

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Современные проблемы химии

Направление подготовки 04.03.01 Химия

профиль «Фундаментальная химия» Форма подготовки очная/ заочная

курс ____2 ___ семестр ____3 ____ лекции __36 ___ час. практические занятия ___18 ____ час. лабораторные работы _____ час. в том числе с использованием МАО лек. ____ /пр. ____ /лаб. ____ час. в том числе в электронной форме лек. ____ /пр. ____ /лаб. ____ час. в том числе в электронной форме лек. ____ /пр. ___ /лаб. ____ час. в том числе с использованием МАО _____ час. в том числе в электронной форме _____ час. самостоятельная работа _____ 54 ____ час. в том числе на подготовку к экзамену ___ 36 ___ час. курсовая работа / курсовой проект _____ семестр

_ семестр

экзамен 3 семестр

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта, утвержденного приказом Министерства науки и высшего образования РФ от 17 июля 2017г. №671.

Рабочая программа обсуждена на заседании кафедры Физической и аналитической химии ШЕН протокол № 9 от « 26» июня 2019 г.

ВРИО Заведующая кафедрой Физической и аналитической химии ШЕН, д.х.н., Соколова Л. И.

Составители: д.х.н., профессор Кондрикрв, к.х.н., доцент Капустина А.А.

Владивосток 2019

І. Рабочая программа перес	мотрена на заседани	и кафедры: Протокол от «»	
20 г. №			
Заведующий кафедрой	(полимск)	(И.О. Фамилия)	
	(подпись)	(II.O. Pullishin)	
П. Рабочая программа пере	смотрена на заседан	ии кафедры:	
Протокол от «»	20 г	. No	
Заведующий кафедрой			
	(подпись)	(И.О. Фамилия)	

1. Цели и задачи дисциплины:

Цель : познакомить студентов с современными проблемами химии, закономерностями развития химической науки.

Задачи:

- Познакомить с основными достижениями химии;
- Сформировать умение оценивать достижения химии и использовать их в профессиональной деятельности.

Планируемые результаты обучения по данной дисциплине (знания, умения, владения), соотнесенные с планируемыми результатами освоения образовательной программы, характеризуют этапы формирования следующих компетенций:

Наименование категории	Код и наименование	Код и наименование
(группы) универсальных	универсальной	индикатора достижения
компетенций	компетеннии выпускника	универсальной компетенции
Системное и критическое	УК-1 Способен	УК-1.1. Анализирует задачу,
мышление	осуществлять поиск,	выделяя ее базовые
	критический анализ и	составляющие, опираясь на
	синтез информации,	методологию химии;
	применять системный	УК-1.2 . Определяет,
	подход для решения	интерпретирует и ранжирует
	поставленных задач	информацию, требуемую для
		решения поставленной задачи
		с учетом исторического
		опыта;
		Olibira,
		УК-1.3. Осуществляет поиск
		информации для решения
		поставленной задачи по
		различным типам запросов в
		течение необходимого
		исторического отрезка
		времени;
		УК-1.4. При обработке
		УК-1.4 . При обработке информации отличает факты
		от мнений, интерпретаций,
		оценок, формирует
		собственные мнения и
		суждения, аргументирует
		, , ,
		свои выводы и точку зрения,
		в том числе с применением философского понятийного
		аппарата.
		annapara.
		УК-1.5. Рассматривает и
		предлагает возможные
		варианты решения
		поставленной задачи,
		оценивая их достоинства и
		недостатки с учетом
		накопленного в науке
		исторического опыта.

Общепрофессиональные компетенции и индикаторы их достижения:

Категория (группа) общепрофесс иональных компетенций	Код и наименование общепрофессионально й компетенции	Код и наименование индикатора достижения общепрофессиональной компетенции	
Представлени е результатов профессионал ьной деятельности	ОПК-6 Способен представлять результаты своей работы в устной и письменной форме в соответствии с нормами и правилами, принятыми в профессиональном сообществе	ОПК-6.1. Представляет результаты работы в виде отчета по стандартной форме на русском языке ОПК-6-2. Представляет информацию химического содержания с учетом требований библиографической культуры ОПК-6.3. Представляет результаты работы в виде тезисов доклада на русском и английском языке в соответствии с нормами и правилами, принятыми в химическом сообществе ОПК-6.4. Готовит презентацию по теме работы и представляет ее на русском и английском языках	

Профессиональные компетенции и индикаторы их достижения:

Задача ПД	Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции	Основание (ПС, анализ опыта)
Тип зада	ч профессиональной д	цеятельности: научно-исследовательский	Й
Осуществление вспомогательной научно- исследовательской деятельности по решению фундаментальных задач химической направленности; разработка веществ и материалов, создание новых видов химической продукции	ПК-1 Способен выбирать и использовать технические средства и методы испытаний для решения исследовательских задач химической направленности, поставленных специалистом более высокой квалификации	ПК-1-1. Планирует отдельные стадии исследования при наличии общего плана НИР НИР с учетом современных достижений науки ПК-1-2. Готовит элементы документации, проекты планов и программ отдельных этапов НИР НИР с учетом современных достижений науки ПК-1-3. Выбирает технические средства и методы испытаний (из набора имеющихся) для решения поставленных задач НИР с учетом исторического научного опыта и современных достижений науки. ПК-1-4. Готовит объекты исследования	Анализ опыта, ПС: 19.002 26.003 26.014 40.011 40.012 40.033 40.136

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

МОДУЛЬ 1. Современные достижения в области неорганической и элементоорганической химии (6 ч).

Тема 1. Синтез и исследование β-дикетонатов металлов (2 ч).

Синтез и исследование сульфенхлоридов β-дикетонатов металлов

Тема 2. Синтез полиметаллоорганосилоксанов (2 ч).

Синтез полиметаллоорганосилоксанов методом механохимической активации.

Тема 3. Синтез дендримеров (2 ч).

Синтез дендримеров на основе металлоорганических соединений.

МОДУЛЬ 2. Современные достижения в области органической и биоорганической химии (12 ч).

Раздел 1. Синтез и исследование веществ с новыми необычными свойствами (6 ч).

Тема 1. Синтез и исследование необычных органических молекул (2 ч).

Тройная связь в цикле, пропелланы, радиалены, Платоновы тела, катенаны, ротаксаны и узлы

Тема 2. Металлокомплексный катализ (2 часа).

Металлокомплексный катализ и его использование в органическом синтезе.

Тема 3. Стереоселективный синтез (2 ч).

Стереоселективный синтез: проблемы и достижения.

Раздел 2. Химия жизненных процессов (6 ч).

Тема 1. Многообразие и систематика живых систем (4 часа).

Классификация биомолекул. Нуклеиновые кислоты как носители биологической информации. Биологические мембраны.

Тема 2. Низкомолекулярные биорегуляторы (2 часа).

Определение низкомолекулярных биорегуляторов. Примеры соединений различных классов с различными функциями.

МОДУЛЬ 3. Современные достижения в области физической и аналитической химии - 18 часов.

Раздел 1. Катализ и каталитическая активность. Химия и энергетика (6 ч).

Тема 1. Катализ и каталитическая активность (2 ч).

Современные проблемы катализа. Катализ и нанокатализ. Роль металлокомплексного катализа в решении проблем реакционной способности.

Тема 2. Химия и энергетика (4 ч).

Современные мировые энергопотребления. тенденции роста Эксергетический метод оценки качества различных видов энергии и анализа термодинамической эффективности технологических процессов. Принципы прямого преобразования энергии химических реакций в электрическую энергию в химических источниках тока (ХИТ). Важнейшие характеристики ХИТ. ХИТ. Термодинамика Принципы использования химических энергоносителей в системах преобразования и аккумулирования ядерной, солнечной и других видов энергии. Взаимосвязь прогресса в химической энергетике с разработкой новых функциональных материалов.

Раздел 2. Химия явлений и процессов в экстремальных условиях (4 ч).

Тема 1. Теории цепных реакций (2 часа).

Цепные реакции. Теория горения газовых смесей.

Тема 2. Развитие представлений о процессах взрыва и взрывчатых веществах (2 ч).

Основные типы взрывчатых веществ. Химические реакции при взрыве.

Раздел 3. Последние достижения в области аналитической химии, химии явлений и жизненных процессов (6 ч)

Тема 1. Анализ стойких органических загрязнителей (СОЗ) (2 ч).

СОЗ в объектах окружающей среды. Применение методов хроматомасс-спектрометрии при анализе тетрахлордиоксинов, полихлорированных

Тема 2. Применение твердофазной экстракции (4 ч).

Применение твердофазной экстракции с использованием природных сорбентов (модифицированных природными и синтетическими реагентами). Концентрирование лекарственных препаратов из многокомпонентных матриц. Сенсоры в электроаналитической химии, как новый подход в анализе следовых количеств соединений биогенного и антропогенного происхождения.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА И САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Практические занятия (18час.)

Практическое занятие № 1. Современное состояние элементоорганической химии (4 часа)

Решение проблем в области синтеза элементоорганических соединений (ЭОС). Синтез и исследование β-дикетонатов металлов. Синтез и исследование сульфенхлоридов β-дикетонатов металлов. Синтез полиметаллоорганосилоксанов методом механохимической активации.

Практическое занятие № 2. Новые классы ЭОС (2 часа)

Синтез дендримеров на основе металлоорганических соединений. Свойства.

Практическое занятие № 3. Новые классы органических соединений (2 часа)

Синтез и исследование необычных органических молекул: тройная связь в цикле, пропелланы, радиалены. Платоновы тела, катенаны, ротаксаны и узлы.

Практическое занятие № 4. Развитие представлений об энергетике химических процессов (2 часа)

Эксергетический метод оценки качества различных видов энергии и анализа термодинамической эффективности технологических процессов. Принципы прямого преобразования энергии химических реакций в

электрическую энергию в химических источниках тока (ХИТ). Важнейшие характеристики ХИТ. Термодинамика ХИТ. Принципы использования химических энергоносителей в системах преобразования и аккумулирования ядерной, солнечной и др. видов энергии.

Практическое занятие № 5. Современные проблемы катализа (2 часа).

Катализ и нанокатализ. Роль металлокомплексного катализа в решении проблем реакционной способности. Металлокомплексный катализ и его использование в органическом синтезе. Стереоселективный синтез: проблемы и достижения.

Практическое занятие № 6. Химия явлений и процессов в экстремальных условиях (2 часа).

Теории цепных реакций. Теория горения газовых смесей. Развитие представлений о процессах взрыва и взрывчатых веществах.

Практическое занятие № 7. Современные методы химического анализа (2 часа).

Современные методы химического анализа и установления строения молекул. Анализ стойких органических загрязнителей. Применение твердофазной экстракции. Сенсоры в электроаналитической химии. Методология анализа лекарственных препаратов.

Практическое занятие № 8. Химия жизненных процессов(2 часа).

Многообразие и систематика живых систем. Классификация биомолекул. Нуклеиновые кислоты как носители биологической информации. Биологические мембраны. Низкомолекулярные биорегуляторы.

Время, отведённое на самостоятельную работу, должно быть использовано обучающимся планомерно в течение семестра.

Планирование — важнейшая черта человеческой деятельности. Для организации учебной деятельности эффективным вариантом является использование средств, напоминающих о стоящих перед вами задачах, и их последовательности выполнения. В роли таких средств могут быть ІТтехнологии (смартфоны, планшеты, компьютеры и т.п.), имеющие

приложения/программы по организации распорядка дня/месяца/года и сигнализирующих о важных событиях, например, о выполнении заданий по дисциплине «Современные проблемы химии».

Регулярность — первое условие поисков более эффективных способов работы. Рекомендуется выбрать день/дни недели для регулярной подготовки по дисциплине «Современные проблемы химии», это позволит морально настроиться на выполнение поставленных задач, подготовиться к ним и выработать правила выполнения для них, например, сначала проработка материала лекций, чтение первоисточников, затем выделение и фиксирование основных идей. Рекомендуемое среднее время два часа на одно занятие.

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Современные проблемы химии» включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1	1-ая, 3-ья, 5-ая недели	Подготовка к практическим занятиям1-2, усвоение теоретического материала	6 час	Собеседование УО-1

		модуля 1.		
2.	7-ая неделя	Подготовка к практическому занятию 3, усвоение теоретического материала модуля 1.	2 час	Собеседование УО-1
3.	9-ая, 11-ая, 13-ая недели	Подготовка к практическим занятиям 4-6, усвоение теоретического материала модуля 2.	6 час	Собеседование УО-1
4.	15-ая неделя	Подготовка к практическому занятию 7, усвоение теоретического материала модуля 2.	2 часа	Собеседование УО-1
5.	17-ая неделя	Подготовка к практическому занятию 8, усвоение теоретического материала модуля 3.	2 часа	Собеседование УО-1
6.	Экзаменационная сессия	Подготовка к экзамену	36 часов	Экзамен
	Итого:		54 часа	

Рекомендации по самостоятельной работе студентов Рекомендации по планированию и организации времени,

отведенного на изучение дисциплины

Время, отведённое на самостоятельную работу, должно быть использовано обучающимся планомерно в течение семестра.

Планирование — важнейшая черта человеческой деятельности. Для организации учебной деятельности эффективным вариантом является использование средств, напоминающих о стоящих перед вами задачах, и их последовательности выполнения. В роли таких средств могут быть ІТтехнологии (смартфоны, планшеты, компьютеры и т.п.), имеющие приложения/программы по организации распорядка дня/месяца/года и сигнализирующих о важных событиях, например, о выполнении заданий по дисциплине «Современные проблемы химии».

Регулярность – первое условие поисков более эффективных способов работы. Рекомендуется выбрать день/дни недели для регулярной подготовки по дисциплине «Современные проблемы химии», это позволит морально настроиться на выполнение поставленных задач, подготовиться к ним и выработать правила выполнения для них, например, сначала проработка материала лекций, чтение первоисточников, затем выделение и фиксирование основных идей. Рекомендуемое среднее время два часа на одно занятие.

Описание последовательности действий, обучающихся при изучении дисциплины

В соответствии с целями и задачами дисциплины студент изучает на занятиях и дома разделы лекционного курса, готовится к практическим занятиям, проходит контрольные точки текущей аттестации, включающие разные формы проверки усвоения материала (собеседование, тестирование и др.).

Освоение дисциплины включает несколько составных элементов учебной деятельности:

- 1. Внимательное чтение рабочей программы учебной дисциплины (помогает целостно увидеть структуру изучаемых вопросов). В ней содержится перечень контрольных испытаний для всех разделов и тем, включая экзамен; указаны сроки сдачи заданий, предусмотренных учебной программой курса дисциплины «Современные проблемы химии».
- 2. Неотъемлемой составной частью освоения курса является посещение лекций и их конспектирование. Глубокому освоению лекционного материала способствует предварительная подготовка, включающая чтение предыдущей лекции, работу с учебниками.

- 3. Регулярная подготовка к практическим занятиям и активная работа на них, включающая:
 - повторение материала лекции по теме;
- знакомство с планом занятия и списком основной и дополнительной литературы, с рекомендациями по подготовке к занятию;
- изучение научных сведений по данной теме в разных учебных пособиях;
 - чтение первоисточников и предлагаемой дополнительной литературы;
- посещение консультаций с целью выяснения возникших сложных вопросов при подготовке к практическим занятиям.
- 4. Подготовка к экзамену (в течение семестра), повторение материала всего курса дисциплины.

Рекомендации по работе с литературой

Изучение дисциплины следует начинать с проработки тематического плана лекций, уделяя особое внимание структуре и содержанию темы и основных понятий. Изучение «сложных» тем следует начинать с составления логической схемы основных понятий, категорий, связей между ними. Целесообразно прибегнуть к классификации материала, в частности при изучении тем, в которых присутствует большое количество незнакомых понятий, категорий, теорий, концепций, либо насыщенных информацией типологического характера.

При работе с литературой обязательно выписывать все выходные данные по каждому источнику. Можно выписывать кратко основные идеи автора и иногда приводить наиболее яркие и показательные цитаты (с указанием страниц). Ищите аргументы «за» или «против» идеи автора.

Чтение научного текста является частью познавательной деятельности. Ее цель – извлечение из текста необходимой информации. От того на сколько осознанна читающим собственная внутренняя установка (найти нужные сведения, усвоить информацию полностью или частично, критически проанализировать материал и т.п.) во многом зависит эффективность осуществляемого действия.

Изучая материал по учебной книге (учебнику, учебному пособию, монографии, хрестоматии и др.), следует переходить к следующему вопросу только после полного уяснения предыдущего, фиксируя выводы, в том числе те, которые в учебнике опущены или на лекции даны для самостоятельного вывода. Особое внимание следует обратить на определение основных понятий курса. Надо подробно разбирать примеры, которые поясняют определения, и приводить аналогичные примеры самостоятельно. Полезно составлять опорные конспекты. При изучении материала по учебной книге

полезно либо в тетради на специально отведенных полях, либо в документе, созданном на ноутбуке, планшете и др. информационном устройстве, дополнять конспект лекций. Там же следует отмечать вопросы, которые есть необходимость разобрать на консультации с преподавателем. Выводы, полученные в результате изучения учебной литературы, рекомендуется в конспекте выделять, чтобы при перечитывании материала они лучше запоминались.

Используйте основные установки при чтении научного текста:

- 1. информационно-поисковая (задача найти, выделить искомую информацию);
- 2. усваивающая (усилия читателя направлены на то, чтобы как можно полнее осознать и запомнить как сами сведения излагаемые автором, так и всю логику его рассуждений);
- 3. аналитико-критическая (читатель стремится критически осмыслить материал, проанализировав его, определив свое отношение к нему);
- 4. творческая (создает у читателя готовность в том или ином виде как отправной пункт для своих рассуждений, как образ для действия по аналогии и т.п. использовать суждения автора, ход его мыслей, результат наблюдения, разработанную методику, дополнить их, подвергнуть новой проверке).

Для работы с научными текстами применяйте следующие виды чтения:

- 1. библиографическое просматривание карточек каталога, рекомендательных списков, сводных списков журналов и статей за год и т.п.;
- 2. просмотровое используется для поиска материалов, содержащих нужную информацию, обычно к нему прибегают сразу после работы со списками литературы и каталогами, в результате такого просмотра читатель устанавливает, какие из источников будут использованы в дальнейшей работе;
- 3. ознакомительное подразумевает сплошное, достаточно подробное прочтение отобранных статей, глав, отдельных страниц, цель познакомиться с характером информации, узнать, какие вопросы вынесены автором на рассмотрение, провести сортировку материала;
- 4. изучающее предполагает доскональное освоение материала; в ходе такого чтения проявляется доверие читателя к автору, готовность принять изложенную информацию, реализуется установка на предельно полное понимание материала;
- 5. аналитико-критическое и творческое чтение два вида чтения близкие между собой тем, что участвуют в решении исследовательских задач. Первый из них предполагает направленный критический анализ, как

самой информации, так и способов ее получения и подачи автором; второе – поиск тех суждений, фактов, по которым или в связи с которыми, читатель считает нужным высказать собственные мысли.

Основным для студента является изучающее чтение — именно оно позволяет в работе с учебной литературой накапливать знания в профессиональной области.

При работе с литературой можно использовать основные виды систематизированной записи прочитанного:

- 1. Аннотирование предельно краткое связное описание просмотренной или прочитанной книги (статьи), ее содержания, источников, характера и назначения.
- 2.Планирование краткая логическая организация текста, раскрывающая содержание и структуру изучаемого материала.
- 3. Тезирование лаконичное воспроизведение основных утверждений автора без привлечения фактического материала.
- 4. Цитирование дословное выписывание из текста выдержек, извлечений, наиболее существенно отражающих ту или иную мысль автора.
- 5. Конспектирование краткое и последовательное изложение содержания прочитанного.

Подготовка к практическим занятиям

При подготовке к практическим занятиям рекомендуется пользоваться материалами лекций, рекомендованной литературой и ресурсами интернет. Вопросы, которые вызывают затруднение при подготовке, должны быть заранее сформулированы и озвучены во время занятий в аудитории для дополнительного разъяснения преподавателем. Ответы, выносимые на обсуждение, должны быть тщательно подготовлены и по ним составлена схема (план), которой студент пользуется на занятии. При ответе надо логически грамотно выражать и обосновывать свою точку зрения, свободно оперировать понятиями и категориями. При самостоятельном решении задач нужно обосновывать каждый этап решения, исходя из теоретических положений курса.

Задание на дом к практическим занятиям №№ 1-2

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем элементоорганической химии. Синтез и исследование строения и свойств ЭОС.

Задание на дом к практическому занятию № 3

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем органической химии. Тонкий органический синтез, строение, свойства и применение органических соединений.

Задание на дом к практическим занятиям №№ 4-6

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем физической химии. Энергетика химических процессов. Катализ.

Задание на дом к практическому занятию № 7

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем аналитической химии. Современные методы анализа различных объектов.

Задание на дом к практическому занятию № 8

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем биоорганической химии. Химия жизненных процессов.

Подготовка к экзамену

В процессе подготовки к экзамену, следует ликвидировать имеющиеся пробелы в знаниях, углубить, систематизировать и упорядочить знания. Особое внимание следует уделить организации подготовки к экзаменам. Для этого важны следующие моменты - соблюдение режима дня: сон не менее 8 часов в сутки; занятия заканчивать не позднее, чем за 2-3 часа до сна; прогулки на свежем воздухе, неутомительные занятия спортом во время перерывов между занятиями. Наличие полных собственных конспектов лекций является необходимым условием успешной сдачи экзамена. Если пропущена какая- либо лекция, необходимо ее восстановить, обдумать, устранить возникшие вопросы, чтобы запоминание материала было осознанным. Следует помнить, что при подготовке к экзаменам вначале надо просмотреть материал по всем вопросам сдаваемой дисциплины, далее отметить для себя наиболее трудные вопросы и обязательно в них разобраться. В заключение еще раз целесообразно повторить основные положения.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№	Контролируемые	Ко	ды и этапы	Оценочн	ые средства
п/п	разделы / темы	фор	омирования	текущий	промежуточная
	дисциплины	компетенций		контроль	аттестация
1	МОДУЛЬ 1.	УК-1,	знает	УО 1 Устный	Экзаменационн
	Современные	ОПК-6,		опрос	ые вопросы
	достижения в	ПК-1	умеет	ПР 1 Тесты	№№ 49-58
	области		владеет	УО 1 Устный	
	неорганической и			опрос; ПР 1	
	элементоорганичес			Тесты	
	кой химии•				
2	МОДУЛЬ 2.	УК-1,	знает	УО 1 Устный	Экзаменационн

	Современные	ОПК-6,		опрос	ые вопросы
	достижения в	ПК-1	умеет	ПР 1 Тесты	NºNº 17-32
	области		владеет	УО 1 Устный	
	органической и			опрос; ПР 1	
	биоорганической химии			Тесты	
	МОДУЛЬ 3.	УК-1,	знает	УО 1 Устный	Экзаменационн
	Современные	ОПК-6,		опрос	ые вопросы
2	достижения в	ПК-1	умеет	ПР 1 Тесты	№№ 1-16; 33-
3	области физической и		владеет	УО 1 Устный	48
	аналитической			опрос; ПР 1	
	химии			Тесты	

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в фонде оценочных средств.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Основная литература

- 1. Каминский, В. А. Органическая химия: учебник для академического бакалавриата по естественнонаучным направлениям: [в 2 ч.] ч. 2 / В. А. Каминский. 2-е изд., испр. и доп. М.: Юрайт, 2017. 314 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:836801&theme=FEFU
- 2. Каминский, В. А. Органическая химия: учебник для академического бакалавриата по естественнонаучным направлениям: [в 2 ч.] ч. 2 / В. А. Каминский. 2-е изд., испр. и доп. М.: Юрайт, 2019. 314 с. https://www.biblio-online.ru/book/organicheskaya-himiya-testovye-zadaniya-zadachi-voprosy-437747
- 3. Гусейханов, М.К. Современные проблемы естественных наук [Электронный ресурс] : учебное пособие / М.К. Гусейханов, У.Г. Магомедова, Ф.М. Гусейханова. Электрон. дан. Санкт-Петербург : Лань, 2018. 276 с. https://e.lanbook.com/reader/book/103902/#1
- 4. Борщевский, А.Я. Физическая химия. Том 2. Статистическая термодинамика: учебник / А.Я. Борщевский. М.: Инфра-М, 2017. 383 с. + Доп. материалы [Электронный ресурс; Режим доступа http://www.znanium.com]. (Высшее образование: Бакалавриат).

http://znanium.com/catalog/product/543170

5. Биоорганическая химия: учебник / И.В. Романовский, В.В. Болтромеюк, Л.Г. Гидранович и др. - М.: НИЦ ИНФРА-М, Нов. знание, 2015. - 504 с. http://znanium.com/catalog/product/502950

Дополнительная литература

(печатные и электронные издания)

- 1. Супрамолекулярная химия: в 2 т. т. 1 / Дж. В. Стид, Дж. Л. Этвуд; под ред. А. Ю. Цивадзе, В. В. Арсланова, А. Д. Гарновского; пер. с англ. И. Г. Варшавской, Б. И. Хорисова, О. В. Белуженко [и др.]. М.: Академкнига, 2007.- 479 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:266019&theme=FEFU
- 2. Отто, M. Современные методы аналитической химии: пер. с нем. в 2 т. : т. 2 / M. Отто. M.: Texносфера, 2004.- 281 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:7729&theme=FEFU

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. http://e.lanbook.com/
- 2. http://www.studentlibrary.ru/
- 3. http://znanium.com/
- 4. http://www.nelbook.ru/
- 5. https://www.biblio-online.ru/

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендации по планированию и организации времени, отведенного на изучение дисциплины

Время, отведённое на самостоятельную работу, должно быть использовано обучающимся планомерно в течение семестра.

Планирование — важнейшая черта человеческой деятельности. Для организации учебной деятельности эффективным вариантом является использование средств, напоминающих о стоящих перед вами задачах, и их последовательности выполнения. В роли таких средств могут быть ІТтехнологии (смартфоны, планшеты, компьютеры и т.п.), имеющие приложения/программы по организации распорядка дня/месяца/года и сигнализирующих о важных событиях, например, о выполнении заданий по дисциплине «Современные проблемы химии».

Регулярность – первое условие поисков более эффективных способов работы. Рекомендуется выбрать день/дни недели для регулярной подготовки по дисциплине «Современные проблемы химии», это позволит морально настроиться на выполнение поставленных задач, подготовиться к ним и выработать правила выполнения для них, например, сначала проработка материала лекций, чтение первоисточников, затем выделение и

фиксирование основных идей. Рекомендуемое среднее время два часа на одно занятие.

Описание последовательности действий, обучающихся при изучении дисциплины

В соответствии с целями и задачами дисциплины студент изучает на занятиях и дома разделы лекционного курса, готовится к практическим занятиям, проходит контрольные точки текущей аттестации, включающие разные формы проверки усвоения материала (собеседование, тестирование и др.).

Освоение дисциплины включает несколько составных элементов учебной деятельности:

- 1. Внимательное чтение рабочей программы учебной дисциплины (помогает целостно увидеть структуру изучаемых вопросов). В ней содержится перечень контрольных испытаний для всех разделов и тем, включая экзамен; указаны сроки сдачи заданий, предусмотренных учебной программой курса дисциплины «Современные проблемы химии».
- 2. Неотъемлемой составной частью освоения курса является посещение лекций и их конспектирование. Глубокому освоению лекционного материала способствует предварительная подготовка, включающая чтение предыдущей лекции, работу с учебниками.
- 3. Регулярная подготовка к практическим занятиям и активная работа на них, включающая:
 - повторение материала лекции по теме;
- знакомство с планом занятия и списком основной и дополнительной литературы, с рекомендациями по подготовке к занятию;
- изучение научных сведений по данной теме в разных учебных пособиях;
 - чтение первоисточников и предлагаемой дополнительной литературы;
- посещение консультаций с целью выяснения возникших сложных вопросов при подготовке к практическим занятиям.
- 4. Подготовка к экзамену (в течение семестра), повторение материала всего курса дисциплины.

Рекомендации по работе с литературой

Изучение дисциплины следует начинать с проработки тематического плана лекций, уделяя особое внимание структуре и содержанию темы и основных понятий. Изучение «сложных» тем следует начинать с составления логической схемы основных понятий, категорий, связей между ними. Целесообразно прибегнуть к классификации материала, в частности при

изучении тем, в которых присутствует большое количество незнакомых понятий, категорий, теорий, концепций, либо насыщенных информацией типологического характера.

При работе с литературой обязательно выписывать все выходные данные по каждому источнику. Можно выписывать кратко основные идеи автора и иногда приводить наиболее яркие и показательные цитаты (с указанием страниц). Ищите аргументы «за» или «против» идеи автора.

Чтение научного текста является частью познавательной деятельности. Ее цель – извлечение из текста необходимой информации. От того на сколько осознанна читающим собственная внутренняя установка (найти нужные сведения, усвоить информацию полностью или частично, критически проанализировать материал и т.п.) во многом зависит эффективность осуществляемого действия.

Изучая материал по учебной книге (учебнику, учебному пособию, монографии, хрестоматии и др.), следует переходить к следующему вопросу только после полного уяснения предыдущего, фиксируя выводы, в том числе те, которые в учебнике опущены или на лекции даны для самостоятельного вывода. Особое внимание следует обратить на определение основных понятий курса. Надо подробно разбирать примеры, которые поясняют определения, и приводить аналогичные примеры самостоятельно. Полезно составлять опорные конспекты. При изучении материала по учебной книге полезно либо в тетради на специально отведенных полях, либо в документе, созданном на ноутбуке, планшете и др. информационном устройстве, дополнять конспект лекций. Там же следует отмечать вопросы, которые есть необходимость разобрать на консультации с преподавателем. Выводы, полученные в результате изучения учебной литературы, рекомендуется в конспекте выделять, чтобы при перечитывании материала они лучше запоминались.

Используйте основные установки при чтении научного текста:

- 5. информационно-поисковая (задача найти, выделить искомую информацию);
- 6. усваивающая (усилия читателя направлены на то, чтобы как можно полнее осознать и запомнить как сами сведения излагаемые автором, так и всю логику его рассуждений);
- 7. аналитико-критическая (читатель стремится критически осмыслить материал, проанализировав его, определив свое отношение к нему);
- 8. творческая (создает у читателя готовность в том или ином виде как отправной пункт для своих рассуждений, как образ для действия по аналогии и т.п. использовать суждения автора, ход его мыслей, результат

наблюдения, разработанную методику, дополнить их, подвергнуть новой проверке).

Для работы с научными текстами применяйте следующие виды чтения:

- 1. библиографическое просматривание карточек каталога, рекомендательных списков, сводных списков журналов и статей за год и т.п.;
- 2. просмотровое используется для поиска материалов, содержащих нужную информацию, обычно к нему прибегают сразу после работы со списками литературы и каталогами, в результате такого просмотра читатель устанавливает, какие из источников будут использованы в дальнейшей работе;
- 3. ознакомительное подразумевает сплошное, достаточно подробное прочтение отобранных статей, глав, отдельных страниц, цель познакомиться с характером информации, узнать, какие вопросы вынесены автором на рассмотрение, провести сортировку материала;
- 4. изучающее предполагает доскональное освоение материала; в ходе такого чтения проявляется доверие читателя к автору, готовность принять изложенную информацию, реализуется установка на предельно полное понимание материала;
- 5. аналитико-критическое и творческое чтение два вида чтения близкие между собой тем, что участвуют в решении исследовательских задач. Первый из них предполагает направленный критический анализ, как самой информации, так и способов ее получения и подачи автором; второе поиск тех суждений, фактов, по которым или в связи с которыми, читатель считает нужным высказать собственные мысли.

Основным для студента является изучающее чтение — именно оно позволяет в работе с учебной литературой накапливать знания в профессиональной области.

При работе с литературой можно использовать основные виды систематизированной записи прочитанного:

- 6. Аннотирование предельно краткое связное описание просмотренной или прочитанной книги (статьи), ее содержания, источников, характера и назначения.
- 7.Планирование краткая логическая организация текста, раскрывающая содержание и структуру изучаемого материала.
- 8. Тезирование лаконичное воспроизведение основных утверждений автора без привлечения фактического материала.
- 9. Цитирование дословное выписывание из текста выдержек, извлечений, наиболее существенно отражающих ту или иную мысль автора.

10. Конспектирование — краткое и последовательное изложение содержания прочитанного.

Подготовка к практическим занятиям

При подготовке к практическим занятиям рекомендуется пользоваться материалами лекций, рекомендованной литературой и ресурсами интернет. Вопросы, которые вызывают затруднение при подготовке, должны быть заранее сформулированы и озвучены во время занятий в аудитории для дополнительного разъяснения преподавателем. Ответы, выносимые на обсуждение, должны быть тщательно подготовлены и по ним составлена схема (план), которой студент пользуется на занятии. При ответе надо логически грамотно выражать и обосновывать свою точку зрения, свободно оперировать понятиями и категориями. При самостоятельном решении задач нужно обосновывать каждый этап решения, исходя из теоретических положений курса.

Задание на дом к практическим занятиям №№ 1-2

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем элементоорганической химии. Синтез и исследование строения и свойств ЭОС.

Задание на дом к практическому занятию № 3

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем органической химии. Тонкий органический синтез, строение, свойства и применение органических соединений.

Задание на дом к практическим занятиям №№ 4-6

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем физической химии. Энергетика химических процессов. Катализ.

Задание на дом к практическому занятию № 7

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем аналитической химии. Современные методы анализа различных объектов.

Задание на дом к практическому занятию № 8

Просмотреть материал лекций, учебники, подготовиться к обсуждению проблем биоорганической химии. Химия жизненных процессов.

Подготовка к экзамену

В процессе подготовки к экзамену, следует ликвидировать имеющиеся пробелы в знаниях, углубить, систематизировать и упорядочить знания. Особое внимание следует уделить организации подготовки к экзаменам. Для этого важны следующие моменты - соблюдение режима дня: сон не менее 8 часов в сутки; занятия заканчивать не позднее, чем за 2-3 часа до сна; прогулки на свежем воздухе, неутомительные занятия спортом во время

перерывов между занятиями. Наличие полных собственных конспектов лекций является необходимым условием успешной сдачи экзамена. Если пропущена какая- либо лекция, необходимо ее восстановить, обдумать, устранить возникшие вопросы, чтобы запоминание материала было осознанным. Следует помнить, что при подготовке к экзаменам вначале надо просмотреть материал по всем вопросам сдаваемой дисциплины, далее отметить для себя наиболее трудные вопросы и обязательно в них разобраться. В заключение еще раз целесообразно повторить основные положения.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Лекционная аудитория (мультимедийный проектор, настенный экран, ноутбук). Наглядные пособия: периодическая система химических элементов Д.И. Менделеева.

VIII. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Паспорт ФОС

No	Контролируемые	Ко	ды и этапы	Оценочн	ые средства
п/п	разделы / темы	формирования		текущий	промежуточная
	дисциплины	ко	мпетенций	контроль	аттестация
1	МОДУЛЬ 1.	УК-1,	знает	УО 1 Устный	Экзаменационн
	Современные	ОПК-6,		опрос	ые вопросы
	достижения в	ПК-1	умеет	ПР 1 Тесты	№№ 49-58
	области		владеет	УО 1 Устный	
	неорганической и			опрос; ПР 1	
	элементоорганичес			Тесты	
	кой химии•				
	МОДУЛЬ 2.	УК-1,	знает	УО 1 Устный	Экзаменационн
	Современные	ОПК-6,		опрос	ые вопросы
	достижения в	ПК-1	умеет	ПР 1 Тесты	№№ 17-32
2	области		владеет	УО 1 Устный	
	органической и биоорганической			опрос; ПР 1	
	химии			Тесты	
	МОДУЛЬ 3.	УК-1,	знает	УО 1 Устный	Экзаменационн
	Современные	ОПК-6,		опрос	ые вопросы
	достижения в	ПК-1	умеет	ПР 1 Тесты	№№ 1-16; 33-
3	области		владеет	УО 1 Устный	48
	физической и аналитической			опрос; ПР 1	
	ХИМИИ			Тесты	

Шкала оценивания уровня сформированности компетенций Универсальные компетенции выпускников и индикаторы их

достижения

Наименование категории	Код и наименование	Код и наименование	
(группы) универсальных	универсальной	индикатора достижения	
компетенций	компетенции выпускника	универсальной компетенции	
Системное и критическое мышление	УК-1 Способен осуществлять поиск,	УК-1.1 . Анализирует задачу, выделяя ее базовые	
	критический анализ и синтез информации,	составляющие, опираясь на методологию химии;	
	применять системный подход для решения поставленных задач	УК-1.2 . Определяет, интерпретирует и ранжирует информацию, требуемую для решения поставленной задачи с учетом исторического опыта;	
		УК-1.3. Осуществляет поиск информации для решения поставленной задачи по различным типам запросов в течение необходимого исторического отрезка времени;	
		УК-1.4. При обработке информации отличает факты от мнений, интерпретаций, оценок, формирует собственные мнения и суждения, аргументирует свои выводы и точку зрения, в том числе с применением философского понятийного аппарата.	
		УК-1.5. Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки с учетом накопленного в науке исторического опыта.	

Общепрофессиональные компетенции и индикаторы их достижения:

Категория (группа) общепрофесс иональных компетенций	Код и наименование общепрофессионально й компетенции	Код и наименование индикатора достижения общепрофессиональной компетенции	
Представлени е результатов профессионал ьной деятельности	ОПК-6 Способен представлять результаты своей работы в устной и письменной форме в соответствии с нормами и правилами, принятыми в профессиональном сообществе	ОПК-6.1. Представляет результаты работы в виде отчета по стандартной форме на русском языке ОПК-6-2. Представляет информацию химического содержания с учетом требований библиографической культуры ОПК-6.3. Представляет результаты работы в виде тезисов доклада на русском и английском языке в соответствии с нормами и правилами, принятыми в химическом сообществе ОПК-6.4. Готовит презентацию по теме работы и представляет ее на русском и английском языках	

Профессиональные компетенции и индикаторы их достижения:

Задача ПД	Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции	Основание (ПС, анализ опыта)
Тип зада	ч профессиональной д	цеятельности: научно-исследовательский	Й
Осуществление вспомогательной научно- исследовательской деятельности по решению фундаментальных задач химической направленности; разработка веществ и материалов, создание новых видов химической продукции	ПК-1 Способен выбирать и использовать технические средства и методы испытаний для решения исследовательских задач химической направленности, поставленных специалистом более высокой квалификации	ПК-1-1. Планирует отдельные стадии исследования при наличии общего плана НИР НИР с учетом современных достижений науки ПК-1-2. Готовит элементы документации, проекты планов и программ отдельных этапов НИР НИР с учетом современных достижений науки ПК-1-3. Выбирает технические средства и методы испытаний (из набора имеющихся) для решения поставленных задач НИР с учетом исторического научного опыта и современных достижений науки. ПК-1-4. Готовит объекты исследования	Анализ опыта, ПС: 19.002 26.003 26.014 40.011 40.012 40.033 40.136

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

I. Промежуточная аттестация студентов.

Промежуточная аттестация студентов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

К аттестации по дисциплине допускаются студенты, выполнившие все практические работы и защитившие отчеты по ним.

Примерный перечень оценочных средств (ОС)

Устный опрос

1. Экзамен – Вопросы к экзамену, образцы билетов.

Оценочные средства для промежуточной аттестации Вопросы к экзамену

- 1. Анализ биологически активных соединений.
- 2. Проблемы пробоподготовки в современном анализе биообъектов.
- 3. Пути и способы решения проблем концентрирования следовых количеств определяемых элементов.
- 4. Твердофазная экстракция, ее применение в анализе органических и минеральных компонентов.
- 5. Химия окружающей среды, экологическая химия, аналитическая экологическая химия и химическая экология. Связь аналитической химии с экологическими проблемами.
- 6. Круговорот биогенных элементов. Антропогенный круговорот вещества. Ресурсный цикл. Экологические факторы среды. Химические экорегуляторы. Особенности природных сред как объектов анализа.
- 7. Пробоотбор, общие требования, способы проведения. Консервация и хранение. Пробоподготовка.
- 8. Общая характеристика элементного состава природных сред. Кларки элементов. Макрокомпоненты поверхностных вод. Порядок определения в пробе. Классификация вод по макрокомпонентному составу и минерализации.

- 12. Инструментальные методы определения микроэлементного состава объектов окружающей среды. Схема аналитической процедуры. Предел обнаружения элемента. Связь погрешности анализа и концентрации элемента.
- 13. Пробоподготовка в атомно-эмиссионном спектральном анализе с дуговым возбуждением спектров: анализ твердых веществ и растворов.
- 14. Химические вещества в окружающей среде. Химические и биохимические превращения химических загрязнителей в окружающей среде. Методы оценки воздействия: аддитивность, синергизм, антагонизм. Опасность и риск загрязнения объектов окружающей среды химическими веществами.
- 15. Проблема стандартизации качества окружающей среды. Нормирование атмосферных загрязнений. Нормирование загрязняющих веществ в водных объектах. Нормирование содержания вредных веществ в почве.
- 16. Концепция и структура системы мониторинга, принципы ее функционирования. Роль мониторинга в анализе и предупреждении опасного развития последствий глобальных антропогенных воздействий.
- 17. Триангуланы. Производные тетраэдрана и кубана. Стратегии синтеза.
- 18. Катенаны и ротаксаны. Подходы к синтезу. Перспективы практического использования.
- 19. Кавитанды. Основные типы молекул-сосудов. Перспективы практического использования.
- 20. Дендримеры. Стратегии синтеза. Использование в катализе и медицине.
- 21. Дайте определение «медицинской химии». Охарактеризуйте данную науку, назвав ее предмет и объект, цели и задачи, основные методы медицинской химии.

- 22. Поясните следующие понятия: терапевтическая мишень, соединениелидер, лекарственный кандидат, терапевтический индекс, фармакокинетика (ADME) и фармакодинамика.
- 23. Охарактеризуйте основные этапы разработки нового лекарственного препарата.
- 24. Назовите и опишите границы применимости основных методов медицинской химии: комбинаторная химия, компьютерное моделирование и молекулярный докинг, QSAR.
- 25. Биомиметика . Определение. Время появления науки. Классификация. Примеры биологической биомиметики.
- 26. Биомиметика. Краун-эфиры как имитаторы ионофоров переносчиков ионов щелочных металлов через клеточную мембрану.
- 27. Биомиметика. Циклодекстрины как имитаторы ферментов на примере катализа реакции гидролиза сложных эфиров фенолов.
- 28. Биомиметика. Определение. Классификация. Примеры архитектурностроительной биомиметики и дизайна.
- 29. Основные типы асимметрического катализа при энантиоселективных синтезах.
- 30. Способы расщепления рацематов и конгломератов на энантиомеры.
- 31. Оптически активные производные 1,2-бинафтила в энантиоселективных синтезах.
- 32. Использование катализа основаниями при энантиоселективных синтезах.
- 33. Принципиальные основы способов преобразования энгергии, сходство и различие. Значение для развития промышленности, энергообеспечения человечества, решения экологических проблем.
- 34. Химические источники тока (ХИТ), их типы, основы термодинамики XИТ.
- 35. Топливные элементы (ТЭ)- особый тип ХИТ, их особенности, преимущества, проблемы.

- 36. Химические реакции и процессы в водород-кислородном ТЭ, роль электрокатализа.
- 37. Классификация топливных элементов (по виду топлив, электролитов, температурным интервалам эксплуатации.
- 38. Основные виды низкотемпературных, среднетемпературных, высокотемпературных ТЭ, их особенности, преимущества, проблемы.
- 39. Концепция водородной энергетики. Особенности водорода как топлива.
- 40. Три составных части водородной энергетики
- 41. Нетрадиционные способы получения водорода-термохимические и термоэлектрохимические циклы, примеры.
- 42. Комбинированные энергетические системы, основанные использовании нетрадиционных источниках энергии: солнце-водород, ветерводород, другие системы, принципы и примеры.
- 43. Водород как аккумулирующая часть комбинированных систем.
- 44. Принципы работы фотоэлектрических систем, основанные на p-n переходах в неорганических полупроводниках.
- 45. Фотоэлектрохимические системы на органических полупроводниках.
- 46. Фотоэлектрохимическ4ие системы, основанные на комбинациях неорганических и органических материалах.
- 47. Ячейка Гретцеля, принцип действия и проблемы.
- 48. Фотокэлектрокаталитическое разложение воды для получения водорода, принципы и проблемы.
- 49. Полиметаллоорганилсилоксаны (ПМОС). Свойства, чем отличаются от металлосилоксанов.
- 50. Синтез ПМОС методом обмена в растворе.
- 51. Синтез ПМОС гидролитической поликонденсацией.
- 52. Синтез ПМОС гетерофункциональной конденсацией.
- 53. Синтез ПМОС механохимической активацией.

- 54. Какие физико-химические методы используются для исследования ПМОС.
- 55. Как определить размер частицы ПМОС с помощью РФА.
- 56. Как определить сечение молекулы ПМОС с помощью РФА.
- 57. Структура ПМОС, чем она отличается от обычных органических полимеров.
- 58. Применение ПМОС.

II. Текущая аттестация студентов.

Текущая аттестация студентов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Примерный перечень оценочных средств (ОС)

І. Устный опрос

1. Собеседование (УО-1) (Средство контроля, организованное как специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.) - Вопросы по темам/разделам дисциплины.

Вопросы для собеседования (примеры) Модуль 1

- 1. Синтез и исследование β-дикетонатов металлов.
- 2. Синтез и исследование сульфенхлоридов β-дикетонатов металлов.
- 3. Синтез полиметаллоорганосилоксанов методом механохимической активации.
- 4. .. Синтез дендримеров на основе металлоорганических соединений. Свойства.
- 5. Лестничные силсесквиоксаны.
- 6. Методы получения и свойства мономерных циклических лестничных силсесквиоксанов с различным числом циклов.
- 7. Методы синтеза и структурные особенности металлосилоксанов.
- 8. Твердофазный синтез элементоорганических соединений.
- 9. Исследование полиметаллоорганосилоксанов методом дифрактометрии.
- 10. Определение области когерентного рассеивания и площади поперечного сечения.
- 11. Использование спектральных методов для анализа органических, элементоорганических и природных соединений.
- 12. Использование хроматографических методов для анализа

органических, элементоорганических и природных соединений.

Модуль 2

- 2. Современные достижения в области тонкого органического синтеза.
- 3. Пути синтеза 1,5-дикетонов и различных гетерофункциональных систем на их основе.
- 4. Различные подходы к синтезу пуш-пульных енаминов исходных веществ для получения различных важных гетероциклов.
- 5. Современные методы выделения БАВ из природных объектов.
- 6. Поиски схемы выделения лектина из мантии мидии Mytyluss trossulus. Функции и активности лектина.
- 6. Токсины морских беспозвоночных. Важность токсинов для человека и их опасность.
- 7. Источники выделения токсинов и их биологическая активность.
- 8. Многообразие и систематика живых систем. Классификация биомолекул.
- 9. Нуклеиновые кислоты как носители биологической информации. Биологические мембраны.
- 10. Низкомолекулярные биорегуляторы

Модуль 3

- 1. Факторы, влияющие на деструкцию фенола на модифицированном углеродном волокне.
- 2. Изучение разрушения фенола под действие системы реактива Фентона в присутствии углеродного модифицированного волокна. Изучение влияния концентрации, пропорций системы, волокна, в качестве адсорбента.
- 3. Теоретическое исследование каталитических реакций гидрирования и гидроформилирования на комплексах платины с гидрофосфорильными лигандами.
- 4. Исследование методом квантовой химии возможности протекания каталитических реакций на модельных комплексах платины. Определение факторов, влияющих на каталитическую активность комплексов.
- 5. Роль переноса протона в хелатирующем лиганде на каждом шаге каталитического цикла.
- 6. Модуляция каталитических реакций излучением видимого диапазона.
- 7. Современные методы химического анализа и установления строения молекул.
- 8. Сенсоры в электроаналитической химии.
- 9. Методология анализа лекарственных препаратов

П. Письменные работы

1. Тест (ПР-1) (Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося) - Фонд тестовых заданий.

Примеры

тестовых заданий

модуль 1
1. Для каких комплексов возможно существование цис- и транс-
изомерии
А) ацетилацетонаты
Б) дибензоилметанаты
В) формилацетонаты
2. Какие дикетонатные комплексы обладают наибольшей летучестью
А) ацетилацетонаты
Б) гексафторацетилацетонаты
В) дибензоилметанаты
3. Какие дикетонатные хелаты наиболее устойчивы в кислых средах
А) родия
Б) железа
В) меди
4. Какие дикетонатные комплексы не вступают в реакции
электрофильного замещения
А) хрома
Б) бора
В) меди
5.Комплексы каких металлов нельзя исследовать методами ТСХ
А) хрома
Б) бора
В) алюминия
6. Какие дикетонатные комплексы обладают свойством люминесценции
А) хрома
Б) бора

6.Какие дикетонатные комплексы образуют полимеры

В) алюминия

- А) хрома
- Б) бора
- В) никеля
- 7. Какие γ заместители вызовут повышение энергии электронных переходов в ацетилацетонатных комплексах хрома
- А) галогены
- Б) нитрогруппа
- В) сульфенилхлоридный заместитель
- 8. При взаимодействии $Me_2SiH_2 + C_6H_5 = CH_2 \rightarrow$ получаются продукты
- 1) $Me_2SiHCH_2=CHC_6H_5+H_2$
- 2) $Me_2(C_6H_5CH_2CH_2)Si$
- 3) $Me_2(C_6H_5CH_2CH_2)SiH$
- 4) $MeSiH(C_6H_5CH=CH_2)_2 + MeH$
- 9. При взаимодействии $C_2H_5SiHCl_2 + 2C_2H_5MgBr \rightarrow$ получаются продукты
- $\underline{1)} (C_2H_5)_3SiH + 2MgClBr$
- $(C_2H_5)_3SiCl + 2MgClBr$
- 3) $(C_2H_5)_2SiH-SiH(C_2H_5)_2 + 2MgClBr$
- 4) $(C_2H_5)_2SiHCl + MgClBr + C_2H_5MgBr$
- 10. При взаимодействии $CH_3Cl + Si \xrightarrow{Cu}$ получаются продукты
- 1) $C_2H_6 + CuCl_2 + SiCl_4$
- 2) CH₃CuCl + SiCl₄
- $\underline{3}$) $(CH_3)_2SiCl_2 + CuCl_2$
- 4) $(CH_3)_3Si-Si(CH_3)_3 + CuCl$

Модуль 2

1. Максимальное искажение валентных углов наблюдается:

- 1) в [2.2.2]-пропеллане; 2) в [1.1.1]-пропеллане;
- 3) в [4.4.4]-пропеллане; 4) в [3.3.3]-пропеллане
- 2. Оптической активностью могут обладать незамещенные:
- 1) правильные многогранники; 2) радиалены;
- 3) триангуланы; 4) пропелланы.
- 3. Сочетание реакции Дильса-Альдера и фотохимической циклизации является типичным синтетическим приемом в ходе синтеза:
- 1) бензоциклопропена; 2) фуллерена;
- 3) кубана; 4) тетраэдрана.
- 4. Синтез белка в организме является результатом
- 1) Использования энантиомерно чистых исходных соединений;
- 2) Абсолютного асимметрического синтеза;
- 3) Использования хиральных реагентов;
- 4) Асимметрического катализа.
- 5. Какие из приведенных типов соединений пока не имеют широких перспектив практического применения :
- 1) катенаны; 2) кавитанды;
- 3) дендримеры; 4) фуллерены.
- 6. Образование комплексов с переносом заряда или комплексов с атомом металла являются приемами, которые используются в ходе синтеза:
- 1) дендримеров; 2) катенанов и ротаксанов;
- 3) напряженных циклов; 4) правильных многогранников.
- 7. Атомы тяжелых металлов могут быть помещены во внутреннюю полость молекулы:
- 1) фуллерена; 2) кубана;
- 3) додекаэдрана; 4) адамантана.

- 8. Высокоэффективные лекарственные препараты нового типа получают, встраивая молекулы лекарственных веществ в полости некоторых:
- 1) кавитандов; 2) узлов;
- 3) дендримеров; 4) производных фуллерена.

Модуль 3

Укажите один правильный вариант ответа

- 1. Зависимость адсорбции от равновесной концентрации это:
- 1) выходная кривая
- 2) кинетическая кривая адсорбции
- 3) изотерма адсорбции
- 2. Необратимый характер адсорбции имеет адсорбция:
- 1) химическая
- 2) физическая
- 3) полимолекулярная
- 3. Чисто дисперсионное взаимодействие реализуется при адсорбции молекул на поверхности:
 - 1) неполярных на неполярной
 - 2) полярных на полярной
 - 3) неполярных на полярной
 - 4. Молекулы воды лучше адсорбируются на поверхности:
 - 1) неполярной
 - 2) углеродной
 - 3) полярной
- 5. Молекулы бензола преимущественно адсорбируются на поверхности
 - 1) неполярной
 - 2) силикагеля
 - 3) заряженной
- 6. Образование монослоя на поверхности характерно для адсорбции по уравнениям

- 1) Ленгмюра
- 2) Фрейндлиха
- 3) Дубинина
- 7. По механизму Ленгмюра адсорбция заканчивается образованием:
- 1) монослоя
- 2) нескольких слоев
- 3) ассоциатов
- 8. Увеличение полярности поверхности приводит к
- 1) повышению адсорбции полярных молекул
- 2) повышению адсорбции неполярных молекул
- 3) понижению адсорбции полярных молекул
- 9. Обработка данных по уравнению Ленгмюра позволяет определить
- 1) объем микропор
- 2) удельную поверхность
- 3) радиус пор
- 10. Обработка данных по уравнению Дубинина позволяет определить
- 1) объем микропор
- 2) удельную поверхность
- 3) объем пор
- 11. Адсорбция, сопровождаемая разложением адсорбата на атомы, радикалы, ионы, называется
 - 1) диссоциативной
 - 2) полислойной
 - 3) монослойной
- 12. Концентрация вещества в поверхностном слое в состоянии адсорбционного равновесия
 - 1) избыточная (Гиббсовская адсорбция)
 - 2) адсорбционный потенциал
 - 3) степень заполнения
 - 13. Закон Аррениуса выражает

- 1) зависимость скорости гомогенной реакции от температуры
- 2) зависимость константы равновесия от температуры
- 3) зависимость теплового эффекта от температуры
- 14. Соотношение $E = A \alpha/Q$ называется уравнением
- 1) Бренстеда Поляни-Семенова
- 2) Бренстеда Бьеррума
- 3) Бренстеда Педерсена
- 15. Соотношение $\left(\frac{\partial \ln P}{\partial' T'}\right)_{\theta} = \frac{Q_{\alpha}}{RT^2}$ называется
- 1) изобарой адсорбции
- 2) изостерой адсорбции
- 3) изотермой адсорбции
- 16. Функциональная зависимость параметров $v_{\text{адс}} = f(p_{\text{равн}})_{\text{т}}$ является
- 1) изостерой адсорбции
- 2) изотермой адсорбции
- 3) изохорой адсорбции
- 4) изобарой адсорбции
- 17. Функциональная зависимость параметров $V_{adc} = f(T)_p$ является
- 1) изотермой адсорбции
- 2) изохорой адсорбции
- 3) изобарой адсорбции
- 4) изостерой адсорбции
- 18. Функциональная зависимость параметров $P = f(T)_{V,\theta}$ является
- 1) изотермой адсорбции
- 2) изохорой адсорбции
- 3) изостерой адсорбции
- 4) изобарой адсорбции
- 19. Соотношение $\theta = \mathsf{KP}^{1/n}$ называется изотермой
- 1) Лэнгмюра
- 2) Темкина-Шлыгина

- 3) Фрейндлиха
- 20. Соотношение $\theta = \alpha + e \ln P$ называется изотермой
- 1) Лэнгмюра
- 2) Темкина-Шлыгина
- 3) БЭТ
- 4) Фрейндлиха
- 21. Соотношение $\theta = \frac{eP}{1+eP}$ называется изотермой
- 1) Темкина-Шлыгина
- 2) Фрейндлиха
- 3) Лэнгмюра
- 4) БЭТ
- 22. Катализ, протекающий в условиях, когда исходные вещества и катализатор находятся в одной фазе
 - 1) гомогенный
 - 2) гетерогенный
 - 3) кислотно-основной
- 23. Лимитирующей стадией гетерогенного каталитического взаимодействия по теории Баландина при малых заполнениях поверхности является
 - 1) адсорбция исходных веществ
 - 2) химическое взаимодействие
 - 3) десорбция продуктов реакции
- 24. Лимитирующей стадией гетерогенного каталитического взаимодействия по теории Баландина при высоких заполнениях поверхности является
 - 1) адсорбция исходных веществ
 - 2) десорбция продуктов реакции
 - 3) химическое взаимодействие

- 25. Основной причиной увеличения скорости реакции при гетерогенном катализе является
 - 1) образование поверхностных соединений с катализатором
 - 2) увеличение концентрации вещества на поверхности
 - 3) действие сил межмолекулярного взаимодействия
 - 26. Сущность эффекта аггравации в катализе состоит
 - 1) в сгущении вещества на поверхности
- 2) в увеличении каталитической активности катализатора при усложнении (утяжелении) его структуры
 - 3) в образовании промежуточных хемосорбционных соединений
- 27. Порядок мономолекулярной гетерогенно-каталитической реакция при малых давлениях газообразного реагента является
 - 1) нулевым
 - 2) дробным
 - 3) первым
- 28. Порядок мономолекулярной гетерогенно-каталитической реакция при высоких давлениях газообразного реагента является
 - 1) первым
 - 2) нулевым
 - 3) дробным
- 29. Порядок мономолекулярной гетерогенно-каталитической реакция при средних давлениях (заполнениях) газообразного реагента является
 - 1) нулевым
 - 2) дробным
 - первым
- 30. Гетерогенные реакции, медленной стадией которых является стационарная диффузия, имеют порядок
 - 1) нулевой
 - 2) первый
 - 3) дробный