

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

«СОГЛАСОВАНО»	«УТВЕРЖДАЮ»
Руководитель ОП	Заведующая кафедрой
С.Г. Красицкая	Общей, неорганической и элементоорганической химии (название кафедры) А.А. Капустина
« 18 » cecesept 2018r.	« 18 » clled el of 2 2018r.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Химия гетероциклических соединений

Направление подготовки 04.04.01 Химия

Магистерская программа «Фундаментальные химические исследования веществ и процессов»

Форма подготовки очная

курс $\underline{2}$ семестр $\underline{3}$
лекции <u>12</u> час.
практические занятия час.
лабораторные работы <u>54</u> час.
в том числе с использованием МАО лек4/пр/лаб час.
в том числе в электронной форме лек/пр/лаб час.
всего часов аудиторной нагрузки <u>66</u> час.
в том числе с использованием МАО4 час.
в том числе в электронной форме час.
самостоятельная работа <u>150</u> час.
в том числе на подготовку к экзамену <u>36</u> час.
курсовая работа / курсовой проект семестр
зачет семестр
экзамен <u>3 семестр</u>

Рабочая программа составлена в соответствии с требованиями образовательного стандарта, самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора ДВФУ № 12-13-592 от 04.04.2016.

Рабочая программа учебной дисциплины обсуждена на заседании кафедры органической химии, протокол № 735 (10/18) от 14 сентября 2018 г

Заведующий кафедрой органической химии, к.х.н., Жидков М.Е. Составитель: к.х.н., доцент_Андин А.Н.

Оборотная сторона титульного листа РПУД

Протокол от «	»	20г. №	
Ваведующий каф	едрой		
		(подпись)	(И.О. Фамилия)
T. D. 6			
-	-	есмотрена на заседании н	
Протокол от «	»	20 г. №	2
Ваведующий каф	едрой		
		(подпись)	(И.О. Фамилия

ABSTRACT

Master of Science in Chemistry degree in 04.04.01 - Chemistry.

Study profile: Fundamental chemical studies of substances and processes.

Course title: Chemistry of heterocyclic compounds.

Variable part of Block 1, 6 credits.

Instructor: Andin A.N.

At the beginning of the course a student should be able to:

-the ability to use the knowledge of theoretical bases of the fundamental topics of chemistry in solving professional tasks;

-learning of the system of fundamental chemical concepts.

Learning outcomes:

- -the ability to conduct scientific research on the formulated themes, plan research and obtain new scientific and applied results;
 - possession of theory and practical skills in the chosen field of chemistry;
 - to use the modern equipment in scientific research;
- -to be able to interpret the results of physico-chemical methods of investigation.

Course description:

Classification of methods of synthesis of various types of heterocycles;

Retrosynthetic analysis;

Nomenclature of heterocycles;

Five-membered aromatic heterocycles with one and two heteroatoms;

Six-membered aromatic heterocycles with one and two heteroatoms;

Stereochemistry of reactions;

The basic concepts of reaction's mechanisms.

Main course literature:

- 1. Mironovich, L. M. Heterocyclic compounds with three and more heteroatoms / L. M. Mironovich. Publishing house "Lan'", 2017. 208 p. https://e.lanbook.com/book/96859#book_name
- 2. Galochkin, A. I. Organic chemistry. Book 4. Heterofunctional and heterocyclic compounds / A. I. Galochkin, I. V. Anan'ina St. Petersburg: Lan', 2019. 292 p.

https://e.lanbook.com/book/113375#book_name

3. Rakhimov, A. I. Heterocyclic compounds. Part I. Nitrogen-containing six-membered aromatic compounds with one nitrogen atom in a cycle: proc. manual/A. I. Rakhimov, A. V. Nalesnaya. - VSTU.- Volgograd, 2009. – 76 p.

http://dump.vstu.ru/files/storage/Kafiedry/OKh/uchiebnomietodichieskiie_razrabotki_po_orghanichieskoi_khimii/shiestichliennyie_azotsod ierzhashchiie_ghietierotsikly.pdf

Form of final knowledge control: exam.

Аннотация дисциплины

«Химия гетероциклических соединений»

Дисциплина разработана для магистрантов направления 04.04.01-Химия, магистерской программы «Фундаментальные химические исследования веществ и процессов». При разработке рабочей программы учебной дисциплины использован Образовательный стандарт ВО ДВФУ по направлению подготовки 04.04.01 − Химия, утвержденный приказом ректора ДВФУ от 04.04.2016 № 12-13-592 и учебный план образовательной программы.

Дисциплина Б1.В.ДВ.03.03. входит в вариативную часть учебного плана. Трудоемкость составляет 6 зачетных единиц и 216 академических часа. Учебным планом предусмотрены лекции — 12 час., лабораторные работы - 54 час., самостоятельная работа магистрантов - 150 час. в том числе 36 час. на подготовку к экзамену. Обучение осуществляется в 3 семестре. Форма промежуточной аттестации: экзамен (3 семестр).

Опирается на знания, умения и навыки, усвоенные при изучении таких дисциплин, как «Органическая химия», «Физические методы исследования», «Механизмы реакций и стереохимия», «Органический синтез».

Содержание дисциплины охватывает следующий круг вопросов:

Введение в химию гетероциклов. Классификация гетероциклических соединений, типы реакций гетероциклизации, структурные блоки, наиболее часто использующиеся в синтезе гетероциклов;

Пятичленные ароматические гетероциклы с одним гетероатомом. Моноядерные (пиррол, фуран, тиофен) и конденсированные (индол, изоиндол, бензофуран, бензотиофен, индолизин) представители. Способы получения и химические свойства;

Пятичленные ароматические гетероциклы с двумя гетероатомами. 1,2-Азолы (пиразол, изоксазол, изотиазол). 1,3-Азолы (имидазол, оксазол, тиазол). Способы получения и химические свойства; Шестичленные ароматические гетероциклы с одним гетероатомом. Моноядерные (пиридин, соли пирилия) и конденсированные (хинолин, изохинолин) представители. Способы получения и химические свойства;

Шестичленные ароматические гетероциклы с двумя гетероатомами. Азины (пиридазин, пиримидин, пиразин). Способы получения и химические свойства.

Цель изучения дисциплины: формирование у магистрантов знаний о номенклатуре, методах получения и основных типах реакций гетероциклических соединений.

Задачи:

- 1) владение основными принципами синтонного подхода при планировании синтеза гетероциклического соединения;
- 2) знание классических и современных методов постановки синтетического эксперимента;
- 3) получить знания об основных типах синтетических реакций с участием гетероциклов.

Для успешного изучения дисциплины «Химия гетероциклических соединений» у обучающихся должны быть сформированы следующие предварительные компетенции:

- способность использовать полученные знания теоретических основ фундаментальных разделов химии при решении профессиональных задач;
 - владение системой фундаментальных химических понятий.

В результате изучения данной дисциплины у магистрантов формируются следующие компетенции:

Код и формулировка компетенции	Этапы формирования компетенции	
способность проводить научные исследования по	Знает	Взаимосвязь между особенностями строения молекул гетероциклических соединений и их свойствами.
сформулированной тематике,	Умеет	В новой ситуации использовать знания по химии гетероциклических соединений.

самостоятельно составлять план исследования и получать новые научные и прикладные результаты (ПК-1).	Владеет	Пространственным мышлением, умением спланировать синтез заданной гетероциклической системы.
	Знает	Номенклатуру гетероциклических соединений.
владение теорией и навыками практической работы в избран-ной области химии (ПК-2)	Умеет	Представить механизмы основных типов синтетических реакций, приводящих к гетероциклам. Предсказать результат конкретной реакции с участием гетероциклических соединений.
	Владеет	Умением проводить ретросинтетический анализ гетероциклических систем. На основе теоретических представлений объяснять экспериментальные результаты.
готовность использовать	Знает	Закономерности протекания реакций с участием гетероциклических соединений.
современную аппаратуру при про-	Умеет	Составлять план исследования в области химии гетероциклических соединений.
ведении научных исследований (ПК-3).	Владеет	Методами экспериментального и теоретического изучения химии гетероциклов.
	Знает	Теоретические и практические основы ХГС.
владение навыками интерпретации результатов физико-химических методов исследования вещества (ПК-5).	Умеет	Применять на практике теоретические знания по химии гетероциклических соединений.
	Владеет	Физическими методами исследования гетероциклических соединений и их производных.

Для формирования вышеуказанных компетенций в рамках дисциплины «Химия гетероциклических соединений» применяются следующие методы активного обучения: лекция-беседа.

I. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА Лекции (12 час).

- МОДУЛЬ 1. Введение в химию гетероциклов. Пятичленные ароматические гетероциклы с одним и двумя гетероатомами (8 час).
- **Тема 1.** Введение в химию гетероциклов. Классификация способов синтеза различных типов гетероциклов (2 час). Введение. Многообразие и классификация гетероциклических соединений. Основные типы реакций гетероциклизации. Структурные блоки, наиболее часто использующиеся в синтезе гетероциклов.

МАО – лекция-беседа (2 час).

Тема 2. Пятичленные ароматические гетероциклы с одним гетероатомом (пиррол, фуран, тиофен) (2 час). Пиррол и его производные. Способы получения и химические свойства. Фуран и тиофен, их производные. Способы получения и химические свойства.

МАО – лекция-беседа (2 час).

- **Тема 3. Конденсированные пятичленные гетероциклы с одним гетероатомом (индол) (1 час).** Способы синтеза индольной системы. Химические свойства индола.
- **Тема 4.** Конденсированные пятичленные гетероциклы с одним гетероатомом (продолжение) (1 час).

Бензофуран и бензотиофен. Способы получения и химические свойства. Изоиндол и индолизин. Способы получения и химические свойства.

- **Тема 5. Пятичленные ароматические гетероциклы с двумя гетероатомами (2 час).** 1,2-Азолы. Способы получения и химические свойства. 1,3-Азолы. Способы получения и химические свойства.
- МОДУЛЬ 2. Шестичленные ароматические гетероциклы с одним гетероатомом (моноядерные и конденсированные). Шестичленные ароматические гетероциклы с двумя гетероатомами (4 час).
- **Тема 1. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридин, соли пирилия) (2 час).** Пиридин и его производные. Способы получения и химические свойства. Соли пирилия. Способы получения и химические свойства.

Тема 2. Конденсированные шестичленные гетероциклы с одним гетероатомом (хинолин и изохинолин) (1 час). Хинолин. Способы получения и химические свойства. Изохинолин. Способы получения и химические свойства.

Тема 3. Шестичленные ароматические гетероциклы с двумя гетероатомами (диазины) (1 час). Пиримидин и его производные. Способы получения и химические свойства. Пиридазин и пиразин. Способы получения и химические свойства.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА Лабораторные работы (54 час).

Лабораторная работа № 1. Получение пирослизевой кислоты (9 час).

Лабораторная работа № 2. Получение 3,5-диметилпиразола (9 час).

Лабораторная работа № 3. Получение 2,6-диметил-3,5-дикарбэтокси-4-(м-нитрофенил)-1,4-дигидропиридина (9 час).

Лабораторная работа № 4. Получение 2,4,6-трифенилпиридина (24 час).

Лабораторная работа № 5. Получение 1,2,3,4-тетрагидрокарбазола (9 час).

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Химия гетероциклических соединений» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

$N_{\underline{0}}$	Контролируемые	Коды и этапы	Оценочные средства
---------------------	----------------	--------------	--------------------

п/п	разделы / темы дисциплины	формирования компетенций		текущий контроль	промежуточная аттестация								
1	Модуль I. Тема 1. Введение в химию гетероциклов. Классификация способов синтеза различных типов гетероциклов.	ПК-1 Способ- ность прово- дить научные исследо- вания по сформул	знает: Взаимосвязь между особенностями строения молекул гетероциклически х соединений и их свойствами.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3								
		ированной тематике, самостоя тельно составлять план исследования и получать новые научные и прикладные результаты ПК-2 владение теорией и навыками практической работы в избранной об-	ной тематике, самостоя тельно составлять план исследования и получать новые научные и прикладные результаты ПК-2 владение теорией и навыками практической работы в избран-	ной те- матике, самостоя тельно состав- лять план иссле- дования и полу- чать но- вые научные и при- кладные резуль-	ной те- матике, самостоя тельно состав- лять план иссле- дования и полу- чать но- вые научные и при- кладные резуль- таты	ной те- матике, самостоя тельно состав- лять план иссле-	ной те- матике, самостоя тельно состав- лять план иссле-	умеет: В новой ситуации использовать знания по химии гетероциклически х соединений.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3			
									Пространствен- ным мышлением,	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3		
				знает: Номенклатуру гетероциклически х соединений.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1-3							
		ласти химии	умеет: Представить механизмы основных типов синтетических реакций, приводящих к гетероциклам. Предсказать результат конкретной реакции с участием	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3								

	гетероцикличес-		
ПК-3 готов- ность исполь- зовать совреме нную аппара- туру при проведе- нии научных исследо-	ких соединений. владеет: Умением проводить ретросинтетический анализ гетероциклических систем. На основе теоретических представлений объяснять экспериментальные результаты. знает: Закономерности протекания реакций с участием гетероциклически х соединений.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4) Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4) Проверка готовности к ловерка готовности к лабораторной разбор задач (УО-4)	Вопросы к экзамену № 1- 3 Вопросы к экзамену № 1- 3
ваний	исследования в области химии гетероциклических соединений.	лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	3
	владеет: Методами экспериментального и теоретического изучения химии гетероциклов.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3
ПК-5 владение навыка- ми ин- терпрета ции результа тов физико- химичес	знает: Теоретические и практические основы ХГС.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3

		ких	VIMOOTE:	Проворие	Ропрости
		методов	умеет: Применять на	Проверка	Вопросы к
		исследо-	практике	готовности к	экзамену № 1-
		вания	теоретические	лабораторной	3
		веще-	знания по химии	работе № 1	
			гетероцикличес-	(ΠP-6);	
			ких соединений.	Групповой	
				разбор задач	
				(YO-4)	
			владеет:	Проверка	Вопросы к
			Физическими	готовности к	экзамену № 1-3
			методами иссле-	лабораторной	
			дования гетеро- циклических	работе № 1	
			соединений и их	(ΠP-6);	
			производных.	Групповой	
				разбор задач	
				(УО-4)	
2	Тема 2. Пятичленные	ПК-1,	Компетенции	Проверка	Вопросы к
2	ароматические	ПК-1, ПК-2,		1 1	-
	гетероциклы с одним		те же	готовности к	экзамену № 4-
	гетероатомом	ПК-3,		лабораторной	6
	(пиррол, фуран,	ПК-5		работе № 2	
	тиофен).			(ПР-6);	
				Групповой	
				разбор задач	
				(YO-4)	
3	Тема 3.	ПК-1,	Компетенции	Проверка	Вопросы к
	Конденсированные пятичленные	ПК-2,	те же	готовности к	экзамену № 7-
	гетероциклы с одним	ПК-3,		лабораторной	9
	гетероатомом	ПК-5		работе № 3	
	(индол).			(ΠP-6);	
				Групповой	
				разбор задач	
				(УО-4)	
4	Тема 4.	ПК-1,	Компетенции	Проверка	Вопрос к
	Конденсированные	ПК-2,	те же	готовности к	экзамену № 10
	пятичленные	ПК-3,		лабораторной	
	гетероциклы с одним	ПК-5		работе № 4	
	гетероатомом			(ПР-6);	
	(продолжение).			Групповой	
				разбор задач	
				(УО-4)	
5	Тема 5. Пятичленные	ПК-1,	Компетенции	Проверка	Вопрос к
	ароматические	ПК-1, ПК-2,			экзамену № 11
	гетероциклы с двумя	-	те же		JN3aMCHY JNº 11
	гетероатомами.	ПК-3,		лабораторной	
	- 51 POWIO MARIE	ПК-5		работе № 4	
				(ΠP-6);	

				Групповой разбор задач (УО-4)	
6	Модуль 2. Тема 1. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридин, соли пирилия).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Проверка готовности к лабораторной работе № 5 (ПР-6); Групповой разбор задач (УО-4)	Вопрос к экзамену № 12
7	Тема 2. Конденсированные шестичленные гетероциклы с одним гетероатомом (хинолин и изохинолин).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопрос к экзамену № 13
8	Тема 3. Шестичленные ароматические гетероциклы с двумя гетероатомами (диазины).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопросы к экзамену № 14-15

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Миронович, Л.М. Гетероциклические соединения с тремя и более гетероатомами / Л.М. Миронович. Изд-во "Лань", 2017. 208 с. https://e.lanbook.com/book/96859#book_name
- 2. Галочкин, А.И. Органическая химия. Книга 4. Гетерофункцио-нальные и гетероциклические соединения / А.И. Галочкин, И.В. Ананьина Изд-во "Лань", 2019. 292 с.

https://e.lanbook.com/book/113375#book_name

3. Рахимов, А.И. Гетероциклические соединения. Часть І. Азотсодержащие шестичленные ароматические соединения с одним атомом азота в цикле: учеб. пособие/ А.И. Рахимов, А.В. Налесная. - ВолгГТУ.- Волгоград, 2009. — 76 с.

http://dump.vstu.ru/files/storage/Kafiedry/OKh/uchiebnomietodichieskiie_razrabotki_po_orghanichieskoi_khimii/shiestichliennyie_azotsod ierzhashchiie_ghietierotsikly.pdf

Дополнительная литература

- 1. Андин, А.Н. Химия гетероциклических соединений / А.Н. Андин. Владивосток: Изд-во Дальневост. ун-та, 2008. 144 с.
- 2. Андин, А.Н. Синтезы гетероциклических соединений / А.Н. Андин. Владивосток: Изд-во Дальневост. фед. ун-та, 2012. 20 с.
- 3. Сборник контрольных заданий по органической химии: учеб. пособие.
- Ч. 3: Ароматические и гетероциклические соединения / В.Я. Денисов, Д.Л. Мурышкин, Т.Б. Ткаченко, Т.В. Чуйкова. Изд-во КемГУ, 2009. 86 с. https://e.lanbook.com/book/30112#book_name

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

1. Eicher, T. The Chemistry of Heterocycles. Structure, Reactions, and Applications / T. Eicher, S. Hauptmann. – Wiley, 2003.

http://www.twirpx.com/files/chidnustry/organic/hetero/

2. Тимощенко, Л.В. Гетероциклические соединения / Л.В. Тимощенко, Т.А. Сарычева. – Томск, 2013.

http://portal.tpu.ru/SHARED/e/EAK/Education/Tab4/Het_posobie.pdf

3. Юровская, М.А. Химия ароматических гетероциклических соединений [Электронный ресурс] / М.А. Юровская. - М.: БИНОМ, 2015. - (Учебник для высшей школы).

http://www.studentlibrary.ru/book/ISBN9785996327836.html

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендации по планированию и организации времени, отведенного на изучение дисциплины

Время, отведённое на самостоятельную работу, должно быть использовано обучающимся планомерно в течение семестра.

Планирование — важнейшая черта человеческой деятельности. Для организации учебной деятельности эффективным вариантом является использование средств, напоминающих о стоящих перед вами задачах, и их последовательности выполнения. В роли таких средств могут быть ІТтехнологии (смартфоны, планшеты, компьютеры и т.п.), имеющие приложения/программы по организации распорядка дня/месяца/года и сигнализирующих о важных событиях, например, о выполнении заданий по дисциплине «Химия гетероциклических соединений».

Регулярность – первое условие поисков более эффективных способов работы. Рекомендуется выбрать день/дни недели для регулярной подготовки по дисциплине «Химия гетероциклических соединений», это позволит морально настроиться на выполнение поставленных задач, подготовиться к ним и выработать правила выполнения для них, например, сначала проработка материала лекций, чтение первоисточников, затем выделение и фиксирование основных идей. Рекомендуемое среднее время два часа на одно занятие.

Описание последовательности действий, обучающихся при изучении дисциплины

В соответствии с целями и задачами дисциплины студент изучает на занятиях и дома разделы лекционного курса, готовится к практическим занятиям, проходит контрольные точки текущей аттестации, включающие разные формы проверки усвоения материала (собеседование, тестирование и др.).

Освоение дисциплины включает несколько составных элементов учебной деятельности:

1. Внимательное чтение рабочей программы учебной дисциплины (помогает целостно увидеть структуру изучаемых вопросов). В ней содержится перечень контрольных испытаний для всех разделов и тем, включая экзамен; указаны сроки сдачи заданий, предусмотренных учебной программой курса дисциплины «Химия гетероциклических соединений».

- 2. Неотъемлемой составной частью освоения курса является посещение лекций и их конспектирование. Глубокому освоению лекционного материала способствует предварительная подготовка, включающая чтение предыдущей лекции, работу с учебниками.
- 3. Регулярная подготовка к практическим занятиям и активная работа на них, включающая:
 - повторение материала лекции по теме;
- знакомство с планом занятия и списком основной и дополнительной литературы, с рекомендациями по подготовке к занятию;
- изучение научных сведений по данной теме в разных учебных пособиях;
 - чтение первоисточников и предлагаемой дополнительной литературы;
- посещение консультаций с целью выяснения возникших сложных вопросов при подготовке к практическим занятиям.
- 4. Подготовка к экзамену (в течение семестра), повторение материала всего курса дисциплины.

Рекомендации по работе с литературой

Изучение дисциплины следует начинать с проработки тематического плана лекций, уделяя особое внимание структуре и содержанию темы и основных понятий. Изучение «сложных» тем следует начинать с составления логической схемы основных понятий, категорий, связей между ними. Целесообразно прибегнуть к классификации материала, в частности при изучении тем, в которых присутствует большое количество незнакомых понятий, категорий, теорий, концепций, либо насыщенных информацией типологического характера.

При работе с литературой обязательно выписывать все выходные данные по каждому источнику. Можно выписывать кратко основные идеи автора и иногда приводить наиболее яркие и показательные цитаты (с указанием страниц). Ищите аргументы «за» или «против» идеи автора.

Чтение научного текста является частью познавательной деятельности. Ее цель – извлечение из текста необходимой информации. От того на сколько осознанна читающим собственная внутренняя установка (найти нужные сведения, усвоить информацию полностью или частично, критически проанализировать материал и т.п.) во многом зависит эффективность осуществляемого действия.

Используйте основные установки при чтении научного текста:

1. информационно-поисковая (задача — найти, выделить искомую информацию);

- 2. усваивающая (усилия читателя направлены на то, чтобы как можно полнее осознать и запомнить как сами сведения излагаемые автором, так и всю логику его рассуждений);
- 3. аналитико-критическая (читатель стремится критически осмыслить материал, проанализировав его, определив свое отношение к нему);
- 4. творческая (создает у читателя готовность в том или ином виде как отправной пункт для своих рассуждений, как образ для действия по аналогии и т.п. использовать суждения автора, ход его мыслей, результат наблюдения, разработанную методику, дополнить их, подвергнуть новой проверке).

Для работы с научными текстами применяйте следующие виды чтения:

- 1. библиографическое просматривание карточек каталога, рекомендательных списков, сводных списков журналов и статей за год и т.п.;
- 2. просмотровое используется для поиска материалов, содержащих нужную информацию, обычно к нему прибегают сразу после работы со списками литературы и каталогами, в результате такого просмотра читатель устанавливает, какие из источников будут использованы в дальнейшей работе;
- 3. ознакомительное подразумевает сплошное, достаточно подробное прочтение отобранных статей, глав, отдельных страниц, цель познакомиться с характером информации, узнать, какие вопросы вынесены автором на рассмотрение, провести сортировку материала;
- 4. изучающее предполагает доскональное освоение материала; в ходе такого чтения проявляется доверие читателя к автору, готовность принять изложенную информацию, реализуется установка на предельно полное понимание материала;
- 5. аналитико-критическое и творческое чтение два вида чтения близкие между собой тем, что участвуют в решении исследовательских задач. Первый из них предполагает направленный критический анализ, как самой информации, так и способов ее получения и подачи автором; второе поиск тех суждений, фактов, по которым или в связи с которыми, читатель считает нужным высказать собственные мысли.

Основным для студента является изучающее чтение — именно оно позволяет в работе с учебной литературой накапливать знания в профессиональной области.

При работе с литературой можно использовать основные виды систематизированной записи прочитанного:

- 1. Аннотирование предельно краткое связное описание просмотренной или прочитанной книги (статьи), ее содержания, источников, характера и назначения.
- 2. Планирование краткая логическая организация текста, раскрывающая содержание и структуру изучаемого материала.
- 3. Тезирование лаконичное воспроизведение основных утверждений автора без привлечения фактического материала.
- 4. Цитирование дословное выписывание из текста выдержек, извлечений, наиболее существенно отражающих ту или иную мысль автора.
- 5. Конспектирование краткое и последовательное изложение содержания прочитанного.

Подготовка к лабораторным работам

Подготовка к лабораторным работам оценивается в ходе устного опроса по пятибалльной системе.

Отчеты по лабораторным работам составляются студентами индивидуально и защищаются устно, оцениваются по пятибалльной системе.

Отчеты по лабораторным работам представляются в электронной форме, подготовленные как текстовые документы в редакторе MSWord.

Отчет по работе должен быть обобщающим документом, включать всю информацию по выполнению заданий, в том числе, уравнения реакций, таблицы, методику проведения лабораторных опытов, список литературы, расчеты и т. д.

Структурно отчет по лабораторной работе, как текстовый документ, комплектуется по следующей схеме:

Титульный лист — обязательная компонента отчета, первая страница отчета, по принятой для лабораторных работ форме (титульный лист отчета должен размещаться в общем файле, где представлен текст отчета).

Исходные данные к выполнению заданий – обязательная компонента отчета, с новой страницы, содержат указание варианта, темы и т.д.).

Основная часть — материалы выполнения заданий, разбивается по рубрикам, соответствующих заданиям работы, с иерархической структурой: пункты — подпункты и т. д.

Рекомендуется в основной части отчета заголовки рубрик (подрубрик) давать исходя из формулировок заданий, в форме отглагольных существительных.

Выводы – обязательная компонента отчета, содержит обобщающие выводы по работе (какие задачи решены, оценка результатов, что освоено при выполнении работы).

Список литературы — обязательная компонента отчета, с новой страницы, содержит список источников, использованных при выполнении работы, включая электронные источники (список нумерованный, в соответствии с правилами описания библиографии).

Оформление плана-конспекта занятия и отчета по лабораторной работе. План-конспект занятия и отчет по лабораторной работе относится к категории «письменная работа», оформляется по правилам оформления письменных работ студентами ДВФУ.

Необходимо обратить внимание на следующие аспекты в оформлении отчетов работ:

- набор текста;
- структурирование работы;
- оформление заголовков всех видов (рубрик-подрубрик-пунктов-подпунктов, рисунков, таблиц, приложений);
 - оформление перечислений (списков с нумерацией или маркировкой);
 - оформление таблиц;
 - оформление иллюстраций (графики, рисунки, фотографии, схемы);
 - набор и оформление математических выражений (формул);
- оформление списков литературы (библиографических описаний) и ссылок на источники, цитирования.

Набор текста осуществляется на компьютере, в соответствии со следующими требованиями:

- печать на одной стороне листа белой бумаги формата A4 (размер 210 на 297 мм.);
 - интервал межстрочный полуторный;
 - шрифт Times New Roman;
- размер шрифта 14 пт., в том числе в заголовках (в таблицах допускается 10-12 пт.);
 - выравнивание текста «по ширине»;
 - поля страницы левое 25-30 мм., правое 10 мм., верхнее и нижнее 20 мм.;
- нумерация страниц в правом нижнем углу страницы (для страниц с книжной ориентацией), сквозная, от титульного листа до последней страницы, арабскими цифрами (первой страницей считается титульный лист, на котором номер не ставиться, на следующей странице проставляется цифра «2» и т. д.).
- режим автоматического переноса слов, за исключением титульного листа и заголовков всех уровней (перенос слов для отдельного абзаца

блокируется средствами MSWord с помощью команды «Формат» – абзац при выборе опции «запретить автоматический перенос слов»).

Если рисунок или таблица размещены на листе формата больше A4, их следует учитывать как одну страницу. Номер страницы в этих случаях допускается не проставлять.

Список литературы и все приложения включаются в общую в сквозную нумерацию страниц работы.

Подготовка к самостоятельной работе

При подготовке к самостоятельной работе рекомендуется пользоваться материалами лекций, рекомендованной литературой и ресурсами интернет. Вопросы, которые вызывают затруднение при подготовке, должны быть заранее сформулированы и озвучены во время занятий в аудитории для дополнительного разъяснения преподавателем. При ответах на вопросы самостоятельной работы надо логически грамотно выражать и обосновывать свою точку зрения, свободно оперировать понятиями и категориями.

Подготовка к экзамену

В процессе подготовки к экзамену следует ликвидировать имеющиеся пробелы в знаниях, углубить, систематизировать и упорядочить знания. Особое внимание следует уделить организации подготовки к экзамену. Для этого важны следующие моменты - соблюдение режима дня: сон не менее 8 часов в сутки; занятия заканчивать не позднее, чем за 2-3 часа до сна; прогулки на свежем воздухе, неутомительные занятия спортом во время перерывов между занятиями. Наличие полных собственных конспектов лекций является необходимым условием успешной сдачи экзамена. Если пропущена какая- либо лекция, необходимо ее восстановить, обдумать, устранить возникшие вопросы, чтобы запоминание материала было осознанным. Следует помнить, что при подготовке к экзамену вначале надо просмотреть материал по всем вопросам сдаваемой дисциплины, далее отметить для себя наиболее трудные вопросы и обязательно в них разобраться. В заключение еще раз целесообразно повторить основные положения.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для осуществления образовательного процесса по дисциплине «Химия гетероциклических соединений» используется необходимое лабораторное оборудование, а также компьютеры и мультимедийные проекторы.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК ДВФУ

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Химия гетероциклических соединений» Направление 04.04.01 - Химия Фундаментальные химические исследования веществ и процессов Форма подготовки - очная

Владивосток 2018

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1.	1-12 нед.	Выполнение домашних заданий № 1-27 (1 модуль)	76 час	Опрос перед началом занятия; проверка домашних заданий
2.	13-18 нед.	Выполнение домашних заданий № 28-43 (2 модуль)	38 час	Опрос перед началом занятия; проверка домашних заданий
3.	Э	Подготовка к экзамену	36 час	Экзамен

Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению.

Задания для самостоятельной работы студентов представляют собой вопросы и задачи по основным разделам ХГС. Целью указанных заданий является систематизация и обобщение теоретических знаний по каждому модулю дисциплины.

Методические рекомендации:

Рекомендуемое время, затрачиваемое на решение 1 задачи -2 часа (работа с лекционным материалом и литературой -1 час, обдумывание и изложение решения -1 час).

Для решения задач № 1-4 целесообразно обратиться к модулю 1, теме 1 лекционного курса.

Для решения задач № 5-8 целесообразно обратиться к модулю 1, теме 2 лекционного курса.

Для решения задач № 9-14 целесообразно обратиться к модулю 1, теме 2 лекционного курса.

Для решения задач № 15-19 целесообразно обратиться к модулю 1, теме 3 лекционного курса.

Для решения задач № 20-23 целесообразно обратиться к модулю 1, теме 4 лекционного курса.

Для решения задач № 24-26 целесообразно обратиться к модулю 1, теме 5 лекционного курса.

Для решения задач № 27-30 целесообразно обратиться к модулю 2, теме 1 лекционного курса.

Для решения задач № 31-38 целесообразно обратиться к модулю 2, теме 2 лекционного курса.

Для решения задач № 39-43 целесообразно обратиться к модулю 2, теме 3 лекционного курса.

Рекомендации по использованию литературы. Необходимая информация для решения задач содержится в учебнике «Химия гетероциклических соединений», автор Т.Джилкрист. – М.: Мир, 1996.- 464 с.

К задачам № 1,2 - глава 4, разделы 4.2 и 4.3.

К задачам № 3,5,6 - глава 6, раздел 6.1.

К задачам № 4,7,8, 26, 31-33, 38-39 - глава 6, раздел 6.2, 6.3, 6.4.

К задаче № 9 - глава 6, раздел 6.6.

К задаче № 10 - глава 6, раздел 6.6.

К задачам № 12-14, 37, 40 - глава 8, раздел 8.2, 8.3, 8.5.

К задачам № 15-18 - глава 5, раздел 5.2.

К задачам № 19-22 - глава 5, раздел 5.3, 5.5.

К задачам № 23-25, 29 - глава 7, раздел 7.3, 7.5.

К задачам № 27, 28, 35-36 - глава 5, раздел 5.2, 5.3.

К задачам № 41-43 - глава 5, раздел 5.2, 5.3.

Требования к представлению и оформлению результатов самостоятельной работы.

Все самостоятельные внеаудиторные работы представляются на бумажных носителях и сохраняются в рабочей папке студента. После выполнения работы производится ее защита студентом.

Критерии оценки выполнения самостоятельной работы.

- 1) уровень освоения студентом учебного материала;
- 2) умение использовать теоретические знания при выполнении конкретной практической задачи;
- 3) обоснованность и четкость изложения ответа;
- 4) оформление материала в соответствии с требованиями;
- 5) уровень самостоятельности студента при выполнении СР.

Задания для самостоятельной работы

1. Перечислите структурные блоки и реагенты, наиболее часто используемые в синтезе гетероциклов.

- 2. В чем основное отличие реакций замыкания цикла от циклоприсоединения?
- 3. Какие структурные фрагменты обусловливают принадлежность той или иной гетероциклической системы к π -избыточной или π -дефицитной ?
- 4. Сравните реакционную способность и ароматичность пиррола, фурана, тиофена. Какие факторы здесь нужно учитывать?
- 5. Чем обусловлена ацидофобность пятичленных ароматических гетероциклов с одним гетероатомом?
- 6. Почему производные фурана легко вступают в реакцию Дильса-Альдера, а производные пиррола – нет ?
- 7. Сравните реакционную способность и ацидофобность пиррола и индола.
- 8. Объясните различную регионаправленность электрофильного замещения в пирроле и в индоле.
- 9. Сравните химические свойства бензофурана и бензотиофена. Чем обусловлено существенное различие в поведении гетероциклического ядра данных систем в некоторых реакциях?
- 10. Обозначьте основные подходы к построению системы индолизина.
- 11. Чем обусловлена малая устойчивость и высокая реакционная способность незамещенных по положениям 1 и 3 изоиндолов?
- 12. Сравните реакционную способность бензола, пиррола и пиразола. Чем обусловлена π-амфотерность пиразола ?
- 13. Синтез какой гетероциклической системы можно осуществить реакцией Дильса-Альдера с участием производных оксазола? Приведите пример.
- 14. Приведите пример реакции рециклизации в ряду пятичленных гетероциклов с двумя гетероатомами.
- 15. Какие положения пиридинового ядра предпочтительно атакует электрофильная и нуклеофильная частицы?
- 16. Сравните скорость нуклеофильного замещения в 2-, 3- и 4-хлорпиридинах.

- 17. Напишите реакции N-оксида пиридина: а) нитрования; б) с реактивом Гриньяра.
- 18. Какие соединения более активно взаимодействуют с нуклеофилами пиридины или пиридиниевые соли?
- 19. Напишите два примера реакции рециклизации пирилиевой соли.
- 20. Объясните предпочтительность электрофильной атаки в изохинолине по положениям 5 и 8.
- 21. Приведите механизмы аномального нитрования и галогенирования хинолина в гетероциклическое ядро.
- 22. Какое ядро в молекуле хинолина легче окисляется бензольное или гетероциклическое и почему?
- 23. Сравните реакционную способность пиридина и пиримидина в реакциях с нуклеофилами.
- 24. Обозначьте основные подходы к синтезу пуриновой системы.
- 25. Объясните различную регионаправленность окисления аденина и гуанина надкислотами.
- 26. Напишите механизм нитрования 2-метилпиррола ацетилнитратом.
- 27. Напишите механизм нитрования 3,5-диэтилхинолина азотной кислотой.
- 28. Напишите реакции 2-этилпиридина:
- 1) с бензальдегидом; 2) с метилиодидом;
- 3) с амидом калия; 4) с КМпО₄ в кислой среде; 5) С натрием в этаноле.
- 29. Напишите уравнение и механизм реакции бензопиразина с амидом натрия.
- 30. Получите антибактериальный препарат фурацилин (семикарбазон 5нитрофурфурола), исходя из ксилозы и семикарбазида H₂N-CO-NH-NH₂.
- 31. Получите 5-бром-3-метилиндол из индола.
- 32. Получите 4-бром-2-метилтиофен из тиофена.
- 33. Получите 2,4-диметилпиррол из ацетоуксусного эфира.

- 34.Предложите синтез гидрохлорида 2-бензилбензимидазола (лекарственного препарата дибазола) из орто-нитроанилина и толуола.
- 35. Получите алкалоид кониин (2-пропилпиперидин) из α-пиколина
- 36. Получите хинолин-6-карбоновую кислоту из толуола и глицерина
- 37. Получите антипирин (противовоспалительный препарат) из доступных реагентов.

38. EtMgBr A EtBr B Na C MeI D CH₂=O
$$CH_2=O$$
 $CH_2=O$ $CH_2=O$

39.

40.
$$CH_3COCH_2NH_2 \xrightarrow{CH_3COCl} A \xrightarrow{H_2SO_4} B \xrightarrow{HNO_3} C$$

$$\begin{array}{cccc}
& 1. \text{ NaNO}_{2} \text{ FICT} \\
& 2. \text{ H}_{2}\text{O}
\end{array}$$

$$\begin{array}{ccccc}
& \text{NaCH(COOEt)}_{2} & \text{PCl}_{5} \\
& & \text{F} & \text{PCl}_{5}
\end{array}$$

42.
$$G \stackrel{\text{Nach}(COOEl)_2}{\longleftarrow} F \stackrel{\text{PCl}_5}{\longleftarrow} E$$

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК ДВФУ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Химия гетероциклических соединений» Направление 04.04.01 - Химия Фундаментальные химические исследования веществ и процессов Форма подготовки - очная

Владивосток 2018

Паспорт

фонда оценочных средств

по дисциплине «Химия гетероциклических соединений»

Код и формулировка компетенции		Этапы формирования компетенции
способность проводить научные исследования по сформули-	Знает	 Взаимосвязь между особенностями строения молекул гетероциклических соединений и их свойствами.
рованной тематике, самостоятельно сос-	Умеет	 В новой ситуации использовать знания по химии гетероциклических соединений.
самостоятельно составлять план исследования и получать новые научные и прикладные результаты (ПК-1).	Владеет	• Пространственным мышлением, умением спланировать синтез заданной гетероциклической системы.
	Знает	• Номенклатуру гетероциклических соединений.
владение теорией и навыками практической работы в избранной области химии (ПК-2).	Умеет	 Представить механизмы основных типов синтетических реакций, приводящих к гетероциклам. Предсказать результат конкретной реакции с участием гетероциклических соединений.
	Владеет	 Умением проводить ретросинтетический анализ гетероциклических систем. На основе теоретических представлений объяснять экспериментальные результаты.
готовность исполь-	Знает	 Закономерности протекания реакций с участием гетероциклических соединений.
зовать современную аппаратуру при про-	Умеет	 Составлять план исследования в области химии гетероциклических соединений.
ведении научных исследований (ПК-3).	Владеет	 Методами экспериментального и теоретического изучения химии гетероциклов.
владение навыками	Знает	• Теоретические и практические основы ХГС.
интерпретации физико- результатов физико- химических методов исследования веще- ства (ПК-5).	Умеет	 Применять на практике теоретические знания по химии гетероциклических соединений.
	Владеет	 Физическими методами исследования гетероциклических соединений и их производных.

№	Контролируемые	Коды и этапы		Оценочн	ые средства
п/п	разделы / темы	формирования		текущий	промежуточная
	дисциплины	ко	мпетенций	контроль	аттестация
Тема 1. Введение в химию гетероциклов. Классификация провегособов синтеза различных типов гетероциклов. научествероциклов. вани сформиров ной мати само тель сост лять план иссл	Тема 1. Введение в химию гетероциклов. Классификация способов синтеза различных типов	а 1. Введение в ию гетероциклов. Способность проводить ичных типов роциклов. Способность проводить научные исследования по сформул	знает: Взаимосвязь между особенностями строения молекул гетероциклически х соединений и их свойствами.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3
	ирован- ной те- матике, самостоя тельно состав- лять план иссле- дования	умеет: В новой ситуации использовать знания по химии гетероциклически х соединений.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3	
	и получать новые научные и прикладные результаты	научные и при- кладные резуль- таты владеет. Пространствен- ным мышлением, умением спланировать синтез заданной гетероцикличес- кой системы.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3	
		ПК-2 владение теорией и навы- ками практи- ческой работы в избран- ной об-	знает: Номенклатуру гетероциклически х соединений.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1-3
		нои оо- ласти химии	умеет: Представить механизмы основных типов синтетических реакций, приводящих к гетероциклам. Предсказать результат конкретной реакции с	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3

	участием гетероциклических соединений. Владеет: Умением проводить ретросинтетический анализ гетероциклических систем. На основе теоретических представлений объяснять экспериментальные результаты.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3
ПК-3 готов- ность исполь- зовать совреме нную аппара- туру при проведе- нии	знает: Закономерности протекания реакций с участием гетероциклически х соединений.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3
научных исследований	умеет: Составлять план исследования в области химии гетероцикличес- ких соединений.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3
	владеет: Методами экспериментального и теоретического изучения химии гетероциклов.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3
ПК-5 владение навыка- ми ин- терпрета ции результа тов физико- химичес	знает: Теоретические и практические основы ХГС.	Проверка готовности к лабораторной работе № 1 (ПР-6); Групповой разбор задач (УО-4)	Вопросы к экзамену № 1- 3

		ких	VIMOOTE:	Пророжие	Ропрости
		методов	умеет: Применять на	Проверка	Вопросы к
		исследо-	практике	готовности к	экзамену № 1-
		вания	теоретические	лабораторной	3
		веще-	знания по химии	работе № 1	
			гетероцикличес-	(ΠP-6);	
			ких соединений.	Групповой	
				разбор задач	
				(YO-4)	
			владеет:	Проверка	Вопросы к
			Физическими	готовности к	экзамену № 1-3
			методами иссле-	лабораторной	
			дования гетеро- циклических	работе № 1	
			соединений и их	(ΠP-6);	
			производных.	Групповой	
				разбор задач	
				(УО-4)	
2	Тема 2. Пятичленные	ПК-1,	Компетенции	Проверка	Вопросы к
	ароматические	ПК-1, ПК-2,		1 1	-
	гетероциклы с одним		те же	готовности к	экзамену № 4-
	гетероатомом	ПК-3,		лабораторной	6
	(пиррол, фуран,	ПК-5		работе № 2	
	тиофен).			(ΠP-6);	
				Групповой	
				разбор задач	
				(УО-4)	
3	Тема 3.	ПК-1,	Компетенции	Проверка	Вопросы к
	Конденсированные пятичленные	ПК-2,	те же	готовности к	экзамену № 7-
	гетероциклы с одним	ПК-3,		лабораторной	9
	гетероатомом	ПК-5		работе № 3	
	(индол).			(ΠP-6);	
				Групповой	
				разбор задач	
				(YO-4)	
4	Тема 4.	ПК-1,	Компетенции	Проверка	Вопрос к
	Конденсированные	ПК-2,	те же	готовности к	экзамену № 10
	пятичленные	ПК-3,		лабораторной	
	гетероциклы с одним	ПК-5,		работе № 4	
	гетероатомом			работе <u>де</u> 4 (ПР-6);	
	(продолжение).			(11г-о), Групповой	
				1.0	
				разбор задач	
	т сп	THE 1	TC.	(YO-4)	D
5	Тема 5. Пятичленные	ПК-1,	Компетенции	Проверка	Вопрос к
	ароматические	ПК-2,	те же	готовности к	экзамену № 11
	гетероциклы с двумя	ПК-3,		лабораторной	
	гетероатомами.	ПК-5		работе № 4	
				(IIP-6);	

				Групповой разбор задач (УО-4)	
6	Модуль 2. Тема 1. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридин, соли пирилия).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Проверка готовности к лабораторной работе № 5 (ПР-6); Групповой разбор задач (УО-4)	Вопрос к экзамену № 12
7	Тема 2. Конденсированные шестичленные гетероциклы с одним гетероатомом (хинолин и изохинолин).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопрос к экзамену № 13
8	Тема 3. Шестичленные ароматические гетероциклы с двумя гетероатомами (диазины).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопросы к экзамену № 14-15

Шкала оценивания уровня сформированности компетенций по дисциплине «Химия гетероциклических соединений»

Код и формули- ровка	Этапы формирования компетенции		критерии	показатели
способность проводить научные исследования по сформулированной тематике, самостоятельно составлять план исследования и получать новые	знает (порого- вый уровень)	Знает взаимосвязь между особен- ностями строения молекул гетероцикличес- ких соединений и их свойствами.	Знает закономерности, связывающие структуру гетероциклического соединения с особенностями его химических свойств.	Знает основные положения в области механизмов реакций гетероциклических соединений, связь структура-свойства.
научные и прикладные результаты (ПК-1).	икладные ультаты умеет	Умеет в новой ситуации использовать знания по химии гетероциклических соединений.	Умеет на основе теоретических представлений объяснять экспериментальные результаты.	Умеет ориентироваться в нестандартных задачах, охватывающих гетероциклические соединения.
	владеет (высокий уровень)	Владеет пространственным мышлением, умением спланировать синтез заданной гетероциклической системы.	Владеет навыками использования знаний химического поведения соединений для оптимизации проведения реакций.	Владеет навыками планирования и осуществления синтеза гетероциклических соединений.

владение теорией и навыками практичес-кой работы в избранной области химии (ПК-2).	знает (порого- вый уровень)	Знает номенклатуру гетероцикличес- ких соединений.	Знает номенклатуру основных типов гетероциклических соединений.	Знает номенклатуру моно- и полициклических гетероциклов.
	умеет (продвину -тый уровень)	Умеет представить механизмы основных типов синтетических реакций, приводящих к гетероциклам.	Умеет предсказать результат реакции гетероциклического соединения на основе механизма.	Умеет предсказать результат конкретной реакции с участием гетероциклических соединений.
	владеет (высокий уровень)	Владеет умением проводить ретро-синтетический анализ гетероциклических систем. На основе теоретических представлений объяснять экспериментальные результаты.	Владеет навыками использования знаний химического поведения соединений для оптимизации проведения реакций.	Владеет навыками использования знаний по получению и химическим свойствам ХГС для решения задач синтетического характера.
готовность исполь- зовать современ- ную аппара- туру при проведении научных исследова- ний (ПК-3).	знает (порого- вый уровень)	Знает закономерности протекания реакций с участием гетероциклическ их соединений.	Знает основы синтетического эксперимента на базе гетероциклических соединений.	Знание необходимого оборудования для решения задач прикладного характера.

	умеет (продвину -тый уровень)	Умеет составлять план исследования в области химии гетероциклическ их соединений.	Умеет выбирать необходимые экспериментальные условия на основе теоретических закономерностей протекания реакций.	Умеет выбирать оптимальное аппаратурное оформление синтеза.
	владеет (высокий уровень)	Владеет методами экспериментального и теоретического изучения химии гетероциклов.	Владеет навыками подбора оптимальных условий проведения реакций с учетом их механизма.	Владеет навыками определения корреляции между структурой вещества, особенностями экспериментальных условий и аппаратурой для синтеза.
владение навыками интерпре- тации результатов физико- химических методов исследова- ния веще- ства (ПК-5).	знает (порого- вый уровень)	Знает теоретические и практические основы ХГС.	Знает основные физико-химические методы определения строения органических соединений.	Знает основные виды спектроскопии, использующиеся для установления строения.
ства (тк-3).	умеет (продвину -тый уровень)	Умеет применять на практике теоретические знания по химии гетероциклических соединений.	Умеет применять на практике теоретические знания по спектроскопии.	Умеет интерпретировать несложные спектры гетероциклических соединений.
	владеет (высокий уровень)	Владеет физическими методами исследования гетероцикличе- ских соеди- нений и их производных.	Владеет современными инструментальными методами анализа органического вещества.	Владеет техникой интерпретации достаточно сложных спектров гетероциклических соединений.

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

І. Промежуточная аттестация магистрантов. Промежуточная аттестация магистрантов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Примерный перечень оценочных средств (ОС)

І. Устный опрос

1. Экзамен (средство промежуточного контроля) – Вопросы к экзамену.

К аттестации по дисциплине допускаются магистранты, выполнившие все практические работы и защитившие отчеты по ним.

Вопросы к экзамену.

- 1. Классификация способов синтеза различных типов гетероциклов.
- 2. Ретросинтетический анализ гетероциклических систем.
- 3. Номенклатура гетероциклических соединений.
- 4. Пятичленные ароматические гетероциклы с одним гетероатомом (пирролы).
- 5. Пятичленные ароматические гетероциклы с одним гетероатомом (фураны).
- 6. Пятичленные ароматические гетероциклы с одним гетероатомом (тиофены).
- 7. Конденсированные пятичленные ароматические гетероциклы с одним гетероатомом (индолы).
- 8. Конденсированные пятичленные ароматические гетероциклы с одним гетероатомом (бензофураны, бензотиофены, изоиндолы, индолизины).
- 9. Пятичленные ароматические гетероциклы с двумя гетероатомами (пиразолы, имидазолы).
- 10. Пятичленные ароматические гетероциклы с двумя гетероатомами (оксазолы, изоксазолы, тиазолы, изотиазолы).

- 11. Пятичленные ароматические гетероциклы с двумя гетероатомами (бензоконденсированные аналоги).
- 12. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридины, соли пирилия).
- 13. Шестичленные ароматические гетероциклы с одним гетероатомом (хинолины, изохинолины).
- 14. Шестичленные ароматические гетероциклы с двумя гетероатомами (диазины).
- 15. Шестичленные ароматические гетероциклы с двумя гетероатомами (бензоконденсированные аналоги).

Экзаменационные билеты

Билет № 1

- 1. Химия фурана и тиофена.
- 2. Получить 2,4-дифенилхинолин из доступных веществ.

3. PhCHO + 2 PhCOCH₃
$$\xrightarrow{OH^-}$$
 A $\xrightarrow{HClO_4}$ B $\xrightarrow{NH_3}$ C

Билет № 2

- 1. Химия пиррола.
- 2. Получить 1,2,5-трифенилимидазол удобным способом.

$$200 \text{ Ph-NH-N} \xrightarrow{\text{CH}_3} \xrightarrow{\text{H}^+} \text{A} \xrightarrow{\text{H}_2\text{O}} \text{B} \xrightarrow{\text{t}^0} \text{C} \xrightarrow{\text{CH}_2\text{O}, (\text{CH}_3)_2\text{NH}} \text{D}$$

Билет № 3

- 1. Химия индола.
- 2. Получить N-метилпиридон-2 из пиридина.

Билет № 4

1. Химия изоиндола и индолизина.

2. Получить

из доступных веществ.

Билет № 5

- 1. Химия бензофурана и бензотиофена.
- 2. Получить 4-нитро-2-хлорпиридин из пиридина.

3.
$$\frac{\text{KOH}}{\text{t}^0} \land A \xrightarrow{\text{PCl}_5} B \xrightarrow{\text{(CH}_3)_2\text{NH}} C \xrightarrow{\text{HCl}} D$$

Билет № 6

- 1. Химия пиразола.
- 2. Получить 2-метокси-3-нитрохинолин из хинолина.

Билет № 7

1. Химия имидазола.

2.
$$CH_2(COOEt)_2 + H_2N - C - NH_2 \xrightarrow{EtONa} A \xrightarrow{POCl_3} B \xrightarrow{NH_3} C$$

$$1 \xrightarrow{N} \xrightarrow{H_2O_2} A \xrightarrow{HNO_3} B \xrightarrow{PCl_3} C \xrightarrow{[H]} D \xrightarrow{HCl} E$$
3.

Билет № 8

- 1. Химия пиридина.
- 2. Получить 3-формилпиррол из пиррола.

Билет № 9

- 1. Химия хинолина.
- 2. Получить 2-метилиндол двумя способами.

3.
$$HC \equiv C - COOH + H_2N - \stackrel{O}{C} - NH_2 \xrightarrow{H^+} A \xrightarrow{POCl_3} B \xrightarrow{NH_3} C$$

Билет № 10

- 1. Химия изохинолина.
- 2. Получить 2,3-диметилхинолин из доступных веществ.

II. Текущая аттестация магистрантов. Текущая аттестация магистрантов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Примерный перечень оценочных средств (ОС)

І.Устный опрос

1. Групповой разбор задач (УО-4) (Групповая дискуссия – рассмотрение и анализ различных возможных путей решения поставленной задачи). - Вопросы и задачи, обсуждаемые на научных семинарах.

Задания к семинарам.

Семинар 1. Пятичленные ароматические гетероциклы с одним гетероатомом (пирролы, фураны, тиофены).

Задания к семинару 1:

- 1. Сравните реакционную способность и ароматичность пиррола, фурана, тиофена. Какие факторы здесь нужно учитывать?
- 2. Почему производные фурана легко вступают в реакцию Дильса-Альдера, а производные пиррола – нет ?
- 3. Приведите примеры реакций нуклеофильного замещения в ряду тиофена.
- 4. Чем обусловлена ацидофобность пятичленных ароматических гетероциклов с одним гетероатомом?
- 5. Какие приемы используются для изменения регионаправленности электрофильного замещения в пирроле?
- б. Предскажите направление электрофильной атаки: а) в 2-метилпирроле;б) в пиррол-2-карбальдегиде.
- 7. Получите 4-бром-2-метилтиофен из тиофена.

8. Buli A MeI B MeOOC COOMe COOMe CH₂/Ni D t EMgBr A EtBr B
$$\xrightarrow{Na}$$
 C \xrightarrow{MeI} D $\xrightarrow{CH_2=O}$ CH₂=O $\xrightarrow{CH_2=O}$ D $\xrightarrow{CH_3=O}$ D $\xrightarrow{CH_4=O}$ D $\xrightarrow{CH_4=O}$

Семинар 2. Конденсированные пятичленные гетероциклы с одним гетероатомом (индолы, бензофураны, бензотиофены, индолизины).

Задания к семинару 2:

- 1. Сравните реакционную способность и ацидофобность пиррола и индола.
- 2. Объясните различную регионаправленность электрофильного замещения в пирроле и в индоле.
- 3. Сравните химические свойства бензофурана и бензотиофена. Чем обусловлено существенное различие в поведении гетероциклического ядра данных систем в некоторых реакциях ?
- 4. Обозначьте основные подходы к построению системы индолизина.
- 5. Напишите реакции бензофурана и бензотиофена, которые: а) протекают сходно; б) протекают по-разному.
- 6. Получите 1-метил-2-фенилиндолизин из 2-этилпиридина.

Семинар 3. Пятичленные ароматические гетероциклы с двумя гетероатомами (азолы).

Задания к семинару 3:

- 1. Сравните реакционную способность бензола, пиррола и пиразола. Чем обусловлена π-амфотерность пиразола ?
- 2. Синтез какой гетероциклической системы можно осуществить реакцией Дильса-Альдера с участием производных оксазола ? Приведите пример.
- 3. Приведите пример реакции рециклизации в ряду пятичленных гетероциклов с двумя гетероатомами.
- 4. Предложите синтез гидрохлорида 2-бензилбензимидазола (лекарственного препарата дибазола) из орто-нитроанилина и толуола.

5. Получите антипирин (противовоспалительный препарат) из доступных реагентов.

Семинар 4. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридин).

Задания к семинару 4:

- 1. Какие положения пиридинового ядра предпочтительно атакует электрофильная и нуклеофильная частицы?
- 2. Сравните скорость нуклеофильного замещения в 2-, 3- и 4-хлорпиридинах.
- 3. Напишите реакции N-оксида пиридина: а) нитрования; б) с реактивом Гриньяра.
- 4. Какие соединения более активно взаимодействуют с нуклеофилами пиридины или пиридиниевые соли ? Почему ?
- 5. Напишите реакции 2-этилпиридина:
 - 1) с бензальдегидом; 2) с метилиодидом;
 - 3) с амидом калия; 4) с КМпО₄ в кислой среде; 5) С натрием в этаноле.
- 6. Получите алкалоид кониин (2-пропилпиперидин) из α-пиколина.

7.
$$\xrightarrow{\text{KOH}}$$
 A $\xrightarrow{\text{PCl}_5}$ B $\xrightarrow{\text{MeONa}}$ C $\xrightarrow{\text{Br}_2}$ D + E

Семинар 5. Конденсированные шестичленные гетероциклы с одним гетероатомом (хинолин и изохинолин). Шестичленные ароматические гетероциклы с двумя гетероатомами (азины).

Задания к семинару 5:

- 1. Объясните предпочтительность электрофильной атаки в изохинолине по положениям 5 и 8.
- 2. Приведите механизмы аномального нитрования и галогенирования хинолина в гетероциклическое ядро.
- 3. Сравните реакционную способность пиридина и пиримидина в реакциях с нуклеофилами.
- 4. Напишите уравнение и механизм реакции бензопиразина с амидом натрия.
- 5. Получите хинолин-6-карбоновую кислоту из толуола и глицерина.

PhCOOOH

A

$$\begin{array}{c}
HNO_3 \\
H_2SO_4
\end{array}$$

B

 $\begin{array}{c}
PCl_3 \\
C
\end{array}$

C

 $\begin{array}{c}
H_2/Ni \\
\downarrow
1. NaNO_2/HCl \\
\downarrow
2. H_2O
\end{array}$

G

 $\begin{array}{c}
NaCH(COOEt)_2 \\
G
\end{array}$

F

 $\begin{array}{c}
PCl_5 \\
E
\end{array}$

E

Семинар 6. Номенклатура гетероциклических соединений.

Задания к семинару 6:

- 1. Назовите следующие соединения, имеющие тривиальные названия, пользуясь правилами, принятыми для гетерополициклов:
- 1) индол; 2) акридин; 3) индазол; 4) фенантридин; 5) 4H-хромен; 6) циннолин; 7) пурин; 8) индолизин
- 2. Приведите примеры моноциклических систем с разным размером цикла, числом гетероатомов и степенью ненасыщенности и назовите их, используя номенклатуру Ганча-Видмана.
- 3. Приведите примеры конденсированных систем (не менее 10), содержащих различное число циклов и гетероатомов в циклах, и назовите их, пользуясь правилами, принятыми для гетерополициклов.

II. Письменные работы

1. Тестирование (ПР-1). Примеры тестовых заданий.

Тестовые задания

- 1. π -Амфотерным гетероциклом является
- 1) тиофен 2) имидазол 3) индол 4) пиридин
- 2. 1,3-Диполярное циклоприсоединение можно использовать для синтеза производных
- 1) пиразола 2) пиррола 3) хинолина 4) пиридина
- 3. Реакция Манниха не характерна для
- 1) тиофена 2) индола 3) пиррола 4) индолизина
- 4. Наиболее ацидофобен
- 1) тиофен 2) фуран 3) пиррол 4) индол
- 5. Можно использовать в реакции диенового синтеза производные
- 1) изоксазола 2) имидазола 3) оксазола 4) индола
- 6. Синтез Бишлера используют для синтеза производных
- 1) бензофурана 2) индола 3) индолизина 4) хинолина
- 7. Наиболее трудно реагирует с нуклеофилами
- 1) 2-хлорпиридин 2) 3-хлорпиридин 3) 4-хлорпиридин
- 8. Наиболее трудно идет электрофильное замещение в
- 1) пиридине 2) хинолине 3) индоле 4) пиримидине
- 9. При электрофильном замещении в тиофен-2-карбальдегиде электрофильная частица преимущественно атакует положение

- 1) 3 2) 4 3) 5
- 10. Для получения производных пиррола используют взаимодействие первичных аминов с дикарбонильными соединениями
- 1) 1,2- 2) 1,3- 3) 1,4- 4) 1,5-
- 11. Для получения производных пиридина используют взаимодействие аммиака с дикарбонильными соединениями
- 1) 1,2- 2) 1,3- 3) 1,4- 4) 1,5-
- 12. Для синтеза производного пиррола по Кнорру проводят взаимодействие 2-аминопентанона-3 с гептандионом
- 1) 2,3- 2) 2,4- 3) 2,5- 4) 2,6-
- 13. Для синтеза производных бензимидазола о-фенилендиамин вводят в реакцию
- 1) со спиртами 2) с альдегидами 3) с простыми эфирами 4) с нитросоединениями
- 14. Фурфурол образуется при нагревании с водными растворами минеральных кислот
- 1) альдопентоз 2) кетопентоз 3) альдогексоз 4) кетогексоз
- 15. Для получения 5-метокси-2-фенилиндола по Фишеру исходят из
- 1) фенилгидразона мета-метоксиацетофенона
- 2) фенилгидразона пара-метоксиацетофенона
- 3) мета-метоксифенилгидразона ацетофенона
- 1) пара-метоксифенилгидразона ацетофенона

- 16. При взаимодействии анилина с бутаналем по Дебнеру-Миллеру образуется
- 1) 3-пропил-2-этилхинолин
- 2) 2-пропил-3-этилхинолин
- 3) 2-пропил-4-этилхинолин
- 4) 4-пропил-2-этилхинолин
- 17. При взаимодействии бутаналя, циклогександиона-1,3 и аммиака образуется

- 18. 2-Фуриллитий образуется при действии на фуран
- 1) хлорида лития 2) гидроксида лития 3) бутилата лития 4) бутиллития
- 19. При действии бензоилхлорида на пиррил-калий преимущественно образуется
- 1) 1-бензоилпиррол 2) 2-бензоилпиррол 3) 3-бензоилпиррол 4) 2-хлорпиррол
- 20. Реакции электрофильного замещения в пиразоле идут
- 4) легче, чем в пирроле
- 5) труднее, чем в пирроле, но легче чем в бензоле
- б) труднее, чем в пирроле и бензоле, но легче, чем в пиридине
- 7) труднее, чем в пирроле, бензоле и пиридине
- 21. При взаимодействии 2-метилпиридина с азотной кислотой в жестких условиях преимущественно образуется

- 1) 2-метил-4-нитропиридин 2) 2-метил-5-нитропиридин
- 3) 2-метил-6-нитропиридин 4) 2-нитрометилпиридин
- 22. При взаимодействии 2-метилпиридина с амидом натрия образуется
- 1) 2-аминометилпиридин 2) 3-амино-2-метилпиридин
- 3) 5-амино-2-метилпиридин 4) 6-амино-2-метилпиридин
- 23. При взаимодействии 2,3-диметилпиридина с бензальдегидом образуется

24. Цианид-ион легко присоединяется к:

1)
$$\begin{array}{c} & & & & \\ & \downarrow & \\ +N & & \\ & \mid & Br \\ & & CH_3 \end{array}$$
 2) $\begin{array}{c} & & & \\ &$

25. В растворе 4-гидрокси-2-аминопиридина доминирует форма

- 26. При нитровании 5-метилхинолина преимущественно образуется
- 4) 5-метил-2-нитрохинолин
- 5) 5-метил-3-нитрохинолин
- 6) 5-метил-7-нитрохинолин
- 7) 5-метил-8-нитрохинолин
- 27. При действии бензилбромида на изохинолин образуется

28. При действии анилина на перхлорат 2,4,6-триметилпирилия образуется

29. При действии надуксусной кислоты на пиримидин образуется

HO N OH
$$\begin{pmatrix} 0 \\ + \\ 1 \end{pmatrix}$$
 $\begin{pmatrix} 0 \\ + \\ 1 \end{pmatrix}$ $\begin{pmatrix} 0$

- 30. При действии метилата натрия на 2,4-дихлорпиримидин образуется
- 1) 2-метокси-4-хлорпиримидин 2) 4-метокси-2-хлорпиримидин
- 3) 2,4-диметоксипиримидин 4) 6-метокси-2,4-дихлорпиримидин
- 2. Лабораторная работа (ПР-6). (Средство для закрепления и практического освоения материала). Комплект лабораторных заданий.

Пример лабораторной работы.

2,4,6-Трифенилпиридин

2,4,6-Трифенилпирилий перхлорат

Смешивают 4,7 мл (0,04 моль) свежеперегнанного ацетофенона, 2,1 мл (0,02 моль) свежеперегнанного бензальдегида и 4 мл 72 % хлорной кислоты. Смесь кипятят 2 ч с обратным холодильником. Смесь охлаждают, частично закристаллизовавшийся маслянистый слой несколько раз промывают водой методом декантации. Затем масло заливают 20 мл эфира и тщательно растирают. Ярко-желтый осадок отфильтровывают, промывают эфиром, сушат. Выход около 3 г (36 %).

2,4,6-Трифенилпиридин

В круглодонной колбе, снабженной обратным холодильником, кипятят смесь 0,25 г (0,0006 моль) 2,4,6-трифенилпирилий перхлората, 0,5 г (0,006 моль) ацетата аммония и 8 мл ледяной уксусной кислоты в течение 1 ч. По охлаждении смесь выливают в 100 мл воды, выпавший при стоянии 2,4,6трифенилпиридин через некоторое время отфильтровывают, несколько раз промывают водой и высушивают на воздухе. Если продукт не выпадает, %). поваренной Выход 0,16 Γ (90)добавляют раствор соли. Перекристаллизовывают из этанола. Получают белые кристаллы с т. пл. 138 °C.

Критерии оценки знаний, умений и навыков при текущей проверке.

I. Оценка устных ответов:

Отметка "Отлично"

Дан полный, правильный и самостоятельный ответ на основе изученного теоретического материала.

Отметка "Хорошо"

Дан достаточно полный ответ, однако допущены несущественные ошибки в изложении материала.

Отметка "Удовлетворительно"

Материал изложен неполно, при этом допущены 1-2 существенные ошибки.

Отметка "Неудовлетворительно"

Незнание и непонимание большей части учебного материала.

II. Оценка умения решать задачи:

Отметка "Отлично"

Решение рациональное, в объяснении нет ошибок.

Отметка "Хорошо"

Допущены 1-2 несущественные ошибки или неполное объяснение.

Отметка "Удовлетворительно"

Допущена существенная ошибка, записи хода решения неполные.

Отметка "Неудовлетворительно"

Решение неверно, содержит множество ошибок.

III. Оценка письменных работ:

Критерии те же.