubishi; Подсистема специализированных креплений оборудования CORSA-2007 Tuarex; Подсистема видеокоммутации; Подсистема аудиокоммутации и звукоусиления; акустическая система для потолочного монтажа SI 3CT LP Extron; цифровой аудиопроцессор DMP 44 LC Extron.

690922, г. Владивосток, остров Русский, полуостров Саперный, поселок Аякс, 10, корпус G, каб. G708, учебная аудитория для проведения занятий лекционного типа; учебная аудитория для проведения занятий семинарского

типа (практических занятий); учебная аудитория для курсового проектирования (выполнения курсовых работ); учебная аудитория для текущего контроля и промежуточной аттестации 12 посадочных мест, рабочее место преподавателя, переносная магнитномаркерная доска, Wi-FI690922, г. Владивосток, остров Русский, полуостров Саперный, поселок Аякс, 10, корпус G, каб. G624 а, учебная аудитория для проведения занятий семинарского типа (практических занятий); учебная аудитория для курсового проектирования (выполнения курсовых работ); учебная аудитория для групповых и индивидуальных консультаций; учебная аудитория для текущего контроля и промежуточной аттестации

В читальных залах Научной библиотеки ДВФУ предусмотрены рабочие места для людей с ограниченными возможностями здоровья, оснащены дисплеями И принтерами Брайля; оборудованные портативными устройствами для чтения плоскопечатных текстов, сканирующими и читающими машинами, видеоувелечителем с возможностью регуляции спектров; увеличивающими электронными лупами шветовых И ультразвуковыми маркировщиками.

В целях обеспечения специальных условий обучения инвалидов и лиц с ограниченными возможностями здоровья ДВФУ все здания оборудованы пандусами, лифтами, подъемниками, специализированными местами, оснащенными туалетными комнатами, табличками информационнонавигационной системы.

9. Контрольные задания и методические рекомендации по изучению дисциплины.

В процессе изучения дисциплины студенту требуется выполнить 8 ИДЗ и 4 контрольные работы, которые выдаются преподавателем в течение семестра. Каждому студенту в начале учебного процесса сообщается номер его варианта по порядковому номеру в журнале, который сохраняется до конца семестра.

При изучении дисциплины студент может воспользоваться следующими учебниками и методическими пособиями в качестве рекомендаций по выполнению домашних и контрольных работ:

- 1. Индивидуальные задания по высшей математике. Т.1. А.П. Рябушко, В.В. Бархатов и др. Минск: Вышейшая школа, 2000г, 303с.
- 2. Приведение кривой второго порядка к каноническому виду: Метод. указания / Сост. Н.Е. Дегтярева. Владивосток: Изд-во ДВГТУ, 2004. 24 с.

10. ТЕКУЩИЙ И ИТОГОВЫЙ КОНТРОЛЬ ПО ДИСЦИПЛИНЕ

10.1. Формы и методы для текущего контроля.

ИДЗ

- 1. Определители.
- 2. Системы линейных алгебраических уравнений.
- 3. Комплексные числа и многочлены.
- 4. Скалярное произведение.
- 5. Векторное и смешанное произведение.
- 6. Прямая на плоскости.
- 7. Прямая, плоскость в пространстве.
- 8. Приведение к каноническому виду кривых 2 порядка.

10.2. Контрольные тесты для определения минимального уровня освоения программы дисциплины.

- 1. Конечные суммы. СР.
- 2. СЛАУ. СР.
- 3. Векторная алгебра. СР.
- 4. Прямая на плоскости. КР.

10.3. Перечень типовых экзаменационных вопросов.

- 1. Определители 2-го, 3-его порядка, свойства.
- 2. Действия над матрицами, свойства.
- 3. Обратная матрица, свойства.
- 4. Определитель п-ого порядка. Основные теоремы.
- 5. Комплексные числа и действия над ними в алгебраической и показательной форме.
- 6. Многочлены. Корни многочлена, кратные корни. Теорема о разложении многочлена на линейные и квадратичные множители.
- 7. Геометрические векторы и линейные операции над ними.
- 8. Линейная зависимость системы векторов. Базис. Основная теорема о линейной зависимости.
- 9. Проекция вектора на ось. Свойства проекций.
- 10. Скалярное произведение векторов. Свойства.
- 11. Векторное произведение векторов. Свойства.
- 12. Смешанное произведение векторов. Свойства.
- 13. Вывод формул Крамера для системы 3*3.

- 14. Замена базиса.
- 15. Прямая в пространстве.
- 16. Прямая на плоскости.
- 17. Плоскость.
- 18. Основные задачи: расстояние отточки до плоскости, от точки до прямой, расстояние между скрещивающимися прямыми.
- 19. Признаки параллельности и перпендикулярности прямых и плоскостей.
- 20. Пучок прямых, плоскостей, связка плоскостей.
- 21. Вывод канонических уравнений эллипса, гиперболы и параболы. Свойства.
- 22. Преобразования координат на плоскости: параллельный перенос, поворот.
- 23. Приведение уравнения кривых второго порядка к каноническому виду. Инварианты.
- 24. Понятие линейной независимости столбцов матрицы. Теоремы о базисном миноре, о ранге матрицы. Необходимое и достаточное условие равенства нулю определителя.
- 25. Условие совместности СЛАУ. Теорема Кронеккера-Капелли.
- 26. Вывод формул Крамера для системы п-ого порядка.
- 27. Общее решение однородной СЛАУ.
- 28. Структура общего решения неоднородной СЛАУ.
- 29. Линейное пространство. Базис и размерность. Основная теорема.
- 30. Подпространство и линейная оболочка. Теорема о размерности суммы и пересечении подпространств.
- 31. Линейные отображения. Матрица линейного отображения. Ядро и образ. Условие взаимной однозначности линейного отображения.
- 32. Собственные значения и собственные векторы. Матрица линейного отображения в базисе из собственных векторов.
- 33. Поверхности второго порядка

Распределение баллов по видам учебных работ

№ п/п	Наименование работ	Распределение
		баллов
1	Теоретический материал	
2	Лабораторные работы	
3	Практические занятия	
4	Курсовое проектирование	
5	Индивидуальные домашние задания	12 - 40
	(РГЗ, рефераты и т.д.)	
6	Контрольные работы	18 - 30
7	Посещаемость	$0 \le k \le 1$
8	Экзамен/Зачет	30
	Итого	100

Перевод баллов в пятибалльную шкалу

Отлично	85-100
Хорошо	71-84
Удовлетворительно	60-70
Неудовлетворительно	Менее 60

<u>Примечание</u>. Посещаемость занятий учитывается поправочным коэффициентом k, равным отношению количества часов посещенных занятий к плановым. При набранной общей суммы баллов менее 40 по результатам третьей аттестации студент не допускается к итоговой аттестации по дисциплине.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ В РАБОЧЕЙ ПРОГРАММЕ

За	2010	/ 2011	учебный год
			

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

МАТЕРИАЛЫ ДЛЯ ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

по дисциплине «Математика»,

В процессе изучения курса «Математика» студенты обязаны выполнить восемь индивидуальных домашних заданий по темам:

Индивидуальные домашние задания

- 1. Определители.
- 2. Матрицы и системы уравнений.
- 3. Комплексные числа.
- 4. Скалярное произведение.
- 5. Векторное и смешанное произведение.
- 6. Размерность и базис линейного пространства.
- 7. Прямая на плоскости.
- 8. Плоскость и прямая в пространстве.
- 9. Кривые второго порядка.

Пример варианта индивидуальных домашних заданий Определители

1. Вычислить определитель двумя способами: а) разложив по элементам 4-20 столбца. б) предварительно получив нули в третьей строке.

$$\Delta = \begin{vmatrix} 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 4 \end{vmatrix}$$

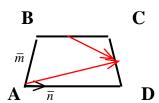
2. Найти минор M_{43} и алгебраическое дополнение A_{24} из Δ .

Матрицы и системы уравнений

1. По формулам Крамера решить систему уравнений:

$$\begin{cases} 7x_1 & -5x_2 & = 24 \\ 4x_1 & +11x_3 & = 39 \\ 2x_1 & +3x_2 & +4x_3 & = 33 \end{cases}$$

2. Методом Гаусса решить систему уравнений.


$$\begin{cases} x_1 & -x_2 & +2x_3 & -x_4 & = -2 \\ 5x_1 & +x_2 & -x_3 & = 1 \\ -2x_1 & -2x_2 & +3x_3 & -x_4 & = -3 \\ 4x_2 & +x_3 & +x_4 & = 5 \end{cases}$$

3. Решить систему уравнений матричным методом, если задана матрица системы и столбец свободных членов.

$$A = \begin{bmatrix} 3 & 2 & 5 \\ 5 & 7 & 3 \\ 3 & 1 & 5 \end{bmatrix} B = \begin{bmatrix} 7 \\ 1 \\ 3 \end{bmatrix}$$

Скалярное произведение векторов

1.

$$\left| \overrightarrow{m} \right| = 1, \left| \overrightarrow{n} \right| = 1$$
; $(\overrightarrow{m}, \overrightarrow{n}) = \frac{\pi}{3}$. Haŭtu: $\overline{AN}, \overline{MN}$.

2. Дано $\bar{a} = 5\bar{m} - 2\bar{n}$, $\bar{b} = \bar{m} + \bar{n}$.

Найти:

1)
$$\overline{a} \cdot \overline{b}$$
. 2) $np_{\overline{b}}(2\overline{a} + \overline{b})$. 3) $\cos(\overline{b}, \overline{a} - 3\overline{b})$.

3. Даны точки $A_1(-4,2,-1)$, $A_2(-2,1,0)$, $A_3(4,3,-3)$.

Найти:

1)
$$\left| \overline{A_1 A_2} - 2 \overline{A_1 A_3} + \overline{A_2 A_3} \right|$$
 2) $np_{\overline{A_1 A_3}} \overline{A_1 A_2}$ 3) $\cos(\overline{A_2 A_1}, \overline{A_2 A_3})$

Векторное и смешанное произаедение

1. найти площадь параллелограмма S_{\Box} , построенного на векторах $2\bar{a} - \bar{b}$ и $3\bar{a} + 4\bar{b}$, если $|\bar{a}| = 4$, $|\bar{b}| = 3$, $(\bar{a}, \bar{b}) = 150^{\circ}$.

2. Дано: *SABC* -пирамида. S(5,5,2), A(1,3,-1), B(2,0,7), C(-2,4,0).

Найти: $1) S \square ABC$. $2) \cos \angle ABC$. 3) высоту $\square ABC$, опущенную на сторону AB из вершины C.4) объем пирамиды. 5) H пирамиды, опущенную из S на основание ABC.

3. Проверить компланарны ли векторы $\bar{a}(2,7,0), \bar{b}(4,-1,3), \bar{c}(1,8,1).$

Прямая на плоскости

Дан треугольник : $\Box ABC$, известны уравнения его сторон: (AB): 2x-y-11=0 (BC): 7x+6y-67=0 (CA): 13x+3y-43=0.

Найти: уравнения высот треугольника, уравнения медиан треугольника, уравнение прямой проходящей через точку A параллельно стороне (BC), угол при вершине A, точку B симметричную точке B относительно прямой (AC).

Плоскость и прямая в пространстве

1. Даны точки: $A_1(6,1,1)$, $A_2(4,6,6)$, $A_3(4,2,0)$, $A_4(1,2,6)$.

Найти: уравнение прямой (A_1, A_2) , уравнение плоскости, проходящей через точки A_1 , A_2 , A_3 , Расстояние от точки A_4 до построенной плоскости, угол между плоскостью и прямой (A_1, A_4) , расстояние между прямыми (A_1, A_2) и (A_3, A_4) .

2. Составить уравнение плоскости, проходящей через точку P(2,0,1), и параллельной прямым: $\frac{x}{6} = \frac{y}{2} = \frac{z}{-3}$ и $\frac{x-1}{5} = \frac{y+3}{4} = \frac{z-2}{2}$.

 $-4x^2 - 4y^2 + 2xy + 10x - 10y + 1 = 0$ Привести уравнение кривой второго порядка к каноническому виду.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Лальневосточный федеральный университет»

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

По дисциплине Математика Направление подготовки 38.03.01 Экономика профиль подготовки «Бухгалтерский учет, анализ и аудит» Форма подготовки: заочная

> г. Владивосток 2015

В процессе изучения курса «математика» студенты обязаны выполнить две контрольные работы по темам:

- 1. Векторы.
- 2.Прямая на плоскости.

При подготовке к экзамену студенты должны изучить следующие вопросы

- 1. Определители и их свойства.
- 2. Матрицы и действия с ними.
- 3. Обратная матрица, свойства.
- 4. Системы линейных алгебраических уравнений: метод обратной матрицы, метод Крамера.
- 5. Ранг матрицы, метод Гаусса, структура общего решения однородной и неоднородной СЛАУ, фундаментальная система решений.
- 6. Однородные системы линейных алгебраических уравнений.
- 7. Комплексные числа и действия над ними в алгебраической и показательной форме.
- 8. Многочлены. Корни многочлена, кратные корни. Теорема о разложении многочлена на линейные и квадратичные множители.
- 9. Геометрические векторы и линейные операции над ними.
- 10. Линейная зависимость системы векторов. Базис. Основная теорема о линейной зависимости.
- 11. Проекция вектора на ось. Свойства проекций.
- 12.Скалярное произведение векторов. Свойства.
- 13. Векторное произведение векторов. Свойства.
- 14.Смешанное произведение векторов. Свойства.
- 15. Линейное пространство. Базис и размерность. Основная теорема.
- 16.Подпространство и линейная оболочка. Теорема о размерности суммы и пересечении подпространств.
- 17. Евклидовы пространства, ортогональный и ортонормированный базис.
- 18. Линейные отображения. Матрица линейного отображения. Ядро и образ. Условие взаимной однозначности линейного отображения.
- 19.Собственные значения и собственные векторы. Матрица линейного отображения в базисе из собственных векторов.
- 20. Квадратичная форма и ее матрица. Канонический вид квадратичной формы.
- 21. Положительно и отрицательно определенные квадратичные формы, критерий Сильвестра.
- 22. Уравнения прямой на плоскости.
- 23. Уравнения плоскости.
- 24. Уравнения прямой в пространстве.
- 25. Кривые второго порядка.

- 26.Приведение уравнения кривой второго порядка к каноническому виду.
- 27. Поверхности второго порядка. Контрольная работа «Векторная алгебра»

Дано	Вычислить
1. $\mathbf{F}_1 = i - j + k$, $\mathbf{F}_2 = 2i + j + 3k$, A(4;-2;-2)	Работу равнодействующей сил ${\bf F_1}$ и ${\bf F_2}$ при перемещении из начала координат в точку ${\bf A}$.
2. A(-2;3;1), B(-2;-1;5), <i>cosα</i> , <i>cos</i> β, <i>cos</i> γ - направляющие косинусы вектора AB .	$20(cos\alpha+cos\beta+cos\gamma)$
3. A(1;0;1), B(1;4;6), C(2;2;1), D(1;0;α)	Значение а, при котором точки A, B, C D, лежат в одной плоскости.
4. $p = 2 m-n$, $q = 4 m-5n$, $ n = \sqrt{2}$, $ m = 5$, $(m,n) = \frac{\pi}{4}$.	$\frac{1}{3}$ площади параллелограмма, диагоналями которого служат векторы p и q .
5. $ a =2$; $ b =5$; $(a;b)=120^{\circ}$; $m = \alpha a + 17b$; $n = 3a - b$.	$\frac{1}{10}$ значения $lpha$, при котором $m \perp n$.

Дано	Вычислить
1. $ a =2$; $ b =5$; $(a;b)=120^\circ$; $m = \alpha a + 17b$; $n = 3a - b$.	Значение α , при котором $m \perp n$.
2. $\mathbf{a} = (3;-1;-2); \mathbf{b} = (2;2;-1); \mathbf{c} = \mathbf{a} \times \mathbf{b}.$	Сумма координат вектора c .
3. см. 2	$3 \cdot \text{пр}_b(2a + b)$
4. A(1;0;3), B(2;1;0), C(1;2;2), D(0;2;3) - точки	Объем параллелепипеда, построенного на векторах АВ , АС , А Д.

	Ординату	вектора	т , колли	неарного
5 04 4	вектору	AC,	противо	положно
5. см. 4	направлені	ного и	имеющего	модуль
	$m=3\sqrt{5}$.			

Дано	Вычислить	
1. a (10;-20;20), $cos \alpha$, $cos \beta$, $cos \gamma$ - направляющие косинусы вектора a .	$9\cos\alpha + 2\cos\beta - \cos\gamma$	
2. А(1;-1;2); В(5;-6;2); С(1;3;-1) – точки.	Ординату вектора AB × AC .	
3. $ a =11$; $ b =23$; $ a-b =30$.	a + b	
4. $a=2i-j+k$; $b=i+j-2k$; $c=-3i-3k$;	Объем параллелепипеда, построенного на векторах a, b, c .	
5. см. 4	Абсциссу вектора m , коллинеарного вектору a , имеющего то же направление и модуль $m=5\sqrt{6}$.	

Дано	Вычислить
1. $\boldsymbol{a} = (1;-5;-2), \boldsymbol{b} = (4;0;-3)$	$ пр_b(\mathbf{a} + \mathbf{b}). $
2. см 1.	Абсциссу вектора $ m{b} \cdot m{a}$
3. A(-2;1;3), B(0;1;4), C(-2;2;4).	Площадь параллелепипеда построенного на векторах AB и AC .
4. $ a =2$, $ b =1$, $ c =5$, $(a,c)=\pi$, $(b,c)=0$.	$([a \times b],c)+ c $
5. $a=2i-j+k$; $b=i+j-2k$; $c=-3i-3k$.	Объем треугольной пирамиды построенной на векторах a,b,c .

Дано	Вычислить
------	-----------

1. $ \mathbf{m} =1$; $ \mathbf{n} =\sqrt{2}$; $(\mathbf{m};\mathbf{n})=\frac{\pi}{4}$.	$ m \times n + (m, n)$
2. А(1;-1;2), В(5;-6;2), С(1;3;1) - точки	Аппликату вектора $\mathbf{AB} \times \mathbf{CA}$.
3. $\mathbf{a} = (\beta; -3; 2); \mathbf{b} = (2; -2; 1); \mathbf{a} \perp \mathbf{b}.$	Значение коэффициента $oldsymbol{eta}$
4. $a=2i-j+2k$; $b=3i-4k$; $c=2j+k$;	Объем параллелепипеда, построенного на векторах a, b, c .
5. см. 4	$3 \cdot \operatorname{np}_a(b+2c)$

Дано	Вычислить
1. $ p =2\sqrt{2}$; $ q =3$; $(p;q)=\frac{\pi}{4}$.	6 p - q
2. A(2;-5;1), B(8;2;-5), cosα, cosβ, cosγ - направляющие косинусы AB	$\frac{363}{7}$ $\cdot \cos \beta$
3. $a=i+j+2k$; $b=i-j+4k$;	$\frac{1}{4}$ объема параллелепипеда построенного на вектора $a, b, [a,b]$.
4. $p=3a+2\alpha b$, $q=a-2b$, $ a =6$, $ b =2$, $(a,b)=\frac{\pi}{3}$	При каком значении α векторы p и q ортогональны.
5. $\mathbf{AB} = 3\mathbf{i} - 2\mathbf{j} + 6\mathbf{k}$, A(1;-1;3), C(0;1;13).	7-пр _{АВ} ВС.
	7

Дано	Вычислить
1. $ a = \sqrt{2}, b = 1, (a,b) = \frac{\pi}{4}$.	a-b
2. $\mathbf{a} = (2;0;-1), \mathbf{b} = (1;-14;3), \mathbf{c} = (1;\alpha;0).$	При каком значении α , векторы a, b, c – компланарны.

3. $a=3i-j-2k$; $b=i+2j-k$.	Квадрат модуля вектора $(2a-b)\times(2a+b).$
4. А(0;-2), В(1;2), С(3;2) - точки.	5-пр _{АС} АВ.
5. см 4.	Площадь треугольника АВС.
Дано	Вычислить
1. a =(0;1;2), b =(3;-1;-1).	√11·πp _b a
2. A(1;2;3), B(2;-4;0), C(1;0;3), D(2;0;4) - точки.	AB×AC·AD
3. A(-2;3;1), B(-2;-1;5), $cos\alpha$, $cos\beta$, $cos\gamma$ - направляющие косинусы вектора AB .	$20(cos\alpha + cos\beta + cos\gamma)$
4. $p = 3 a + 9 \alpha b$, $q = a - 2b$, $ a = 6$, $ b = 2$, $(a,b) = \frac{\pi}{3}$.	Значение α , при котором векторы p и q ортогональны.
5. $p = 2m-n$, $q = 4m-5n$, $ n = \sqrt{2}$, $ m = 5$, $(m,n) = \frac{\pi}{4}$.	$\frac{1}{3}$ площади параллелограмма, диагонали которого – p и q .
Дано	Вычислить
1. $\boldsymbol{a} = (1;-2;-3), \boldsymbol{b} = (5;0;1), \boldsymbol{c} = (0;4;-3)$	Объем параллелепипеда, построенного на векторах a , b , c .
2.Силы $\mathbf{F_1}$ и $\mathbf{F_2}$ направлены под углом 60°; $ \mathbf{F_1} $ =5, $ \mathbf{F_2} $ =7.	Квадрат модуля равнодействующей силы.
3. $a=3i+2k$; $b=i-j$, $c=3j+\alpha k$	При каком значении α , векторы a, b, c – компланарны.
4. см 3.	3·пр _{а-b} а.
5. А(1;-1;2), В(5;-6;2), С(1;3;1) - точки.	Сумму координат вектора [АВ,АС].
	10

Дано	Вычислить
1. $ a =13$, $ b =19$, $ a+b =24$	a-b
2. А(1;2;0), В(3;0;-3), С(5;2;6) - точки.	Ординату вектора $\mathbf{AC} \times \mathbf{AB}$
3. a =(2;-3;4), b =(1;2;-2).	пр <i>ь</i> а
4. см 3.	Утроенную сумму направляющих косинусов вектора \boldsymbol{b} .
5. $a = -i+3k$, $b = 2i+4k-3j$, $c = i+2j-2k$.	Объем параллелепипеда, построенного на векторах a, b, c .

Контрольная работа «Прямая на плоскости

Вариант 1.

- 1. Даны точки: А (-7, 4) и В (2, 5) и точка М внутри отрезка АВ такая, что | АN уравнение прямой , проходящей через точку М под углом 60° к оси X.
- 2. Прямая проходит через точку пересечения прямых 2x+3y-7=0 и x-2y+4=0 и отсекает на оси X отрезок, равный 2. Составить уравнение этой прямой.
- 3. Дана прямая L: 3x+2y-7=0. Провести через точку A (2, -3) прямую, перпендикулярную L. Вычислить расстояние от точки M (-1, 2) до искомой прямой.
- 4. Диагонали ромба, длиной в 30 и 16 единиц, приняты за оси координат. Составить уравнения сторон ромба.
- 5. Написать уравнение прямой, параллельной прямой x-7y+2=0 и проходящей на расстоянии $\sqrt{2}$ единиц от начала координат.

Вариант 2.

- 1. Доказать, что точка M (-2, 3), B (4, 0) и C (2, 1) лежат на одной прямой L. Провести через точку M(-1, -2) прямую, параллельную прямой L.
- 2. Показать, что точка M(3, 1) находится вдвое ближе к прямой 2x+3y-6=0, чем начало координат.

- 3. Даны точки A (-2, 1) и B(4, 3) и точка M внутри отрезка AB, причем |AM|/|MB|=2/3. Провести через точку M прямую, перпендикулярную прямой AB.
- 4. Составить уравнение прямой, проходящей через точку A (-4, 2) под углом 30° к оси X. Найти отрезки, которая искомая прямая отсекает на осях координат.
- 5. Вычислить угол между прямой, проходящей через точки A (0, 1) и B(2, 3) и прямой 5x+y-10=0.

Вариант 3.

- 1. Прямая проходит через точку С (3, 4) под углом 45° к оси ОХ. В каком отношении делит эта прямая отрезок А (-1, 2) В (3, 3).
- 2. Составить уравнения сторон правильного треугольника, приняв за начало координат одну из вершин, взяв за оси одну из сторон и перпендикуляр к ней.
- 3. Точка В симметрична началу координат относительно прямой 2x-7y+9=0. На каком расстоянии от прямой находится В?
- 4. Прямая проходит через точку A (-3, 3) параллельно прямой 2x+3y-4=0. Найти отрезки, которые отсекает искомая прямая на осях координат.
- 5. Даны точки А (2, 7), В (-2, 5), С (-3, 4), Составить уравнение прямой, проходящей через середину стороны АВ перпендикулярно прямой АС.

Вариант 4.

- 1. Составить уравнение прямой, проходящей через точку A (-2, -9) перпендикулярно прямой $3x+2y+2\theta=\theta$. Найти отрезок, отсекаемый искомой прямой на оси X.
- 2. Найти точку B, симметричную точке A(-2, -9) относительно прямой 3x+2y+20=0.
- 3. Проверить, проходят ли прямые x+3y-1=0, x-2y+4=0 и 5x+2y+8=0 через одну точку. Если проходят, через эту точку провести прямую под углом 150° к оси X.
- **4.** Найти расстояние от середины отрезка A (3, 2), B (-4, 7) до прямой 2x- 3y+4=0.
- 5. Составить уравнение прямой, проходящей через точку A (2, 1) параллельно прямой, проходящей через две точки B (3, 4) и C (-5, 2).

<u>Вариант 5.</u>

- 1. Задано множество прямых $M(\lambda)$: $3x 2y + 3 + \lambda(2x + 4y 1) = 0$. При каком λ прямая, принадлежащая множеству $M(\lambda)$, параллельна оси ОУ?
- 2. В каком отношении делит отрезок A(1, 1), B(-1, 3) прямая, проходящая через точки K(-2, 1) и M(3, 4)?
- 3. Показать, что точка A (2, 4) вчетверо дальше от прямой 7x-2y+2=0, чем точка B (0, 0).
- 4. Составить уравнение прямой , проходящей через точку М(-3, 7), под углом 120° к оси ОХ. В какой точке эта прямая пересекает ось ОХ ?
- 5. Даны точки A(2, 4) и B(-3, -4). Составить уравнение прямой, проходящей через середину отрезка AB перпендикулярно прямой 7x 5y + 2 = 0.

Вариант 6.

- 1. Прямая проходит через точки A(-1, 2) и B(2, 3). Найти её угловой коэффициент и отрезки, которые она отсекает на осях координат.
- 2. даны вершины треугольника: A(-3, -4), B(4, 2), C(2, 5). Составить уравнение медианы, опущенной из вершины C.
- 3. Дан отрезок A(-3,-4), B(2, 5). Составить уравнение прямой, проходящей через внутреннюю точку M отрезка AB параллельно прямой x+2y+6=0, если |AM|/|BM|=4.
- 4. Какая из точек: A(-1, 5) или B(1,-3) находится дальше от прямой 3y+3=0 и 2x-3y+5=0 ?
- 5. Через точку пересечения прямых 3x-2y+2=0 и 2x-4y+4=0 провести прямую, проходящую перпендикулярно прямой x-3y+1=0.

Вариант 7.

- 1. На оси X найти точки , отстоящие от прямой 2x+y-4=0 на 5 единиц.
- 2. Через точки A(-1, 3) и B(2,1) провести прямые перпендикулярные прямой 3x-4y-2=0.
- 3. Даны точки A(2, 1) и B(-3, 4) и точка C внутри отрезка AB такая, что AC / BC =2. Составить уравнение прямой, проходящей через точку C под углом в 60°. Составить уравнение этой прямой.
- 4. Прямая отсекает на оси У отрезок, равный 6. Отрезок этой прямой, заключенной между осями координат, виден из точки A(4, 3) под углом в 90°. Составить уравнение этой прямой.

5. Через точку пересечения прямых 2x+y-5=0 и 3x-7y+1=0 провести прямую, параллельную прямой x-2y+8=0. Какой отрезок отсекает искомая прямая на оси X?

Вариант 8.

- 1. Через точку A(2, 2) провести прямую, которая делит отрезок K(-1, 1) M(-2,-2) в отношении 2:3.
- 2. Составить уравнение прямой, которая отсекает на оси X отрезок втрое больший, чем на оси Y, и проходит через точку A(2; 0,5).
- 3. Даны вершины треугольника: A(2, 5), B(3, 7) и C(4, -7). Составить уравнение медианы, проходящей через точку A.
- 4. Через точку пересечения прямых 3x+2y-7=0 и 2x+y+2=0 провести прямую, перпендикулярную прямой 2x+4y-3=0.
- 5. Найти отрезок, отсекаемый прямой 2x-y+7=0 на оси У и расстояние до этой прямой от начала координат.

<u>Вариант 9.</u>

- 1. Прямая проходит через точку A(1, -4) под углом 30° к оси ОХ. Будет ли искомая прямая параллельна прямой 2x-y+4=0?
- 2. Даны точки A(2, 5), B(3, 7) и C(4, 7). Составить уравнение высоты, опущенной из точки В на прямую AC, и вычислить длину этой высоты.
- 3. Составить уравнение прямой, которая отсекает на оси ОХ отрезок втрое больший, чем на оси ОУ, и проходит через точку (2, 2).
- 4. Пересекаются ли прямые 7x+2y+5=0 и x+5y-4=0? Лежит ли точка пересечения на отрезке A(-2, 0) и B(1, 3)?
- 5. Прямая проходит через точки A(1, 3) и B(4, -2). Определить её угловой коэффициент и отрезки, отсекаемые ею на осях координат.

Вариант 10.

- 1. Найти угловой коэффициент прямой и отрезки, отсекаемые ею на осях координат, зная, что прямая проходит через точки A(3, 4) и B(-2, 3).
- 2. Даны точки A(-4, 3), B(2, 3) и C(1, 4). Составить уравнение перпендикуляра, опущенного из точки C на прямую AB.
- 3. Составить уравнение прямой, проходящей через точку A(2, 8) так, чтобы отрезок прямой, заключенный между осями координат, делился в этой точке в отношении 3 :4.

- 4. Найти расстояние от точки A(-3, 1) до прямой $\frac{2x+3}{4} + \frac{3y-2}{6} = 3$.
- 5. Через точку пересечения прямых: 3x + 2y 3 = 0 и x 3y + 7 = 0 провести прямую, параллельную прямой x y + 2 = 0.

Вариант 15.

- 1. Даны вершины треугольника: А(-3, 2), В(4, 3) и С(2, -1). Написать уравнение высоты, опущенной из В на сторону АС.
- 2. Составить уравнение прямой, параллельной прямой y = 8x + 1 и проходящей через точку M(6,-2).
- 3. В каком отношении делит отрезок A(4, 1) B(2, 5) прямая, перпендикулярная отрезку AB и проходящая через начало координат?
- 4. Вычислить площадь треугольника, образованного осями координат и прямой 3x 2y 12 = 0.
- 5. Прямая L отсекает отрезки: на оси X- 3, на оси У- 4. Найти угловой коэффициент прямой L и расстояние от точки M(-2, 3) до прямой L.

Вариант 20.

- 6. Задано множество прямых $M(\lambda)$: $3x 2y + 3 + \lambda(2x + 4y 1) = 0$. При каком λ пр Принадлежащая множеству $M(\lambda)$, параллельна оси ОУ ?
- 7. В каком отношении делит отрезок A(1, 1), B(-1, 3) прямая, проходящая через точки K(-2, 1) и M(3, 4)?
- 8. Показать, что точка A (2, 4) вчетверо дальше от прямой 7x-2y+2=0, чем точка B (0, 0).
- 9. Составить уравнение прямой , проходящей через точку M(-3, 7), под углом 120° к оси OX. В какой точке эта прямая пересекает ось OX ?
- 10. Даны точки A(2, 4) и B(-3,-4). Составить уравнение прямой, проходящей через середину отрезка AB перпендикулярно прямой 7x-5y+2=0.

Тесты

1. Вычисление определителей

1.1Φ ормула вычисления определителя третьего порядка следующие произведения: bfg	a d g	b e h	$\left. egin{array}{c} c \\ f \\ k \end{array} \right _{{ m coдержит}}$
cdk			
adf			
aek			
1.2 Формула вычисления определителя третьего порядка следующие произведения: ach	a d g	b e h	$\begin{bmatrix} c \\ f \\ k \end{bmatrix}$ содержит
cdh			
ceg			
bfk			

1.3 Формула вычисления определителя третьего порядка следующие произведения: xmo	x k n	у l o	z m р содержит
хур			
xlm			
xlp			
 Формула вычисления определителя третьего порядка следующие произведения: 	x k n	у ! 0	z m р содержит
zkm			
znl			
zko			

inp

imr

ijk

ipr

1.6 Установите соответствие между матрицей и ее определителем.

$$\begin{pmatrix} 7 & 3 \\ 3 & 7 \end{pmatrix}$$

$$\begin{pmatrix}
12 & 3 \\
-12 & -3
\end{pmatrix}$$

$$\begin{pmatrix} 10 & 11 \\ 11 & 10 \end{pmatrix}$$

49

0

- 21

1.7 Установите соответствие между матрицей и ее определителем.

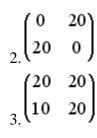
$$\begin{pmatrix} -14 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
-25 & 5 \\
-5 & 25
\end{pmatrix}$$

$$\begin{pmatrix}
0 & -14 \\
2 & 0
\end{pmatrix}$$

- 4

- 600


28

- 28

0

1.8 Установите соответствие между матрицей и ее определителем.

$$\begin{bmatrix} -20 & 0 \\ 0 & -20 \end{bmatrix}$$

400

- 400

200

- 200

1.9 Установите соответствие между α и значениями определителей

$$1. \alpha = 1$$

2.
$$\alpha = -4$$

3.
$$\alpha = 2$$

$$_{4.} \alpha = 3$$

$$\triangle = 11$$

$$\Delta = 5$$

	1
=	1
	=

 $\Delta = 7$

 $\Delta = \begin{vmatrix} 3 & 2 \\ \alpha & 1 \end{vmatrix}$

1.11 Установите соответствие между α и значениями определителей

1.
$$\alpha = 1$$

$$_{2.} \alpha = -4$$

3.
$$\alpha = 2$$

$$_{4.} \alpha = 3$$

$$\triangle = 11$$

$$\triangle = -1$$

$$\triangle = 1$$

$$\Delta = 5$$

2. Линейные операции над матрицами

2.1 Вычислите сумму элементов первого столбца матрицы $C = 2 \cdot A - 3 \cdot B$, если

$$A = \begin{pmatrix} 2 & -3 & 4 \\ 1 & -2 & 3 \\ -3 & 16 & 5 \end{pmatrix} B = \begin{pmatrix} 5 & 3 & -16 \\ -7 & -19 & 2 \\ 4 & 2 & 0 \end{pmatrix}$$

-6

2.2 Вычислите сумму элементов первого столбца матрицы $C = 2 \cdot A - 3 \cdot B$, если

$$A = \begin{pmatrix} -2 & 4 & 5 \\ 1 & 2 & -3 \\ 5 & 1 & 4 \end{pmatrix} B = \begin{pmatrix} 4 & 5 & 2 \\ -2 & 3 & 1 \\ 3 & -5 & 6 \end{pmatrix}$$

-7

2.3 Вычислите сумму элементов первого столбца матрицы $C = 2 \cdot A - 3 \cdot B$, если

$$A = \begin{pmatrix} 6 & -12 & 1 \\ 4 & -5 & 13 \\ -5 & 11 & 23 \end{pmatrix} B = \begin{pmatrix} 4 & -4 & 5 \\ -4 & 3 & 6 \\ 2 & 1 & 0 \end{pmatrix}$$

4

2.4 Вычислите сумму элементов первого столбца матрицы $C = 2 \cdot A - 3 \cdot B$, если

$$A = \begin{pmatrix} -4 & 2 & -3 \\ 5 & -6 & 7 \\ -3 & 6 & 5 \end{pmatrix}, B = \begin{pmatrix} 7 & 8 & 9 \\ 0 & 11 & 12 \\ -3 & -4 & -5 \end{pmatrix}$$

2.5 Вычислите сумму элементов первого столбца матрицы $C = 2 \cdot A - 3 \cdot B$, если

$$A = \begin{pmatrix} -3 & 9 & -78 \\ 5 & 12 & -45 \\ -4 & 7 & 6 \end{pmatrix} B = \begin{pmatrix} 11 & 5 & -4 \\ -1 & 4 & 5 \\ 0 & 7 & 34 \end{pmatrix}$$

-34

 $A = \begin{pmatrix} 1 & -3 \\ -2 & 0 \end{pmatrix}_{\mathsf{H}} B = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}_{\mathsf{TO MATPHU}} C = 2A - B$ имеет вид...

$$\begin{pmatrix} 0 & -7 \\ -5 & -3 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -5 \\ -5 & -3 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ -5 & -3 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -5 \\ -3 & -3 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -5 \\ 1 & 3 \end{pmatrix}_{\mathsf{H}} B = \begin{pmatrix} -1 & 0 \\ 3 & 4 \end{pmatrix}_{\mathsf{TO MATPHU}} C = A + 2\,B$$
 имеет вид...

$$\begin{pmatrix} 0 & -5 \\ 7 & 11 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -5 \\ 4 & 7 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -5 \\ 7 & 11 \end{pmatrix}$$

$$\begin{pmatrix} 4 & -5 \\ 7 & 11 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -5 \\ 0 & -4 \end{pmatrix}$$
 и $B = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$, то матрица $C = A - 3B$ имеет вид...

$$\begin{pmatrix} -7 & -11 \\ 4 & -5 \end{pmatrix}$$

$$\begin{pmatrix} -7 & -1 \\ -12 & -1 \end{pmatrix}$$

$$\begin{pmatrix} -7 & -11 \\ -12 & -1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -7 \\ -12 & -1 \end{pmatrix}$$

 $A = \begin{pmatrix} 1 & -1 \\ 4 & 3 \end{pmatrix}_{\text{и}} B = \begin{pmatrix} 0 & 4 \\ 5 & 2 \end{pmatrix}_{\text{. Тогда решением матричного}}$ уравнения X + 2B = A является матрица ...

$$\begin{pmatrix} 1 & 3 \\ 9 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 9 \\ 6 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 5 \\ 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -9 \\ -6 & -1 \end{pmatrix}$$

 $A = \begin{pmatrix} 7 & -5 & -8 \\ 2 & 3 & 1 \end{pmatrix}_{\mathbf{H}} B = \begin{pmatrix} 5 & 3 & 2 \\ -1 & 7 & -8 \end{pmatrix}_{\mathbf{H}}.$ Тогда матрица X, являющаяся решением уравнения 2A + X = B, равна ...

$$\begin{pmatrix} -2 & 8 & 10 \\ -3 & 4 & -9 \end{pmatrix}$$

$$\begin{pmatrix} -7 & -7 & -14 \\ -5 & 1 & -10 \end{pmatrix}$$

$$\begin{pmatrix} -9 & 13 & 18 \\ -5 & 1 & -10 \end{pmatrix}$$

$$\begin{pmatrix} -4 & 6 & 8 \\ -5 & 2 & -11 \end{pmatrix}$$

3. Умножение матриц

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 3 & -1 & 2 \end{pmatrix}_{\mathrm{H}} B = \begin{pmatrix} 3 & 3 \\ 0 & 2 \\ 2 & 1 \end{pmatrix}_{\mathrm{C}}$$
. Сумма элементов матрицы

3.1 Даны матрицы

 $B \cdot A$, расположенных на ее главной диагонали, равна . . .

15

$$A=egin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}_{\mathrm{H}} B=egin{pmatrix} 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}_{\mathrm{L}}$$
 Сумма элементов матрицы

 $A \cdot B$ pasha ...

0

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & -3 \end{pmatrix}_{\mathbf{H}} B = \begin{pmatrix} 3 & -2 \\ 1 & 0 \\ 3 & -1 \end{pmatrix}_{\mathbf{C}}$$
. Сумма элементов матрицы

3.3 Даны матрицы

 $B\cdot A$, расположенных на ее главной диагонали, равна ...

$$A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 1 & -3 \end{pmatrix}$$
 и $B = \begin{pmatrix} 3 & -1 \\ 1 & 0 \\ 3 & -1 \end{pmatrix}$. Сумма элементов матрицы

 $B \cdot A$, расположенных на ее главной диагонали, равна ...

16

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \end{pmatrix}_{\mathrm{H}} B = \begin{pmatrix} 2 & 1 \\ -2 & 0 \\ 1 & 3 \end{pmatrix}_{\mathrm{C}}$$
. Сумма элементов матрицы

3.5 Даны матрицы

 $B \cdot A$, расположенных на ее главной диагонали, равна ...

-4

$$A = \begin{pmatrix} 4 & 1 \\ -1 & 5 \end{pmatrix}_{\text{ и}} B = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}_{\text{. Элемент первой строки}}$$

второго столбца произведения ${\it AB}\,$ равен

-17

- 7

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}_{\text{ и}} B = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix}_{\text{. Тогда произведение } A \cdot B \text{ равно } \dots$$

$$\begin{pmatrix} -4 & 8 \\ 9 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 0 \\ 6 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -4 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -4 & 12 \\ 6 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 \\ 5 & 6 \\ 7 & 4 \end{pmatrix}.$$
 Тогда матрицей B может быть матрица ...

$$\begin{pmatrix} 5 \\ 4 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} 7 & 2 \\ 5 & 6 \end{pmatrix}$$

(2; 5; 1)

$$\begin{pmatrix}
4 & 0 \\
6 & -5 \\
1 & 4
\end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -2 \\ 4 & -1 \\ 7 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 3 \\ 6 & 4 & 5 \end{pmatrix}$$
. Тогда элемент C 23 матрицы

3.9 Заданы матрицы $C = A \cdot B \text{ равен } \dots$

- 10

2

19

7

$$A = egin{pmatrix} 2 & -3 \\ 4 & 1 \end{pmatrix}$$
. Тогда матрица A^2 имеет вид ...

 $\begin{pmatrix} 13 \\ 17 \end{pmatrix}$

$$\begin{pmatrix} -8 & -9 \\ 12 & -11 \end{pmatrix}$$

$$\begin{pmatrix} -8 & 12 \\ -9 & -11 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 9 \\ 16 & 1 \end{pmatrix}$$