

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЦИФРОВОЙ ЭКОНОМИКИ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«ТРЕХМЕРНОЕ МОДЕЛИРОВАНИЕ И ДИЗАЙН»

направления 09.04.01 Информатика и вычислительная техника Магистерская программа «Технологии виртуальной и дополненной реальности» Форма подготовки очная

курс 2 семестр 3 лекции 0 час. практические занятия 18 час. лабораторные работы 0 час. всего часов аудиторной нагрузки 18 час. самостоятельная работа 198 час. контрольные работы программой не предусмотрены курсовая работа/проект — не предусмотрено зачет с оценкой 3 семестр экзамен — не предусмотрено учебным планом

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.04.01 — Информатика и вычислительная техника, утвержденного приказом Министерства образования и науки Российской Федерации от 30.10.2014 № 1420

Рабочая программа рассмотрена и утверждена на заседании Дирекции Школы цифровой экономики 24 июня 2018 г., протокол №2

Составитель(и): д.т.н. Бобков В.А., ст. пр. Кленин А.С.

Оборотная сторона титульного листа РПД

І. Рабочая программа пересмотрена н Протокол от «»		
Заместитель директора ШЦЭ		
по учебной и воспитательной работе		
		(И.О. Фамилия)
II. Рабочая программа пересмотрена и	на заселании Лирек	спии Школы пифровой экономики:
Протокол от «»		
Заместитель директора ШЦЭ по учебной и воспитательной работе		
		(И.О. Фамилия)

АННОТАЦИЯ

Рабочая программа учебной дисциплины «Трехмерное моделирование и дизайн» предназначена для студентов, обучающихся по направлению подготовки 09.04.01 Информатика и вычислительная техника (уровень магистратуры), профиль «Технологии виртуальной и дополненной реальности».

Рабочая программа разработана на основе макета рабочей программы учебной дисциплины для образовательных программ высшего образования — программ бакалавриата, специалитета, магистратуры ДВФУ, утверждённого приказом ректора ДВФУ от 08.05.2015 № 12-13-824.

Дисциплина «Трехмерное моделирование и дизайн» входит в вариативную часть блока «Дисциплины (модули) по выбору» (Б1.В.ДВ.05) учебного плана подготовки магистров.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единиц или 108 часов. Дисциплина реализуется на 2 курсе в 3 семестре.

	Аудит	горные за	питкн			Всего по дисциплине		
Семестр	Лекци и	Лабор аторн ые работ ы	Всего	Самостоя- тельная работа	Контроль	Часы	Зачетные единицы	
3 семестр	8	46	54	54	Зачет с оценкой	108	3	

Трехмерная графика из модного увлечения превратилась в целую индустрию. Компьютерные игры, кино, телевидение, архитектурное проектирование и интерьерный дизайн сегодня немыслимы без 3d. То, о чем раньше можно было лишь мечтать, теперь уже норма. Современная развивается сейчас по трем основным направлениям:

- развитие методов моделирования;
- разработка алгоритмов для фотореалистичной визуализации трехмерных сцен;
- совершенствование методов анимации.

Курс дает полное представление обо всех этих возможностях. Вы узнаете, как создаются сверхсложные модели и проекты, освоите приемы полигонального и лоскутного моделирования, опробуете на практике средства

NURBS. Особое внимание в курсе уделено технологиям фотореалистичного рендеринга.

Рассматривается не только встроенный рендер Mental Ray, но и внешний визуализатор VRay.

Цель изучения дисциплины является получение студентами теоретических знаний и практических навыков в области трехмерной компьютерной графики и дизайн-проектирования 3D объектов.

Задачи:

Задачами дисциплины являются:

изучить основные закономерности создания трехмерных объектов и сцен средствами 3D инструментария;

научиться создавать фотореалистичную визуализацию и анимацию объектов в программах трехмерного моделирования;

получить навыки использования объектов 3D моделирования средствами программ трехмерного моделирования в компьютерных играх, презентациях, рекламной продукции.

Дисциплины, предшествующие по учебному плану:

Студенты должны иметь опыт работы с растровой и векторной графикой, владеть основами создания анимации, иметь представление о цветовых моделях и основных форматах графических документов.

Дисциплины, последующие по учебному плану:

Защита выпускной квалификационной работы (ВКР), включая подготовку к процедуре защиты и процедуру защиты.

В результате данной дисциплины у обучающихся формируются следующие профессиональные компетенции (элементы компетенций).

Код и формулировка компетенции	Этапы формирования компетенции		
ПК-9 – способностью проектировать системы с параллельной обработкой данных и	Знает	- методы и технологии проектирования систем с параллельной обработкой данных и высокопроизводительные системы и их компоненты	
высокопроизводительные системы и их компоненты	Умеет	- проектировать системы с параллельной обработкой данных и высокопроизводительные системы и их компоненты	

	Владеет	- навыками проектирования систем с параллельной обработкой данных и высокопроизводительные системы и их компоненты
ПК-18 – способностью к разработке программного обеспечения для создания трехмерных изображений	Умеет	 методы и технологии разработки программного обеспечения для создания трехмерных изображений разрабатывать программное обеспечение для создания трехмерных изображений
	Владеет	- навыкам разработки ПО для создания трехмерных изображений

Знания и умения, полученные в результате обучения

По окончании курса слушатели получат развернутое представление о трехмерном моделировании и анимации всеми современными методами, доступными в среде 3ds max:

- полигональное моделирование;
- лоскутное моделирование;
- NURBS моделирование;
- методы получения фотореалистичных изображений;
- визуализация методами глобальной освещенности;
- создание сложных материалов;
- анимация сцен;
- внешние подключаемые модули для моделирования и визуализации.

СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Лекционные занятия (8 часов)

Наименование тем и разделов		
Раздел I. Основы 3D моделирования и визуализации		
Тема 1.1. Моделирование на основе простейших геометрических объектов. Создание 3d моделей на основе плоских форм. Методы полигонального моделирования, топология сетки	1	
Тема 1.2. Основные принципы настройки освещения в различных 3D сценах		
Тема 1.3. Обзор возможностей современных визуализаторов. Их сходство и различия		
Тема 1.4. Основные принципы настройки материалов		
Тема 1.5. Развертка		
Раздел II. Дизайн среды	3	

Тема 2.1. Основные принципы дизайнерского проектирования средовых объектов.	1		
Тема 2.2. Перспективы и тенденции дизайна средовых объектов			
Тема 2.3. Процесс художественного проектирования (дизайна) средовых объектов	1		

І. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА Лабораторные работы (46 часов)

Наименование тем и разделов	Часы
Лабораторная работа №1 Управление системами единиц. Моделирование системы стен. Импорт и обработка данных из пакетов векторной графики. Булевские операции. Создание окон и дверей.	6
Лабораторная работа №2 Моделирование интерьера. Внутренняя отделка, мебель. Модификатор Edit Mesh. Типы объектов Editable Mesh и Editable Poly. Операции на уровне ребер. Операции на уровне граней. Использование мягких выделений. Управление сглаживанием.	8
Лабораторная работа №3 Свет и светопостановка. Стандартные схемы расположения источников. Фотореалистичный рендеринг. Настройка сцены, построение решения. Подключение внешнего модуля визуализации VRay. Настройка сцены, необходимые настройки для интерьерной визуализации	12
Лабораторная работа №4 Модификатор Surface. Моделирование органического тела с использованием сплайнов и лоскутов Безье. Базовые примитивы NURBS. Операции над NURBS-объектами. Поверхности экструзии, лофта, сопряжения, фаски и т.д. Моделирование сложных тел. Моделирование драпировок.	10
Лабораторная работа №5 Назначение составных материалов. Управление материалами. Работа с библиотеками AEC Template. Текстурирование сложных сцен. Анимация. Работа с камерой, стандартные приемы. Контроллеры. Reactor.	8

Дизайн-проект. Интерьерная визуализация.				
На одно из помещений (наиболее характерное) по выбору преподавателя				
делается визуализация с нескольких точек. При визуализации желательно				
использовать технологии глобального освещения (например, VRay или	2			
Radiosity).				
Студент разрабатывает дизайн-проект выбранного помещения средствами				
программы 3ds Max.				

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Трехмерное моделирование и дизайн» представлено в Приложении 1 и включает в себя:

- план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;
- характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;
- требования к представлению и оформлению результатов самостоятельной работы;
- критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

Изучение дисциплины «Трехмерное моделирование и дизайн» предусматривает:

- изучение теоретического материала в соответствии с программой, с использованием материала из списка литературы и информационнометодического обеспечения дисциплины;
 - выполнение лабораторных работ;
- *текущий контроль* учет посещения студентами занятий в течение периода обучения и оценка своевременности и качества изучения студентами темы и выполнения лабораторных работ.
- *итоговый контроль* выведение итоговой оценки за семестр по результатам рейтинга без обязательной сдачи экзамена.

10	TC	Коды и этапы формирования компетенций		Оценочные средства	
№ п/п	Контролируемые разделы / темы дисциплины			текущий контроль	промежуточная аттестация
1	Лабораторные работы № 1 - 5	ПК - 9	знает	УО-1 ТС	Зачет с оценкой

2	Дизайн-проект	ПК - 18	умеет владеет	ПР-9 ТС	Зачет с оценкой

- 1. устный опрос (УО): собеседование (УО-1), коллоквиум (УО-2); итоговая презентация (УО-3); круглый стол (УО-4);
- 2. технические средства контроля (ТС);
- 3. письменные работы (ПР): тесты (ПР-1), контрольные работы (ПР-2), эссе (ПР-3), рефераты (ПР-4), курсовые работы (ПР-5), научно-учебные отчеты по практикам (ПР-6), конспект (ПР-7), проект (ПР-9). Разноуровневые задачи и задания (ПР-11) и т.п.

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература *(электронные и печатные издания)*

- 1. Хайдаров Г.Г. Компьютерные технологии трехмерного моделирования [Электронный ресурс]: учебное пособие/ Хайдаров Г.Г., Тозик В.Т.— Электрон. текстовые данные.— СПб.: Университет ИТМО, 2010.— 81 с.— Режим доступа: http://www.iprbookshop.ru/67219.html.— ЭБС «IPRbooks»
- 2. Забелин Л.Ю. Основы компьютерной графики и технологии трехмерного моделирования [Электронный ресурс]: учебное пособие/ Забелин Л.Ю., Конюкова О.Л., Диль О.В.— Электрон. текстовые данные.— Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2015.— 259 с.— Режим доступа: http://www.iprbookshop.ru/54792.html.— ЭБС «IPRbooks».
- 3. Аббасов, И.Б. Основы трехмерного моделирования в графической системе 3ds Max 2018 [Электронный ресурс] : учебное пособие / И.Б. Аббасов. Электрон. дан. Москва : ДМК Пресс, 2017. 186 с. Режим доступа: https://e.lanbook.com/book/97355. Загл. с экрана.

- 4. <u>Ларченко, Д.А. Интерьер : дизайн и компьютерное моделирование / Д. А. Ларченко, А. В. Келле-Пелле. Санкт-Петербург : Питер, 2009. 477 с., [8] л. ил.</u>
- 5. <u>3D Studio Max + VRay. Проектирование дизайна среды : учеб. пособие / Д.А. Хворостов. М. : ФОРУМ : ИНФРА-М, 2018. 270 с. (Высшее образование: Бакалавриат). Режим доступа: http://znanium.com/catalog/product/942731</u>

Дополнительная литература

(печатные и электронные издания)

- 1. Петелин, А.Ю. 3D-моделирование в SketchUp 2015— от простого к сложному. Самоучитель [Электронный ресурс] : самоучитель / А.Ю. Петелин. Электрон. дан. Москва : ДМК Пресс, 2015. 370 с. Режим доступа: https://e.lanbook.com/book/82808. Загл. с экрана.
- 2. Флеминг, Б. Создание трехмерных персонажей. Уроки мастерства [Электронный ресурс] : руководство / Б. Флеминг. Электрон. дан. Москва : ДМК Пресс, 2006. 445 с. Режим доступа: https://e.lanbook.com/book/1343. Загл. с экрана.
- 3. Флеминг, Б. Создание фотореалистичных изображений [Электронный ресурс] : учебное пособие / Б. Флеминг. Электрон. дан. Москва : ДМК Пресс, 2007. 372 с. Режим доступа: https://e.lanbook.com/book/1344. Загл. с экрана.
- Трехмерное моделирование и анимация/Трошина Г.В. Новосиб.: НГТУ, 2010. - 99 с.: ISBN 978-5-7782-1507-8 - Режим доступа: http://znanium.com/catalog/product/547761
- 5. <u>Мальцев, А. В.</u> Моделирование отражений окружающей среды для виртуальных объектов в реальном режиме времени / А. В. Мальцев, М. В. Михалюк. Программные продукты и системы . N 3 (2007), С. 31-35

Перечень ресурсов

информационно-телекоммуникационной сети «Интернет»

1. Render.RU http://www.render.ru/

Великолепный сайт. Настоятельно рекомендуется тем, кто собирается серьезно заниматься 3d.

Обратите внимание на разделы:

http://www.render.ru/reanim/ - Журнал «РеАнимация». Очень полезная и просто интересная информация о технологиях 3d графики.

http://www.render.ru/tutor/ - Уроки по различным программным продуктам и, в частности, по 3ds max.

http://www.render.ru/tutor/common/ - Общие сведения, отличные уроки по постановке света

2. Digital Light http://dlight.ru/

1. Отличный сайт. Интересные статьи, обзоры. Есть наглядные уроки.

3. Русский 3D центр http://www.3dcenter.ru/

Хороший сайт. Есть уроки, обзоры.

4. 3D Cafe http://www.3dcafe.com/

Вы просто обязаны хотя бы раз посетить этот сайт – Альма-матер 3d художников.

5. 3D Luvr http://www.3dluvr.com/

Очень популярный сервер по 3d. Рекомендуется для посещения.

6. http://www.darc.com/

Очень популярный сервер по 3d. Много полезных материалов на русском. Переведены справки ко многим внешним рендерам.

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Для эффективного изучения теоретической части дисциплины необходимо:

- построить работу по освоению дисциплины в порядке, отвечающим изучению основных этапов, согласно приведенным темам лекционного материала;
- систематически проверять свои знания по контрольным вопросам и тестам;
 - усвоить содержание ключевых понятий;
- активно работать с основной и дополнительной литературой по соответствующим темам;
- регулярно консультироваться с преподавателем, ведущим изучаемую дисциплину.

Для эффективного изучения практической части дисциплины настоятельно рекомендуется:

систематически выполнять подготовку к лабораторным работам по предложенным преподавателем темам;

своевременно выполнять лабораторные работы.

Варианты лабораторных работ подобраны так, что их разбор и решение способствуют пониманию теоретических положений, излагаемых лектором.

Задания предлагаются по мере изучения теоретических разделов дисциплины. Студент должен ответить на любой вопрос преподавателя, касающийся выполнения лабораторных работ и контрольные вопросы по изучаемой теме.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Компьютерный класс:

Проектор DLP, 3000 ANSI Lm, WXGA 1280x800, 2000:1 EW330U Mitsubishi,; Системный блок с монитором. Процессор: Intel I5-8600k 3.6Ghz, оперативная память: 32gb, жесткий диск: 1ТБ, графический ускоритель: Nvidia GTX 1080 Беспроводные ЛВС для обучающихся обеспечены системой на базе точек доступа 802.11a/b/g/n 2x2 MIMO(2SS).

Специализированное ПО:

Visual Studio 2019, Eclipse, Anaconda

690922,

Приморский край,

- г. Владивосток,
- о. Русский, п.Аякс, 10,
- г. Владивосток,
- о. Русский, п.

Аякс, корпус G, ауд. G468

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЦИФРОВОЙ ЭКОНОМИКИ

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине

«ТРЕХМЕРНОЕ МОДЕЛИРОВАНИЕ И ДИЗАЙН»

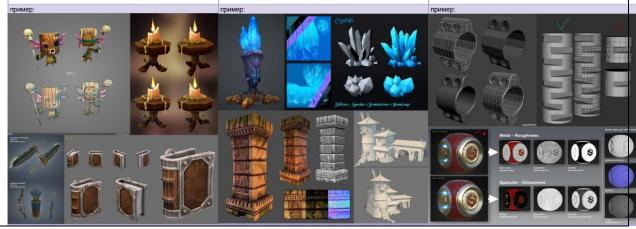
Направление подготовки **09.04.01** Информатика и вычислительная техника

магистерская программа «Технологии виртуальной и дополненной реальности»

Форма подготовки очная

Владивосток 2018

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Трехмерное моделирование и дизайн» включает в себя:


- план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;
- характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;
- требования к представлению и оформлению результатов самостоятельной работы;
- критерии оценки выполнения самостоятельной работы.

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	В течение семестра	Проработка лекционного материала по конспектам и учебной литературе	10	Собеседование, опрос
2	В течение семестра	Подготовка и выполнение лабораторных работ № 1 13	20	Защита лабораторных работ
	В течение семестра	Выполнение дизайн-проекта	14	Зацита проекта
3	Зачетная неделя	Подготовка к зачету	10	Экзамен
		Итого	54	

Перечень тем для самостоятельной работы по дисциплине

2-й месяц 1-й месяц 3й месяц: теория: теория теория Обзор основных программ при работе Изучение топологии для более Изучение топологии для моделирования Subdivision с 3D графикой сложных объектов Изучение интерфейса Autodesk Maya Знакомство с Soft Surface Surface Изучение основ моделирования для Изучение интерфейса Substance моделированием - ZBrush Ретопология в Мауа Painter игр Процесс создания UV развёртки Разбор текстурных карт Pipeline создания полного Hand Painted текстуры в Photoshop Запекание карт: Ambient набора PBR текстур для Occlusion, Normal моделей Ретопология Hard Surface моделей практика: практика практика Набор низкополигональных ассетов Элементы технических моделей Hard Surface модели с для мобильных игр применением карты нормалей (с сложных форм + PBR текстуры High Poly)

4й месяц: 5й месяц: 6й месяц: теория: теория: теория: Изучение топологии для Анатомическое строение человека, Теория анимации. Timing и моделирования Soft Surface пропоции Spacing. 12 принципов моделей Техники стилизации персонажа Создание рига для персонажа. Изучение интерфейса Zbrush Разбор различных Pipeline-ов при Автоматический риг. Методы создания шерсти и волос в создании персонажа Особенности циклических игровых моделях Создание одежды для персонажа анимаций: бег, ходьба Применение карты Opacity Особенности создания анимации из видео: атака Загрузка модели в Unreal Engine практика: практика: практика: Скульптинг и ретопология Создание персонажа - человек Создание анимации механических несложной органической модели элементов (мельница+??) Ретопология модели лица Создание анимации персонажа: бег, ходьба, атака

Рекомендации по самостоятельной работе студентов

Самостоятельная работа студента, безусловно - один из важнейших этапов в подготовке магистров. Она приобщает студентов к исследовательской работе, обогащает опытом и знаниями, необходимыми для дальнейшего их становления как специалистов, прививает навыки работы с литературой.

Цель самостоятельной работы - систематизация, закрепление и расширение теоретических и практических знаний с использованием современных информационных технологий и литературных источников. Данная цель может быть достигнута при решении следующего круга задач:

изучение лекционного материала;

изучение дополнительных источников информации;

выполнение лабораторных работ.

Теоретическое обучение предполагает самостоятельную работу литературными источниками. Вопросы, вынесенные на самостоятельное изучение, дополняют сведения, полученные на лекциях, и также являются Некоторые будущей специальности. актуальными ДЛЯ традиционно изучаются в рамках других дисциплин, поэтому они вынесены на самостоятельное изучение. В этом случае цель самостоятельного изучения заключается в том, чтобы студент получил на данном этапе общее представление о вопросе. Форма отчетности по проделанной работе этих вопросов в экзаменационные билеты. включение самостоятельной работы сводится к подготовке и защите в течение семестра лабораторных работ.

Руководство и контроль за самостоятельной работой студента осуществляется в форме индивидуальных консультаций.

При затруднении изучения отдельных тем, вопросов следует обращаться за консультациями к преподавателю.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЦИФРОВОЙ ЭКОНОМИКИ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«ТРЕХМЕРНОЕ МОДЕЛИРОВАНИЕ И ДИЗАЙН»

Направление подготовки **09.04.01** Информатика и вычислительная техника

магистерская программа «Технологии виртуальной и дополненной реальности»

Форма подготовки очная

Владивосток 2018 Фонд оценочных средств по дисциплине «Трехмерное моделирование и дизайн» включает в себя:

- типовые контрольные задания,
- методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности,
- а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы

	T	T	T
Результаты обучения (компетенции из ФГОС)	Знает	Умеет	Владеет
ПК - 9 ПК - 18	основные закономерности создания трехмерных объектов и сцен средствами 3D инструментария	создавать фотореалистичную визуализацию и анимацию объектов в программах трехмерного моделирования	навыками использования объектов 3D моделирования средствами программ трехмерного моделирования в компьютерных играх, презентациях, рекламной продукции.
Эталонный	Основной и дополнительный материал, предусмотренный компетенцией, без ошибок и погрешностей	Умеет в полном объеме	всеми навыками, демонстрируя их не только в стандартных ситуациях, но и при решении нестандартных задач
Продвинутый	основной материал, предусмотренный компетенцией, без ошибок и погрешностей	Умеет с незначительными погрешностями	основными навыками, демонстрируя их в стандартных ситуациях, в том числе при решении дополнительных задач
Пороговый	большинство основных понятий, изучаемых в рамках дисциплины	Умеет с погрешностями	некоторыми основными навыками, демонстрируя их в стандартных ситуациях

Типовые лабораторные работы

Методические материалы, определяющие процедуры оценивания результатов освоения дисциплины

Текущая аттестация студентов проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной. Текущая аттестация проводится в форме контрольных мероприятий: собеседование, защита лабораторных работ.

Объектами оценивания выступают:

- учебная дисциплина (активность на занятиях, своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
 - степень усвоения теоретических знаний;
- уровень овладения практическими умениями и навыками по всем видам учебной работы;
 - результаты самостоятельной работы.

Во время выполнения лабораторных работ преподаватель на основе серии контрольных вопросов проверяет теоретические знания студента по теме лабораторной работы.

Список вопросов к зачету

- 1. Основные этапы цифрового процесса производства трехмерного графического продукта.
- 2. Области применения 3D-моделировани.
- 3. Понятия пространства, объектов и структур в рамках основных концепций моделирования.
- 4. Построение моделей с помощью чисел.
- 5. Точки, линии, поверхности как основные конструктивные элементы моделирования.
- 6. Операции перемещения объектов.
- 7. Глобальные и локальные преобразования.
- 8. Виды проецирования в трехмерном пространстве.
- 9. Навигация в трехмерной студии.
- 10. Сплайны как основные элементы моделирования.
- 11. Геометрические примитивы в трехмерной студии.
- 12. Построение фигур путем смещения образующей плоскости по заданной траектории.

- 13. Экструзия как метод моделирования.
- 14. Построение фигур вращения.
- 15. Объекты свободных форм.
- 16. Виртуальная лепка с помощью полигональных сеток.
- 17. Поверхности разбиения.
- 18. Логические операторы и разностные поверхности.
- 19. Деформированные и рандомизированные поверхности.
- 20. Системы частиц.
- 21. Моделирование растений.
- 22. Типы источников света.
- 23. Основные элементы источников света.
- 24. Процесс визуализации света.
- 25. Методы затенения поверхностей.
- 26. Шейдеры поверхностей.
- 27. Отражательная способность поверхности.
- 28. Текстуры поверхностей и их виды.
- 29. Методы наложения текстур поверхностей.
- 30. Этапы процесса рендеринга.
- 31. Методы рендеринга.
- 32. Типы камер с точки зрения композиции и постановки.
- 33. Зрительная пирамида.
- 34. Виды съемки.
- 35. Углы расположения камеры.
- 36. Движения камеры.

Примерные темы контрольных заданий к зачету:

Контрольная работа № 1. Моделирование поверхности по сплайновой сетке.

Требуется смоделировать часть тела животного, элемент одежды, или поверхность другой органической формы методом сплайновой сетки максимально реалистично с использованием программы 3DS Max.

Контрольная работа № 2. Применение эффектов постобработки.

Требуется сымитировать эффект гало на падающих частицах снега, дождя, звездопада и т.п. с помощью средств постобработки программы 3DS Max.

Критерии выставления оценки студенту на зачете

Порядок начисления рейтинговых баллов по предмету

Выполнение лабораторных работ - 70 баллов, дизайн-проект – 30 баллов.

Баллы (рейтин говой оценки)	Оценка экзамена	Требования к сформированным компетенциям
85-100	«ОТЛИЧНО»	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно связывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, владеет разносторонними навыками и приемами выполнения лабораторных работ.
70-84	«хорошо»	Оценка «хорошо» выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении лабораторных работ вопросов и задач, владеет необходимыми навыками и приемами их выполнения.
50-69	«удовлетвор ительно»	Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении лабораторных работ.
0-49	«неудовлетв орительно»	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала по, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Правила аттестации для студентов, не набравших необходимый минимум баллов по дисциплине

Если студент, в ходе изучения дисциплины набрал 70 и более баллов, то он имеет право на выставление зачета с соответствующей оценкой без его сдачи.

Если студент набрал менее 70 баллов, то он должен сдавать зачет (вопросы и контрольные задания к зачету). Данный тест оценивается в диапазоне от 0 до 30 баллов. Полученные баллы суммируются к уже набранным и студенту выставляется итоговая оценка.

Темы и краткое содержание лекций

Введение в предмет

История развития основ трехмерного моделирования и анимации. Области применения 3D-моделирования и анимации.

Создание новых изделий, строительство, вопросы дизайна, кино и телевидение, тренажеры для подготовки кадров, компьютерные игры, применение в полиграфии и издательском деле, в рекламном бизнесе, создании презентаций новых товаров и услуг.

Цифровой процесс производства. Рассматриваются несколько последовательных этапов, которые необходимы для получения готового продукта при работе с трехмерной графикой:

- Идея проекта
- Моделирование
- Текстурирование
- Анимация
- Освещение
- Визуализация

РАЗДЕЛ 1. МОДЕЛИРОВАНИЕ

Тема 1.1. Основные концепции моделирования

Моделирование как пространственное описание и размещение воображаемых трехмерных объектов, окружающей среды и сцен с помощью компьютерной системы. Обзор основных концепций процесса моделирования, включая числовое описание объектов, перемещение объектов и изменение их размеров в трехмерном пространстве. Распространенные рекомендации к подготовке к сеансу моделирования.

Тема 1.2. Основные методы моделирования

Рассматриваются основные методы моделирования трехмерных объектов с помощью компьютерных систем. Замечания в отношении линий, их использования в создании поверхностей и общих отличий между полигональными сетками и кривыми поверхностями. Обсуждение самых простых инструментов геометрического моделирования, имеющихся в большинстве современных систем.

Обзор нескольких производных приемов, включая построение фигур вращения и разные виды выдавливания (экструзии). Описание способов

создания ландшафтов (топографии) и простых объектов свободных форм. Обзор утилит, которые удобны для разработчиков моделей на всех уровнях. Обзор моделирования для отображения в реальном времени. Обзор инструментария моделирования дизайна пространственной среды.

РАЗДЕЛ 2. ОСВЕЩЕНИЕ

Тема 2.1. Источники освещения

Роль освещения в визуальном представлении сцены. Процесс визуализации света. Типы источников света:

- Точечный свет
- Спот
- Бесконечно удаленный свет
- Зональный свет
- Линейный свет
- Рассеянный свет

Основные элементы источника света:

- Положение и ориентация
- Цвет и интенсивность
- Ослабление и затухание конуса
- Угол раствора конуса
- Форма свечения светового конуса

Глобальные и локальные источники света. Виды теней, настройки теней объектов.

Тема 2.2. Затенение и поверхностные характеристики

Методы затенения поверхностей:

- Фасеточное затенение
- Плавное затенение
- Зеркальное затенение

Шейдинг, шейдеры поверхностей. Отражательная способность поверхности. Виды отражений:

- Рассеянное отражение
- Диффузное отражение
- Зеркальное отражение

Текстура поверхности. Типы проецирования текстур:

- Проецирование цвета
- Проецирование зеркальности
- Проецирование среды
- Проецирование светимости
- Проецирование прозрачности
- Проецирование усечения
- Проецирование рельефности
- Проецирование смещения
- Другие методы проецирования

Процедурные карты текстур. Двумерные и трехмерные карты текстур. Наложение текстур.

РАЗДЕЛ 3. РЕНДЕРИНГ

Тема 3.1. Композиция и постановка

Типы камер. Зрительная пирамида. Виды съемки. Передача настроения с помощью движения камеры. Типы движения камеры:

- Разводка по оси Z
- Встречная съемка

Углы расположения камеры. Эффект перспективы. Съемка с точки зрения. Кадрирование. Правило третей. Положительное и отрицательное пространство. Графический вес. Кадрирование для кинематографа и телевидения.