

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) ШКОЛА ЦИФРОВОЙ ЭКОНОМИКИ

ПРОГРАММА ПРОИЗВОДСТВЕННОЙ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

НАПРАВЛЕНИЕ ПОДГОТОВКИ 15.04.06 Мехатроника и роботехника Магистерская программа «Управление развитием территорий на основе технологий и данных дистанционного зондирования Земли»

Квалификация выпускника – магистр

Форма обучения: очная Нормативный срок

освоения программы: 2 года

ЛИСТ СОГЛАСОВАНИЯ

программы производственной преддипломной практики

По направлению подготовки 15.04.06 Мехатроника и робототехника

Магистерская программа: Управление развитием территорий на основе данных и технологий дистанционного зондирования Земли

Программа производственной преддипломной практики составлена в соответствии с требованиями федерального государственного образовательного стандарта по направлению подготовки 15.04.06 Мехатроника и робототехника (далее – Φ ГОС ВО), утвержденный приказом Минобрнауки России от 21.11.2014 № 1491.

Рассмотрена и утверждена на заседании Дирекции Школы цифровой экономики 24 июня 2018 года (Протокол № 1)

Руководитель ОП:

А.Н. Жиробок, д.т.н., профессор кафедры мехатроники и робототехники ДВФУ

1 НОРМАТИВНАЯ ДОКУМЕНТАЦИЯ, РЕГЛАМЕНТИРУЮЩАЯ ПРОЦЕСС ОРГАНИЗАЦИИ И ПРОХОЖДЕНИЯ ПРАКТИКИ

Программа разработана в соответствии в соответствии с требованиями:

- Федерального государственного образовательного стандарта по направлению подготовки 15.04.16 Мехатроника и робототехника (далее ФГОС ВО), утвержденный приказом Минобрнауки России от 21.11.2014 № 1491;
- Положения о порядке проведения практики студентов, обучающихся в федеральном государственном автономном образовательном учреждении высшего образования «Дальневосточный федеральный университет» по программам высшего образования (для программ бакалавриата, специалитета, магистратуры), утвержденного приказом ректора ДВФУ от 23.10.2015 г. № 12-13-2030¹.
- Положения о порядке проведения практики студентов, обучающихся в федеральном государственном автономном образовательном учреждении высшего образования «Дальневосточный федеральный университет» по программам высшего образования (для программ бакалавриата, специалитета, магистратуры), утверждённым решением Учёного совета ДВФУ (протокол от 22.03.2018 № 02-18).

2 ЦЕЛИ ОСВОЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

Целями производственной преддипломной практики являются систематизация, расширение и закрепление профессиональных мировоззрений и компетенций по направлению, а также приобретение студентами навыков самостоятельной научно-исследовательской работы по подготовке выпускной квалификационной работы (ВКР).

3 ЗАДАЧИ ПРОИЗВОДСТВЕННОЙ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

Задачами производственной преддипломной практики являются:

- анализ исследований по теме ВКР - принципы проектирования, методы

3

¹ Далее в программе - Положение ДВФУ о практиках.

проектирования, средства проектирования, стадии жизненного цикла и т.д.;

- выбор методов решения проблемы методология, технология проектирования, стратегия внедрения, консалтинг и т.д.;
- формирование стратегии информатизации прикладных процессов и создания прикладных ИС.
- сбор необходимого материала для подготовки выпускной квалификационной работы (ВКР).

-

4 МЕСТО ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ В СТРУКТУРЕ ОП

Производственная преддипломная практика входит в Блок 2 «Практики, в том числе НИР» (Б2.В.02.04(П)) образовательной программы магистратуры.

Преддипломная практика проводится после освоения всех дисциплин теоретической подготовки, выполнения научно-исследовательской работы прохождения учебная практика практик: ПО получению первичных профессиональных умений и навыков; учебная практика (научно-исследовательская работа в профессиональной деятельности); производственная практика по получению профессиональных умений и опыта организационно-управленческой деятельности и производственная практика по получению профессиональных умений и опыта проектно-конструкторской деятельности на предприятии; производственная (научно-исследовательский практика семинар); производственная практика (проектного семинара).

Для освоения производственной преддипломной практики обучающиеся должны получить в результате освоения предшествующих частей образовательной программы (ОП) базовые знания по специальным главам математики и теоретической механики, теоретическим основам конструирования космических систем, системной инженерии и проектированию сложных систем, математическим методам машинного обучения, бортовым системам управления, аппаратуре наземных сетей станций приема данных и управления космическими аппаратами, основам цифровой связи, спутниковой связи, современной аппаратуре ДЗЗ, экономике, бизнесу и управлению в космической отрасли.

Прохождение производственной преддипломной практики направлено на подготовку выпускной квалификационной работы.

5 ТИПЫ, СПОСОБЫ, МЕСТО И ВРЕМЯ ПРОВЕДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Тип данной производственной практики - преддипломная практика.

Производственная преддипломная практика проводится дискретно, путем выделения в графике учебного процесса непрерывного периода учебного времени в неделях для проведения практики, время проведения практики - 4 семестр.

Производственная преддипломная практика является стационарной, проводится в вузе - ДВФУ, на базе лабораторий Школы цифровой экономики.

Практика может проводиться в организациях, с которыми заключены договоры о сотрудничестве, а также в структурных подразделениях университета. Допускается возможность (по согласованию с руководителем ОПОП ВО) направления на практику в индивидуальном порядке обучающихся, желающих пройти практику в организациях по собственному выбору, если эти организации соответствуют требованиям Положения ДВФУ о практиках.

6 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ПРОХОЖДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

В результате прохождения производственной преддипломной практики обучающийся должен:

Знать:

- современные технологии создания спутников, включая его сборку и проведение стендовых испытаний;
- актуальные методы приема, обработки, передачи и использование данных ДЗЗ;
- последовательность создания каналов передачи данных между космическим аппаратом и ЦУП;
 - принципы действия систем управления космическим аппаратом;

- механику космического полета.

Уметь:

- работать с данными ДЗЗ для решения профессиональных задач;
- проводить сборку космического аппарата;
- принимать участие или руководить проведением автономных, полунатурных испытаний;
- создавать компоновки спутников в среде специального программного обеспечения;
- производить расчет основных характеристик (положение центра масс, моменты инерции и др.) космического аппарата;
- программировать работу основных бортовых систем космического аппарата и полезной нагрузки;
- моделировать движение космических аппаратов в среде специального программного обеспечения (например, Sputnix Satellite Simulator);

Владеть:

- навыками сборки спутников, включая монтаж бортовых систем и полезной нагрузки;
 - навыками приема, обработки, передачи и использования данных ДЗЗ;
 - навыками проведения стендовых автономных полунатурных испытаний;
 - навыками развертывания каналов передачи данных на условные ЦУП;
- навыками проведения съемки Земли из космоса с последующей передачей изображений для последующей обработки.

Профессиональные компетенции, формируемые во время прохождения практики:

проектно-конструкторская деятельность:

- ПК-8: готовностью к руководству и участию в подготовке техникоэкономического обоснования проектов создания мехатронных и робототехнических систем, их подсистем и отдельных модулей (ПК-8);
- ПК-9: способностью к подготовке технического задания на проектирование мехатронных и робототехнических систем их подсистем и отдельных

устройств с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники, а также новых устройств и подсистем;

- ПК-10: способностью участвовать в разработке конструкторской и проектной документации мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями (ПК-10);
- ПК-11: готовностью разрабатывать методику проведения экспериментальных исследований и испытаний мехатронной или робототехнической системы, способностью участвовать в проведении таких испытаний и обработке их результатов;
- УПК-1: способностью использовать в работе современные информационные, электрические, механические и прочие стандарты в области мехатроники и робототехники специального назначения;
- УПК-3: умением разрабатывать новые модели информационной инфраструктуры мониторинга больших территорий с учетом возможностей технологий больших данных;
- УПК-4: способностью дистанционно передавать, принимать, обрабатывать и анализировать данные эксплуатации мехатронных и робототехнических систем различного назначения;

организационно-управленческая деятельность:

- ПК-12: способностью организовывать работу малых групп исполнителей;
- ПК-13: готовностью разрабатывать техническую документацию (графики работ, инструкции, планы, сметы) по утвержденным формам;
- ПК-14: готовностью применять методы профилактики производственного травматизма, профессиональных заболеваний, предотвращения экологических нарушений;
- УПК-2: умением применять спутниковую информацию в совокупности с данными из других источников к решению задач мониторинга природных и антропогенных объектов.

Планируемые результаты практики по формируемым компетенциям приведены в разделе 9, п. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания.

7 СТРУКТУРА И СОДЕРЖАНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Общая трудоемкость производственной преддипломной практики составляет 6 недель / 9 зачетных единиц (ЗЕ), 324 часов.

N.C.	практики	Виды работ на практике, включая самостоятельную работу студентов и трудоемкость (в часах)			·
№ π/π		работа в ла- бораториях Университета (в орга- низации)	самостоя- тельная работа	трудоем- кость	Формы текущего контроля
I	Подготовительный этап	2	0	2	УО-1 (Собеседование)
II	Основной этап	160	158	318	
A)	Проведение исследований	160	86	246	УО-1 (Собе- седование, 2-3 раза в неделю), ПР-13 (Задания)
Б)	Обработка информа- ции, подготовка отчета	0	72	72	Отчет
III	Итоговый этап - аттестация	4	0	4	Защита отчета

I Подготовительный этап

В рамках подготовительного этапа проводятся вводный инструктаж и обзорные лекции.

Студенты знакомятся с целями и задачами прохождения производственной преддипломной практики. Дается инструктаж по технике безопасности при прохождении производственной преддипломной практики. Дается общая

характеристика заданий по производственной преддипломной практике.

II Основной этап

А) Проведение исследований

Проведение исследований при прохождении практики включает выполнение заданий общей и специальной (индивидуальной) частей по вопросам подготовки выпускной квалификационной работы:

- анализ исследований по теме ВКР принципы проектирования, методы проектирования, средства проектирования, стадии жизненного цикла и т.д.;
- выбор методов решения проблемы методология, технология проектирования, стратегия внедрения, консалтинг и т.д.;
- формирование стратегии информатизации прикладных процессов и создания прикладных ИС.

Специальная (индивидуальная) часть задания по производственной преддипломной практике включает проведение реального исследовательского проекта, выполняемого студентом в рамках утвержденной темы научного исследования по направлению обучения и темы выпускной квалификационной работы, в соответствии с планом подготовки ВКР.

Б) Обработка информации, подготовка отчета

На основании полученных сведений разрабатывается отчет, включающий в себя материалы, характеризующие результаты выполнения заданий.

III Итоговый этап - Аттестация

Заслушивается отчет о прохождении практики на научно-исследовательском семинаре, проводится оценивание результатов практики.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ НА ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

В рамках самостоятельной работы обучаемые осуществляют сбор материалов, их обработку и анализ в соответствии с задачами утвержденной темы научного исследования по направлению обучения и темы выпускной квалификационной работы (ВКР), в соответствии с планом подготовки ВКР.

При освоении методов и инструментальных средств мехатроники и робототехники для автоматизации и информатизации решения прикладных задач различных классов и разработки проектов в рамках выбранной темы исследования рекомендуется использовать методологический аппарат учебных дисциплин «Специальные главы математики и теоретической механики», «Теоретические основы конструирования космических систем», «Системная инженерия и проектирование сложных систем», «Математические методы машинного обучения», «Аппаратура наземных сетей станций приема данных и управления космическими аппаратами», «Основы цифровой связи. Спутниковая связь», «Современная аппаратура ДЗЗ» и др., а также источники основной и дополнительной литературы, Интернет-ресурсы, рекомендованные в разделе 10.

На этапе обработки информации и подготовки отчета по практике необходимо учитывать требования и рекомендации к отчету по практике, приведенные в разделе 9.

Контрольные вопросы и задания для проведения текущей аттестации по разделам (этапам) практики

- 1. Основные законы динамика вращения твердого тела, механики космического полета и теории орбитального движения тел.
- 2. Принципы и типы систем автоматического управления, используемые в космической технике;
- 3. Основных элементов и характеристик САУ, методы анализа САУ на устойчивость и качество управления;
- 4. Жизненный цикл и особенности разработки этапов космических программ и проектов.
- 5. Основные инструменты математического анализа, линейной алгебры, методов оптимизации и теории вероятностей;
 - 6. Методология управления data-science проектами;
 - 7. Основные виды полезной нагрузки космических аппаратов;

- 8. Математические и физические принципы работы бортовых систем, обслуживающих оптическое оборудование для съемки поверхности земли из космоса, включая систему ориентации и стабилизации, энергопитания, телеметрии и др.
- 9. Методами полунатурного моделирования служебных систем космических аппаратов в условиях Земли;
- 10. Методики проведения испытаний служебных систем на специальных лабораторных стендах, включая методики адекватной и достоверной интерпретации результатов лабораторных испытаний на реальные космические аппараты.
- 11. Основные виды и принципы работы полезной нагрузки (бортовой аппаратуры) космических аппаратов, предназначенной для дистанционного зондирования земли;
- 12. Основные методики расчета параметров бортовой аппаратуры и полезной нагрузки космического аппарата в целом;
- 13. Основные этапы и технологии обработки данных дистанционного зондирования земли, включая прием, первичную и глубокую обработку данных в соответствии с специальными стандартами и правилами.

9 ФОРМЫ АТТЕСТАЦИИ ПО ИТОГАМ ПРОИЗВОДСТВЕННОЙ ПРЕДДИПЛОМНОЙ ПРАКТИКИ

Форма отчетности по практике: зачет с оценкой (отлично, хорошо, удовлетворительно, неудовлетворительно).

Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания представлены в таблице:

Код и формулировка компетенции	Этапы ф	ормирования компетенции	Показатели достижения заданного уровня компетенций	Бал- лы
ПК-8 готовностью к руководству и участию в подготовке технико-экономического обоснования проектов создания мехатронных и робототехнических систем, их подсистем и отдельных модулей	Знает (пороговый)	основные методы подготовки технико-экономических обоснований и оценки коммерческого потенциала технологий и продуктов в области мехатронных, робототехнических и космических систем	Способность правильно применять методы составления технико-экономических обосновани проектов создания мехатронных и робототехнических систем	50-64 й
	Умеет (продвину- тый)	проводить предварительные аналитические исследования и собирать информацию о рынке технологий и решений в области мехатронных, робототехнических и космических систем с учетом их влияния на технико-экономические параметры проектов и программ	Способность проводить предварительное технико- экономическое обоснование проектов	65-84
	Владеет (высокий)	методами оценки коммерческого потенциала проектов и программ в области мехатронных, робототехнических и космических систем; методами проведения технико-экономических обоснований решений для проектов создания мехатронных, робототехнических и космических систем	Способность применять методы технико- экономических обоснований для проектов создания мехатронных и робототехнических систем	85-100
подготовке технического задания на проектирование мехатронных и робототехнических систем их подсистем и отдельных устройств с использованием стандартных исполнительных	Знает (пороговый)	Методические и нормативные требования на разработку проектно-конструкторской документации на проектирование мехатронных и робототехнических систем и их подсистем	Способность проанализировать требования к подготовке технических заданий на проектирование мехатронных и робототехнических систем их подсистем	50-64
и управляющих устройств, средств автоматики, измерительной и вычислительной техники, а также новых устройств и подсистем	Умеет (продвину- тый)	Учитывать методические и нормативные требования при разработке проектно-конструкторской документации на проектирование мехатронных и робототехнических систем их подсистем	Способность поставить задачу проектирования и подготовить технические задания на проектирование мехатронных и робототехнических систем их подсистем	65-84
	Владеет (высокий)	Методами разработки проектно-конструкторской документации на проектирование мехатронных и робототехнических систем их	Результаты анализа задачи проектирования и подготовки технического задания на проектирование мехатронных и	85-100

		подсистем в соответствии с методическими и нормативными требованиями	робототехнических систем	
ПК-10 способностью участвовать в разработке конструкторской и проектной документации мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями	(пороговый)	Основные требования стандартов и технических условий, необходимые для разработки конструкторской и проектной документации мехатронных и робототехнических систем, в том числе в области создания космических аппаратов	Способность подбирать методические и нормативные требования на разработку проектноконструкторской документации	50-64
	Умеет (продвину- тый)	Разрабатывать конструкторскую и проектную документацию мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями в области создания космических аппаратов	Способность правильно учитывать методические и нормативные требования на разработку проектноконструкторской документации	65-84
	Владеет (высокий)	Различными подходами к организации разработки конструкторской и проектной документации.	Способность отбирать и применять методы разработки проектно-конструкторской документации мехатронных и робототехнических систем при выполнении выпускной аттестационной работы	85-100
проведения экспериментальных исследований и испытаний мехатронной или	(пороговый)	методику проведения экспериментов, обработки и интерпретации получаемых данных, а также правила оформления результатов, подготовки обзоров и отчетов.	Способность понимать суть и методы теории планирования экспериментов	50-64
робототехнической системы, способностью участвовать в проведении таких испытаний и обработке их результатов	/	проверять достоверность и анализировать экспериментальные данные, делать заключения и выводы.	Способность реализовать теорию планирования экспериментов для построения модели заданного объекта	65-84
	Владеет (высокий)	методами проведения экспериментов по заданной методике, анализа их результатов и использования при испытаниях различных систем и высокотехнологичного и наукоемкого оборудования.	Способность проводить обработку результатов проведенных экспериментов и давать их интерпретацию при выполнении выпускной аттестационной работы	85-100
ПК-12 способностью организовывать работу малых групп исполнителей		базовые принципы организации работы и управления малыми междисциплинарными группами исполнителей.	Демострация приобретенных знаний и умений в ответах на вопросы при защите отчета	50-64
	Умеет (продвину- тый)	организовать работу малой междисциплинарной группы исполнителей в качестве	Способность взаимодействовать с другими в процессе	65-84

		руководителя.	решения задачи; проявлять толерантность в общении	
	Владеет (высокий)	основными навыками руководства малыми междисциплинарными группами исполнителей	Демонстрация на защите отчета знаний соответствующих методов принятия решений и навыков руководства малыми междисциплинарными группами исполнителей	85-100
ПК-13 готовностью разрабатывать техническую документацию (графики работ, инструкции, планы, сметы) по утвержденным формам		стандарты и технические условия, необходимые для разработки технической документации, включая графики работ, инструкции, сметы, технико-экономические обоснования и т.п.	*	50-64
	Умеет (продвину- тый)	разрабатывать техническую документацию в соответствии с имеющимися стандартами, утвержденными формами и техническими условиями	Способность разрабатывать корпоративные стандарты и профили функциональной стандартизации приложений, систем, информационной инфраструктуры	65-84
	Владеет (высокий)	методиками разработки технической документации самостоятельно и в составе группы разработчиков	Способность разрабатывать предложения по формированию корпоративных стандартов и профилей функциональной стандартизации приложений, систем, информационной инфраструктуры	85-100
ПК-14 готовностью применять методы профилактики производственного травматизма, профессиональных заболеваний, предотвращения экологических нарушений	(пороговый)	методы организации безопасного ведения работ, основные способы профилактики производственного травматизма, причины возникновения профессиональных заболеваний и их предотвращение, а также способы предотвращения экологических нарушений;		50-64
	Умеет (продвину- тый)	использовать основные способы профилактики производственного травматизма и профессиональных заболеваний;	Демострация приобретенных знаний и умений в ответах на вопросы при защите отчета	65-84

	Владеет (высокий)	методами организации безопасного ведения работ	Демострация приобретенных знаний и умений в ответах на вопросы при защите отчета	85-100
современные информационные, электрические, механические	(пороговый)	современные информационные, электрические, механические и др. стандарты в области информационных и мехатронных систем	Наличие в отчете описания используемых при выполнении исследования моделей, методов и технологий	50-64
и прочие стандарты в области мехатроники и робототехники специального назначения	Умеет (продвину- тый)	выбирать и применять в профессиональной наиболее оптимальные стандарты для решения профессиональных задач	Наличие в отчете обоснования используемых при выполнении исследования моделей, методов и технологий	65-84
	Владеет (высокий)	навыками работы в системах автоматизированного проектирования, использующих современные информационные, электрические, механические и др. стандарты в области информационных и мехатронных систем	Способность решать усложненные задачи в нетипичных ситуациях на основе приобретенных знаний, умений и навыков	85-100
УПК-2 умением применять спутниковую информацию в совокупности с данными из других источников к решению задач мониторинга природных	(пороговый)	основные источники получения спутниковой информации, включая закрытые и открытые источники данных	Навыки поиска и получения спутниковой информации, включая закрытые и открытые источники данных	50-64
и антропогенных объектов	Умеет (продвину- тый)	применять спутниковую информацию и данные, полученные из других альтернативных источников для решения профессиональных задач.	Способность систематизировать спутниковую информацию и данные, полученные из других альтернативных источников для решения профессиональных задач	65-84
	Владеет (высокий)	программным обеспечением и аппаратно-программными комплексами предназначенными для приема и обработки данных.	Способность применять программное обеспечение для приема и обработки данных Д33	85-100
УПК-3 умением разрабатывать новые модели информационной инфраструктуры мониторинга больших территорий с учетом возможностей технологий больших данных	(пороговый)	основные модели и математические методы их разработки, а также программное обеспечение, позволяющее принимать управленческие решения на основе больших данных и данных дистанционного зондирования Земли.	Способность применять методы и модели машинного обучения для анализа данных в рамках конкретной задачи при принятии управленческих решений	50-64
	Умеет (продвину- тый)	разрабатывать модели принятия управленческих решений на основе больших данных и данных дистанционного зондирования Земли с использованием специального математического аппарата и	Способность провести полный цикл решения задачи анализа данных: подготовка данных; разработка признаков, выбор метрики качества, выбор и обучение модели, валидация модели и т.д., и сформировать	65-84

		методов численного моделирования	альтернативные варианты для принятия управленческого решения на основе анализа данных	
	Владеет (высокий)	основными инструментами и навыками работы с большими данными, включая их прием, обработку, передачу и дальнейшее хранение	Способность решать сложные и нестандартные задачи анализа данных в соответствии с заявленной темой ВКР	85-100
УПК-4 способностью дистанционно передавать, принимать, обрабатывать и анализировать данные эксплуатации мехатронных и робототехнических систем различного назначения	(пороговый)	основные технологии беспроводной передачи данных, а также средства и методы передачи данных по радиоканалам; знает назначение разных диапазонов радиочастот и особенности их эксплуатации.	Наличие соответствующих разделов в отчете о практике и тексте диссертации	50-64
	Умеет (продвину- тый)	проводить расчет канала передачи данных, включая бюджет радиолинии для передачи различных видов информации, начиная от информации о телеметрии и заканчивая данными, передаваемыми от полезной нагрузки космического аппарата	Наличие соответствующих разделов в отчете о практике и тексте диссертации	65-84
	Владеет (высокий)	владеет соответствующими методиками расчета и навыками работы в специальных программных комплексах численного моделирования для решения профессиональных задач	Наличие соответствующих разделов в отчете о практике и тексте диссертации	85-100

Процедура оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценивание сформированности компетенций по производственной практике проводится с использованием методов оценивания знаний, умений, навыков и (или) опыта деятельности, на основе защиты отчета, в форме устного и письменного описания заданий.

Перечень предоставляемых документов и приложений, порядок составления отчета

Пакет отчетных документов о прохождении практики обучающимся включает следующие документы:

- отрывной бланк направления на практику (при прохождении практики в организации);
 - дневник практиканта;
 - текстовый отчет;
- характеристику, составленную руководителем практики от организации или структурного подразделения ДВФУ в случае, когда практика проводится на базе университета;
- индивидуальное задание, включающее мероприятия по плану проведения реального исследовательского проекта, выполняемого студентом в рамках утвержденной темы научного исследования по направлению обучения и темы выпускной квалификационной работы;
 - фотографию рабочего места.

Когда практика проводится на базе организации, документы (отрывной бланк направления на практику, характеристика руководителя практики от организации) должны быть заверены подписью руководителя и печатью организации.

Дневник включает перечень и краткое описание ежедневных видов работ, выполненных студентом во время практики в соответствии с календарным планом прохождения практики:

ДНЕВНИК ПРАКТИКАНТА

(заполняется ежедневно)

Дата	Рабочее	Краткое содержание выполняемых	Отметки
	место	работ	руководителя

Отчет по практике включает: краткую характеристику места практики (организации), цели и задачи практики, описание деятельности, выполняемой в процессе прохождения практики, краткое описание результатов работы в соответствии с заданиями, достигнутые результаты, анализ возникших проблем и варианты их устранения, собственную оценку уровня своей профессиональной подготовки по итогам практики, список использованных источников (печатные издания и электронные ресурсы - учебники, пособия, справочники, стандарты, отчеты,

Интернет-ресурсы и т.п.), приложения (документы или материалы, вынесенные из основной части отчета, носящие иллюстративный характер).

Отчет по практике составляется в ходе выполнения заданий основного этапа практики.

Отчет оформляется в соответствии с требованиями стандартов требований к оформлению письменных работ, выполняемых студентами и слушателями ДВФУ.

Отчет по практике представляется в печатном виде (титульный лист - по установленной форме) и в электронном виде (файл отчета, включая титульный лист).

Форма проведения аттестации по итогам практики: защита отчета.

Аттестация по итогам практики проводится в последний день практики. Если дата аттестации по итогам практики, проходящей в летний период, совпадает с праздничным днем, аттестация проводится в течение 2-х недель после начала учебных занятий.

Решение по аттестации практики принимает комиссия, назначенная Дирекцией Школы, реализующей программу практики по ОПОП ВО, с выставлением отметок «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Практикант выступает с 5-10 минутным устным докладом по защите отчета и отвечает на вопросы членов комиссии.

Оценки по практике проставляются одновременно в экзаменационную ведомость и зачетную книжку руководителями практики.

Критерии оценки по итогам практики

При выставлении оценки студенту на зачете по практике используются следующие критерии.

Оценка «отлично» ставится студенту, который: в срок, в полном объеме и правильно выполнил задания практик; при защите и написании отчета продемонстрировал глубокое и прочное усвоение программного материала практики; исчерпывающе, последовательно, четко и логически стройно его излагает; владеет разносторонними навыками и приемами выполнения практических задач; подготовил отчет в соответствии с предъявляемыми требованиями.

Оценка «хорошо» ставиться студенту, который: в срок выполнил задания практики, но с незначительными замечаниями; при защите и написании отчета продемонстрировал твердое знание программного материала практики; грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопросы; владеет необходимыми навыками и приемами их выполнения; подготовил отчет, с незначительными замечаниями.

Оценка «удовлетворительно» ставится студенту, который: допускал просчеты и ошибки при выполнении заданий практики, не полностью выполнил задания практики; имеет знания только основного материала практики, но не усвоил его деталей; допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала практики; делает поверхностные выводы, подготовил отчет, с замечаниями.

Оценка «неудовлетворительно» ставится студенту, который: не выполнил задания практики, либо выполнил с грубыми нарушениями требований; не представил отчетные документы по практике, либо подготовил отчет по практике с грубыми нарушениями требований; не знает значительной части программного материала практики, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы.

10 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ПРАКТИКИ

а) основная литература:

(электронные и печатные издания)

- 1. Богданов, В.В. История и философия науки. Философские проблемы информатики. История информатики [Электронный ресурс]: учебно-методический комплекс по дисциплине / В.В. Богданов, И.В. Лысак. Таганрог : Таганрогский технологический ин-т Южного федеральн. ун-та, 2012. 78 с. Режим доступа : http://www.iprbookshop.ru/23587.html
- 2. Герасимов, Б.И. Основы научных исследований: учеб. пособие / Б.И. Герасимов, В. В. Дробышева, Н. В. Злобина [и др.]. М.: Форум [ИНФРА-М], 2013.

- 269 с. Каталог НБ ДВФУ:
 http://lib.dvfu.ru:8080/lib/item?id=chamo:752201&theme=FEFU
- 3. Янковская, В.В. Организация научно-исследовательской работы студентов (магистров): учебное пособие для вузов/ В.В. Яновская и др. М:Инфра-М, 2018. 344 с. Каталог НБ ДВФУ: http://lib.dvfu.ru:8080/lib/item?id=chamo:866711&theme=FEFU

б) дополнительная литература:

(электронные и печатные издания)

- 1. Фихтенгольц, Г.М. Основы математического анализа. Часть 1 [Электронный ресурс] : учебник / Г.М. Фихтенгольц. Электрон. дан. Санкт-Петербург : Лань, 2019. 444 с. Режим доступа: https://e.lanbook.com/book/112051
- 2. Handbook of Satellite Orbits [Electronic resource] / Michel Capderou, Springer International Publishing, 2014, http://link.springer.com/openurl?genre=book&isbn=978-3-319-03416-4
- 3. Damage Growth in Aerospace Composites [Electronic resource] / Aniello Riccio, Springer International Publishing, 2015, http://link.springer.com/openurl?genre=book&isbn=978-3-319-04004-2
- 4. Shock & Vibration, Aircraft/Aerospace, and Energy Harvesting, Volume 9 [Electronic resource] / Alfred Wicks, Springer International Publishing, 2015, http://link.springer.com/openurl?genre=book&isbn=978-3-319-15233-2
- 5. Бернар, Боннар Небесная механика и управление космическими летательными аппаратами [Электронный ресурс] / Боннар Бернар, Фобур Людовик, Треля Эммануэль; пер. О. И. Яковенко. Электрон. текстовые данные. Москва, Ижевск : Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2014. 344 с. 978-5-4344-0190-6. Режим доступа: http://www.iprbookshop.ru/28903.html
- 6. Блинов, В. Н. Малые космические аппараты [Электронный ресурс] : справочное пособие / В. Н. Блинов, Ю. Н. Сеченов, В. В. Шалай. Электрон. текстовые данные. Омск : Омский государственный технический университет,

- 2016. 264 с. 978-5-8149-2240-3. Режим доступа: http://www.iprbookshop.ru/58092.html
- 7. Systems Engineering, Systems Thinking, and Learning [Electronic resource] / Hubert Anton Moser, Springer International Publishing, 2014, http://link.springer.com/openurl?genre=book&isbn=978-3-319-03895-7

в) программное обеспечение и Интернет-ресурсы:

- 1. Офисный пакет приложений Microsoft Office 365;
- 2. Сервис антивирусной защиты Eset NOD32;
- 3. Сервис распознавания текста ABBYY FineReader;
- 4. Система ТЕХЭКСПЕРТ;
- 5. Справочно-правовая система КОНСУЛЬТАНТ ПЛЮС;
- 6. Универсальная программная система конечно-элементного (МКЭ) анализа ANSYS 16;
 - 7. Программный комплекс CAПP SolidWorks 2016;
- 8. Пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования Matlab 2015;
- 9. Система компьютерной алгебры из класса систем автоматизированного проектирования MathCAD;
 - 10. Цифровая обработка сигналов. http://lectoriy.mipt.ru/course/RadioTechnology-DigitalSignalProcessing-15L
- 11. Лабораторные испытания алгоритмов управления ориентацией микроспутника 'Чибис-М' / Д.С.Иванов [и др.] // Препринты ИПМ им. М.В.Келдыша. 2011. № 40. 29 с. http://library.keldysh.ru/preprint.asp?id=2011-40
- 12. Калибровка датчиков для определения ориентации малого космического аппарата / Д.С.Иванов [и др.] // Препринты ИПМ им. М.В.Келдыша. 2010. № 28. 30 с. URL: http://library.keldysh.ru/preprint.asp?id=2010-28
- 13. Иванов Д. С., Овчинников М.Ю., Ткачев С.С. Стенд КОСМОС для моделирования движения макетов системы управления микроспутников и обзор

- мировых аналогов // Препринты ИПМ им. М.В.Келдыша. 2016. № 138. 32 с. doi:10.20948/prepr-2016-138 URL: http://library.keldysh.ru/preprint.asp?id=2016-138
- 14. Карпенко С.О., Овчинников М.Ю. Лабораторный стенд для полунатурной отработки систем ориентации микро- и наноспутников // Препринты ИПМ им. М.В.Келдыша. 2008. № 38. 32 с. URL: http://library.keldysh.ru/preprint.asp?id=2008-38
- 15. Летные испытания алгоритмов управления ориентацией микроспутника 'Чибис-М' / Д.С.Иванов [и др.] // Препринты ИПМ им. М.В.Келдыша. 2012. № 58. 32 с. URL: http://library.keldysh.ru/preprint.asp?id=2012-58
- 16. Овчинников М.Ю., Ткачев С.С. Исследование алгоритма трёхосной маховичной системы ориентации // Препринты ИПМ им. М.В.Келдыша. 2010. № 25. 32 с. URL: http://library.keldysh.ru/preprint.asp?id=2010-25
- 17. Введение в архитектуру ЭВМ. Элементы операционных систем. https://stepik.org/course/253/
 - 18. Robot Operating System. https://stepik.org/course/3222/
- 19. Цифровые устройства и микропроцессоры (микроконтроллеры stm32). https://openedu.ru/course/spbstu/CUMICR/
- 20. Системы спутника. Часть 1. https://www.youtube.com/watch?v=HT-bCBXdzc4
- 21. Системыспутника.Часть2.https://www.youtube.com/watch?v=KztttYXsAo8
- 22 Cycman and any material and materials
- 22. Системы спутника. Часть 3. https://www.youtube.com/watch?v=21UkvAbZuVI
- 23. Системы спутника. Часть 4. https://www.youtube.com/watch?v=ry3xta6VYkw
- 24. Демонстрация работы магнитной системы управления (поле соленоида). http://lectoriy.mipt.ru/lecture/Physics-Coursera-Electricity1-W9D1
- 25. Демонстрация магнитной стабилизации. http://lectoriy.mipt.ru/lecture/Physics-Coursera-Electricity1-W9D2
 - 26. Конструирование космической техники. https://stepik.org/course/2119/

27. Введение о спутнике связи.

https://www.youtube.com/watch?v=I_K0FWAtRiA

- 28. О системах спутника. https://www.youtube.com/watch?v=thz4CIRdd7k
- 29. http://russianspacesystems.ru/ Российские космические системы: разработка информационных систем космического назначения
 - 30. Вводный курс о конструировании космической техники:

https://stepik.org/course/2119

- 31. https://www.youtube.com/watch?v=He8mxEqrjW0
- 32. Всё об орбитальной механике. Как запускают спутники (введение). https://www.youtube.com/watch?v=YvbB4S5NiX8
 - 33. Антон Громов Орбитальная механика (введение).

https://www.youtube.com/watch?v=41PZR87IAwE

34. Основы движения космического аппарата, часть 1.

https://www.youtube.com/watch?v=e0d1xY4NXX0

35. Основы движения космического аппарата, часть 2.

https://www.youtube.com/watch?v=d-hGeNOLlcQ

36. Механизмы, приводы, моторы и редукторы.

https://www.edx.org/course/robotics-locomotion-engineering-pennx-robo4x

37. Детали машин и основы конструирования. https://openedu.ru/course/misis/DETMACH/

38. Русскоязычные уроки по Solidworks 2016.

https://www.youtube.com/watch?v=MbztdPnxmxo&list=PLjc_5eNylKgorMZe69sD xI4OFO3OUNXK4

г) другое учебно-методическое и информационное обеспечение:

- 1. Научная библиотека ДВФУ (https://www.dvfu.ru/library);
- 2. Портал ДВФУ (https://ip.dvfu.ru);
- 3. Система электронных курсов ДВФУ Blackboard Learn (https://bb.dvfu.ru);
- 4. Электронная почта ДВФУ (http://mail.dvfu.ru);
- 5. Техническая поддержка ИТ-сервисов ДВФУ (https://www.dvfu.ru/support);

- 6. Научная электронная библиотека «elibrary.ru» // URL: http://elibrary.ru/defaultx.asp
 - 7. Scopus // URL: https://www.scopus.com
 - 8. Web of Science // URL: http://apps.webofknowledge.com
 - 9. SpringerLink // URL: https://link.springer.com.

11 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ПРАКТИКИ

Материально-техническое обеспечение производственной преддипломной практики обеспечивается вузом - ДВФУ. Производственная преддипломная практика проводится на базе Школы цифровой экономики, в лабораториях и компьютерных аудиториях школы (корпус G кампуса ДВФУ), оснащенных компьютерами классами Pentium и мультимедийными (презентационными) системами, с подключением к общекорпоративной компьютерной сети ДВФУ и сети Интернет. При прохождении практики используется библиотечный фонд Научной библиотеки ДВФУ, электронные библиотечные системы (ЭБС), заключившие договор с ДВФУ.

При прохождении производственной преддипломной практики на предприятиях используется программное и техническое обеспечение базовых производственных предприятий и организаций.