

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

«СОГЛАСОВАНО» Руководитель ОП

01 сентября 2017г.

Ю.В. Добржинский

информационной безопасности

информационной безопасности

И.В. Добржинский

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Вычислительные комплексы и среды

Направление подготовки 09.03.01 Информатика и вычислительная техника

Форма подготовки очная

курс 2,3 семестр 4,5,6,
лекции 36 час.
практические занятия 144 час.
лабораторные работычас.
в том числе с использованием МАО лек/ пр/ лабчас.
всего часов аудиторной нагрузки _180_час.
в том числе с использованием МАО час.
самостоятельная работа 144 час.
в том числе на подготовку к экзамену 36 час.
контрольные работы (количество)
курсовая работа / курсовой проектсеместр
зачет 5,6 Семестр
экзамен 4 семестр

Рабочая программа составлена в соответствии с требованиями образовательного стандарта, самостоятельно установленного ДВФУ по направлению подготовки 09.03.01 Информатика и вычислительная техника, утвержденный приказом ректора ДВФУ от 04.04.2016 № 12-13-593.

Рабочая программа обсуждена на заседании кафедры «Информационная безопасность», протокол № 13 от 30 июня 2017г.

И.о. заведующего кафедрой «Информационная безопасность» Добржинский Ю.В., к.т.н., с.н.с.

Составитель: доцент Кошевенко А.В., к.т.н.

II. Рабочая программа пересмотрена на заседании кафедрь	Протокол от«»		дании кафедры: №
	Заведующий кафедрой	(подпись)	(И.О. Фамилия)
Протокол от« » 20 г. №			

ABSTRACT

Bachelor's degree in *Computer science and computer facilities* (09.03.01)

Study profile "Computer Systems and Networks"

Course title: Computer complexes and computational environments

Variable part of Block, 9 credits

Instructor: Koshevenko Aleksandr Vladimirovich

At the beginning of the course a student should be able to:

- perceive creatively and use the achievements of science and technology in the professional sphere in according to the needs of the regional and the world labor market (GC-4);
- use modern methods and technologies (including information technologies) in professional activities (GC-5);
- participate in setup and adjustment of hardware and software systems (GPC-4).

Learning outcomes: the ability to develop components of hardware-software complexes and databases using modern tools and programming technologies (SPC-3).

Course description: the course includes the following questions: SIMD and MIMD classes; parallel computing methods and algorithms; organizing methods and algorithms of computer systems' functioning; performance of computer systems.

Main course literature:

- 1. Буцык С.В. Вычислительные системы, сети и телекоммуникации [Электронный ресурс]: учебное пособие / С.В. Буцык, А.С. Крестников, А.А. Рузаков Челябинск: Челябинский государственный институт культуры, 2016. 116 с. Режим доступа: http://www.iprbookshop.ru/56399.html. ЭБС «IPRbooks»
- 2. Гудыно, Л.П., Кириченко, А.А., Пятибратов, А.П. Вычислительные системы, сети и телекоммуникации [Электронный ресурс]: учебник / А.П. Пятибратов, Л.П. Гудыно, А.А. Кириченко; под ред. А.П. Пятибратова. 4-е изд. М.: Финансы и статистика, 2014. 736 с.: ил. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785279032853.html ЭБС «Консультант студента»
- 3. Усачев, Ю.Е. Вычислительные машины, сети и системы телекоммуникаций [Электронный ресурс]: учеб. пособие / Ю.Е. Усачев, И.В. Чигирёва. Электрон. дан. Пенза: ПензГТУ, 2014. 307 с. Режим доступа: https://e.lanbook.com/book/62577 ЭБС «Лань»

Form of final knowledge control: exam, pass-fail exam.

АННОТАЦИЯ

Данный курс предназначен для студентов по направлению подготовки 09.03.01 «Информатика и вычислительная техника», профиль «Вычислительные машины, комплексы, системы и сети».

Трудоёмкость дисциплины в зачетных единицах составляет 9 з.е., в академических часах — 324 часа. Учебным планом предусмотрены лекционные занятия (36 часов), практические занятия (144 часа), самостоятельная работа студента (144 часа). Дисциплина реализуется на 2 и 3 курсах в 4, 5, 6 семестрах.

Дисциплина «Вычислительные комплексы и среды» относится к дисциплинам по выбору (Б1.В.ДВ.1). Дисциплина логически и предметно связана с такими курсами как «Основы вычислительной техники», «Теория вычислительных систем и процессов», «Безопасность вычислительных систем», «Электроника» и др.

Содержание дисциплины посвящено следующим вопросам:

- вычислительные системы класса SIMD;
- вычислительные системы класса MIMD;
- методы параллельных вычислений;
- -алгоритмы и методы организации функционирования вычислительных систем;
 - производительность вычислительных систем.

Цель учебной дисциплины - расширение и углубление знаний о современных средствах вычислительной, принципов их функционирования, организации и конструктивных особенностей, развитие умений применять, оценивать и выбирать соответствующие средства.

Задачи:

- формирование знаний об основах организации и схемотехнике построения вычислительных машин и комплексов;
- освоение основных этапов проектирования вычислительных комплексов;
- изучение методов контроля качества разрабатываемых программных продуктов;
- изучение современных технологий разработки вычислительных комплексов.

Для успешного изучения дисциплины «Вычислительные комплексы и среды» у обучающихся должны быть сформированы следующие предварительные компетенции:

- способностью творчески воспринимать и использовать достижения науки, техники в профессиональной сфере в соответствии с потребностями регионального и мирового рынка труда (ОК-4);
- способностью использовать современные методы и технологии (в том числе информационные) в профессиональной деятельности (ОК-5);
- способностью участвовать в настройке и наладке программно-аппаратных комплексов (ОПК-4).

В результате изучения данной дисциплины у обучающихся формируются следующие профессиональные компетенции (элементы компетенций):

Код и формулировка компетенции		Этапы формирования компетенции
(ПК-3) способность разрабатывать компоненты аппаратно-	Знает	основные понятия и термины, относящиеся к вычислительным комплексам и средам;
программных комплексов и баз данных, используя	Умеет	проводить системный анализ и участвовать в разработке вычислительных комплексов;
современные инструментальные средства и технологии программирования	Владеет	современными методами и технологиями разработки вычислительных комплексов и сред.

Для формирования вышеуказанных компетенций в рамках дисциплины «Вычислительные комплексы и среды» применяются следующие методы активного/ интерактивного обучения: чтение лекций, чтение лекций с использованием мультимедийного оборудования (проектор), имитационные модели.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Раздел I. Вводный раздел (2 час.)

Тема 1. Способы обработки информации. (2 час.)

- 1.1. История параллелизма.
- 1.2. Скалярная и векторная обработка информации. Матричная обработка. Мультипроцессорная обработка.
 - 1.3. Конвейер.
 - 1.4. Специализированные ЭВМ.
- 1.5. Уровни параллелизма. Систематика Флинна и другие классификации.

Раздел II. Класс SIMD (12 час.)

Тема 1. Векторно-конвейерные системы (2 час.)

- 1.1. Общие принципы магистральной обработки. Архитектурные принципы.
- 1.2. Функциональные устройства.
- 1.3. Скалярные и векторные регистры.
- 1.4. Стадии параллелизма.
- 1.5. Уровни реализации магистрального принципа.

Тема 2. Матричные системы (2 час.)

- 2.1. Матричная обработка информации. Общие принципы построения и функционирования матричных архитектур.
 - 2.2. Многомодальная логика процессорных элементов.
 - 2.3. Организация памяти.
- 2.4. Управление вычислительным процессом. Массивы процессорных элементов. Сети обмена между процессорными элементами.

Тема 3. Ассоциативные системы (2 час.)

- 3.1. Общие принципы ассоциативной обработки информации.
- 3.2. Особенности поиска в ассоциативной памяти: маскирование и сравнение.
- 3.3. Категории ассоциативных систем: полностью параллельные, поразрядно-последовательные, пословно-последовательные, блочно-ориентированные.
- 3.4. Подсистема управления. Память команд. Модули ассоциативных матриц.

Тема 4. Систолические матричные процессоры (3 час.)

- 4.1. Общие принципы систолической обработки.
- 4.2. Синхронность вычислений. Методы синхронизации.
- 4.3. Модульность и регулярность систолических массивов. Особенности

связей между процессорными элементами.

- 4.4. Пространственная и временная локальность. Конвейеризуемость.
- 4.5. Свойства систолических архитектур.
- 4.6. Методы синтеза систолических массивов. Отображение графа алгоритма на систолические матричные процессоры.

Тема 5. Волновые матричные процессоры (3 час.)

- 5.1. Общие принципы волновой обработки.
- 5.2. Асинхронные системы. Автосинхронность систем, управляемых данными.
- 5.3. Регулярность, модульность и локальность межсоединений. Конвейеризуемость вычислений.
- 5.4. Особенности проектирования процессорного элемента для волнового процессора. Отображение графа алгоритма на волновые матричные процессоры.

Раздел III. Класс MIMD (12 час.)

Тема 1. SMR-системы (2 час.)

- 1.1. Общие принципы построения организации масштабируемых вычислительных систем.
- 1.2. Структура процессорных узлов.
- 1.3. Пулы интерактивных, последовательных и параллельных заданий.
- 1.4. Назначение процессорных узлов: файл-серверы, серверы-шлюзы, серверы баз данных, серверы резервного копирования.

Тема 2. Кластерные архитектуры (1 час.)

- 2.1. Общие принципы построения кластерных архитектур.
- 2.2. Гетерогенные и гомогенные кластеры.
- 2.3. Коммуникационные структуры кластерных систем. Обмен сообщениями в кластерах.

Тема 3. МРР-системы (1 час.)

- 3.1. Особенности организации МРР-систем.
- 3.2. Узлы процессорных элементов. Сеть связи. Чередование узлов. Маршрутизация.
 - 3.3. Организация памяти.

Тема 4. Транспьютеры (2 час.)

- 4.1. Общие принципы построения транспьютерных систем.
- 4.2. Транспьютерное семейство фирмы Inmos.
- 4.3. Внутренняя архитектура транспьютера. Процессор. Системный сервис. Интерфейс памяти. Внутренняя память. Регистры. Поддержка параллелизма.
 - 4.4. Язык Оккам.

Тема 5. Вычислительные системы с программируемой структурой (2

час.)

- 5.1. Модель коллектива вычислителей. Принципы построения. Функциональный, коммуникационно-настроечный автомат.
- 5.2. Функциональная структура элементарной машины. Системные операции.
- 5.3. Организация межмашинных взаимодействий. Структура связей, системные команды, элементарные машины, программное обеспечение.
 - 5.4. Распределенные вычислительные системы.

Тема 6. Однородные вычислительные среды (2 час.)

- 6.1. Принципы построения вычислительных сред. Среды с коллективным и индивидуальным поведением элементов.
- 6.2. Соединительные и функциональные элементы среды. Универсальность элементов вычислительной среды.
- 6.3. Настройка среды. Физическая реализация элементов вычислительной среды.

Тема 7. Отказоустойчивые вычислительные системы (2 час.)

- 7.1. Концепция устойчивости вычислительных систем к отказам. Требования к системам высокой готовности.
- 7.2. Алгоритмы обнаружения неисправностей. Прямое и обратное восстановление в отказоустойчивых вычислительных системах.
- 7.3. Эффект «домино» и методы его устранения. Маскирование ошибок в отказоустойчивых вычислительных системах.
- 7.4. Перераспределение процессов в отказоустойчивых вычислительных системах.
 - 7.5. Вычислительная система космического корабля «Шаттл».

Раздел IV. Основы функционирования вычислительных систем (10 час.)

Тема 1. Методы параллельных вычислений (3 час.)

- 1.1. Основные подходы при организации параллельных вычислений.
- 1.2. Естественный параллелизм.
- 1.3. Распараллеливание на уровне алгоритмических языков. Асинхронное программирование. Ярусно-параллельные формы. Крупноблочное распараллеливание.
- 1.4. Особенности реализации Р-алгоритмов на распределенных вычислительных системах.

Тема 2. Алгоритмы и методы организации функционирования вычислительных систем (4 час.)

- 2.1. Основные понятия и методы планирования выполнения последовательности работ (заданий).
 - 2.2. Основные режимы функционирования ВС. Режим решения сложной

- задачи. Эффективность решения сложной задачи. Решение набора задач на ВС.
- 2.3. Эвристические алгоритмы, основанные на минимизации функции штрафа.
- 2.4. Функционирование BC при поступлении потока задач. Основные подходы к решению задачи организации функционирования. Организация функционирования распределенных вычислительных систем.
 - 2.5. Понятие о надежности и живучести ВС.

Тема 3. Производительность вычислительных систем (3 час.)

- 3.1. Пиковая и реальная производительность.
- 3.2. Закон Гроша.
- 3.3. Способы измерения реальной производительности.
- 3.4. Методы оценки производительности.

ІІ. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Практические занятия (144 час.)

Первая часть курса (72 час.)

Занятие 1. Векторно-конвейерные системы (6 час.)

Занятие 2. Принципы построения и функционирования матричных архитектур (6 час.)

Занятие 3. Принципы ассоциативной обработки информации (6 час.)

Занятие 4. Систолические матричные процессоры (8 час.)

Занятие 5. Волновые матричные процессоры (6 час.)

Занятие 6. Общие принципы построения организации масштабируемых вычислительных систем (8 час.)

Занятие 7. Общие принципы построения кластерных архитектур (6 час.)

Занятие 8. МРР-системы (6 час.)

Занятие 9. Транспьютеры (6 час.)

Занятие 10. Вычислительные системы с программируемой структурой (8 час.)

Занятие 11. Однородные вычислительные среды (6 час.)

Вторая часть курса (36 час.)

Занятие 1. Способы организации параллельных вычислений (11 час.)

Занятие 2. Алгоритмы и методы организации функционирования вычислительных систем (12 час.)

Занятие 3. Производительность вычислительных систем, способы измерения и оценки (11 час.)

Занятие 4. Зачётное занятие (2 час.)

Третья часть курса (36 час.)

Занятие 1. Анализ способов и выбор дисциплины обслуживания заданий однопроцессорного комплекса реального масштаба времени. (6 час.)

Занятие 2. Анализ критериев эффективности управляющего вычислительного комплекса и определение оптимального быстродействия процессора. (6 час.)

Занятие 3. Исследование алгоритмов маршрутизации в вычислительных системах сетевой архитектуры с регулярной структурой. (8 час.)

Занятие 4. Исследование алгоритмов маршрутизации и реконфигурации в матричных вычислительных системах. (8 час.)

Занятие 5. Моделирование отказоустойчивых многопроцессорных вычислительных систем. (6 час.)

Занятие 6. Зачётное занятие (2 часа).

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Вычислительные комплексы и среды» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№ π/π	Контролируемые разделы / темы дисциплины	Коды и этапы формирования компетенций			не средства - енование
				текущий контроль	промежуточная аттестация
1	Раздел I. Вводный раздел	ПК-3	знает	ПР-7	1-3
			умеет	ПР-7	1-3
			владеет	ПР-7	1-3

2	Раздел II. Класс SIMD	ПК-3	знает	ПР-7	4-23
			умеет	УО-2	4-23
			владеет	УО-2	4-23
			знает	ПР-7	24-44
3	Раздел III. Класс MIMD	ПК-3	умеет	УО-2	24-44
			владеет	УО-2	24-44
			знает	ПР-7	45-54
4	Раздел IV. Основы 4 функционирования вычислительных систем	ПК-3	умеет	УО-2	45-54
			владеет	УО-2	45-54

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

(электронные и печатные издания)

- 1. Буцык С.В. Вычислительные системы, сети и телекоммуникации [Электронный ресурс]: учебное пособие / С.В. Буцык, А.С. Крестников, А.А. Рузаков Челябинск: Челябинский государственный институт культуры, 2016. 116 с. Режим доступа: http://www.iprbookshop.ru/56399.html. ЭБС «IPRbooks»
- 2. Гудыно, Л.П., Кириченко, А.А., Пятибратов, А.П. Вычислительные системы, сети и телекоммуникации [Электронный ресурс]: учебник / А.П. Пятибратов, Л.П. Гудыно, А.А. Кириченко; под ред. А.П. Пятибратова. 4-е изд. М.: Финансы и статистика, 2014. 736 с.: ил. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785279032853.html ЭБС «Консультант студента»
- 3. Усачев, Ю.Е. Вычислительные машины, сети и системы телекоммуникаций [Электронный ресурс]: учеб. пособие / Ю.Е. Усачев, И.В. Чигирёва. Электрон. дан. Пенза: ПензГТУ, 2014. 307 с. Режим доступа: https://e.lanbook.com/book/62577 ЭБС «Лань»

Дополнительная литература

(печатные и электронные издания)

- 1. Голицына, О.Л. Информационные системы: [Электронный ресурс]: учебное пособие / О.Л. Голицына, Н.В. Максимов, И.И. Попов. 2-е изд. М.: Форум: НИЦ ИНФРА-М, 2014. 448 с.: ил.; Режим доступа: http://znanium.com/bookread2.php?book=435900 ЭБС «Znanium.com»
- 2. Гуров В.В. Архитектура и организация ЭВМ [Электронный ресурс] / В.В. Гуров, В.О. Чуканов М.: ИНТУИТ, 2016.— 183 с.— Режим доступа: http://www.iprbookshop.ru/73706.html.— ЭБС «IPRbooks»
- 3. Максимов, Н.В. Архитектура ЭВМ и вычислительных систем: Учебник / Н.В. Максимов, Т.Л. Партыка, И.И. Попов, 5-е изд., перераб. и доп. М.:Форум, НИЦ ИНФРА-М, 2016. 512 с. Режим доступа: http://znanium.com/bookread2.php?book=552537 ЭБС «Znanium.com»

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Лекции по архитектуре вычислительных систем [Электронный ресурс]. Электрон. дан. Режим доступа: https://studfiles.net/preview/1037497/
- 2. Вычислительные комплексы и сети. Лекции [Электронный ресурс]. Электрон. дан. Режим доступа: http://setilekcii.narod.ru
- 3. Аналого-цифровые вычислительные комплексы (лекция) [Электронный ресурс]. Электрон. дан. Режим доступа: https://studfiles.net/preview/1977530/page:36/

Перечень информационных технологий и программного обеспечения

Для работы с литературой из списка необходимо наличие у студента аккаунтов в указанных электронно-библиотечных системах: «Юрайт» (https://biblio-online.ru/), «Znanium.com» (http://znanium.com/), «Консультант студента» (http://www.studentlibrary.ru).

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Количество аудиторных часов, отведенных на изучение дисциплины «Вычислительные комплексы и среды», составляет 180 часов. На самостоятельную работу студента отведено 144 часа.

Аудиторная нагрузка состоит из 36 часов лекционных занятий и 144 часов практических занятий. На лекционных занятиях обучающийся получает базовые теоретические знания, углубляя их в ходе самостоятельной работы и на практических занятиях. Студенту рекомендуется предварительно готовиться к лекции, используя ресурсы из списка, приведённого в разделе V, для более

качественного освоения теоретического материала, а также возможности задать вопросы преподавателю. При подготовке к практическим занятиям также необходимо повторить теоретический материал. На практических занятиях обучающимся предлагаются задания различного типа, направленные на получение углубленных знаний по теме.

Данная дисциплина реализуется в 4, 5 и 6 семестрах. При этом курс лекционных занятий предусмотрен только в 4 семестре и завершается экзаменом. В 5 и 6 семестре учебным планом предусмотрены только практические занятия с последующим зачётом.

Вопросы к экзамену соответствуют темам, изучаемым на лекционных занятиях. Таким образом, при самостоятельной подготовке к экзамену студенту необходимо воспользоваться конспектами лекций, а также иными источниками из списка литературы для более глубокого понимания материала.

Для получения «зачтено» на зачёте необходимо отчитаться о выполнении всех практических заданий.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения лекционных и практических занятий необходима аудитория с мультимедиа проектором и экраном. Лабораторные работы выполняются в аудитории, оборудованной компьютерами и доступом в сеть «Интернет». Количество рабочих мест в аудитории должно соответствовать количеству обучающихся. Для самостоятельной работы (использование ЭБС) студенту также необходим компьютер и доступ в сеть «Интернет».

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Вычислительные комплексы и среды» Направление подготовки 09.03.01 Информатика и вычислительная техника

профиль «Вычислительные машины, комплексы, системы и сети» **Форма подготовки очная**

Владивосток 2016

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля		
		Первая часть	курса			
1	1-18 недели	Подготовка к	36	Собеседование		
	обучения	практическим		(УО-1),		
		занятиям №1-		коллоквиум		
		№ 11		(УО-2)		
2	Сессия	Подготовка к	36	Экзамен		
		экзамену				
		Вторая часть	курса			
1	1-17 недели	Подготовка к	32	Собеседование		
	обучения	практическим		(УО-1),		
		занятиям №1-		коллоквиум		
		№4		(УО-2)		
2	18 неделя	Подготовка к	4	Зачёт		
	обучения	зачёту				
	Третья часть курса					
1	1-17 недели	Подготовка к	30	Собеседование		
	обучения	практическим		(УО-1),		
		занятиям №1-		коллоквиум		
		№6		(УО-2)		
2	18 неделя	Подготовка к	6	Зачёт		
	обучения	зачёту				

В первой части курса формой контроля является экзамен, а сдача практических заданий необходима для допуска к сдаче экзамена. Во второй и третьей частях курса формой контроля является зачёт, а сдача практических заданий необходима для выставления зачёта.

Подготовка к практическим занятиям предполагает повторение лекционного материала и выполнение заданий по темам из Раздела II РПУД.

В ходе самостоятельной работы обучающийся должен подготовиться к ответу на практическом занятии. При подготовке необходимо использовать как основные, так и дополнительные материалы для более глубокого понимания предмета. По результатам работы на занятии оценивается активность студента. При условии посещения и активной работы на всех занятиях, студент получает «зачтено». В случае пропуска занятий и/или недостаточной работы, студент получает возможность сдать недостающие задания на зачёте.

Самостоятельная работа при подготовке к экзамену включает изучение теоретического материала с использованием лекционных материалов, а также основной и дополнительной литературы из списка рекомендуемых источников. Список вопросов для подготовки к экзамену, а также методические рекомендации по оцениванию представлены в Приложении 2 РПУД.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Вычислительные комплексы и среды» Направление подготовки 09.03.01 Информатика и вычислительная техника

профиль «Вычислительные машины, комплексы, системы и сети» **Форма подготовки очная**

Владивосток 2016

Паспорт ФОС

Код и формулировка компетенции		Этапы формирования компетенции
(ПК-3) способность разрабатывать компоненты аппаратно-	Знает	основные понятия и термины, относящиеся к вычислительным комплексам и средам;
программных комплексов и баз данных, используя	Умеет	проводить системный анализ и участвовать в разработке вычислительных комплексов;
современные инструментальные средства и технологии программирования	Владеет	современными методами и технологиями разработки вычислительных комплексов и сред.

$N_{\underline{0}}$	Контролируемые разделы формирования				ые средства - енование
п/п	/ темы дисциплины		мпетенций	текущий контроль	промежуточная аттестация
			знает	ПР-7	1-3
1	Раздел I. Вводный раздел	ПК-3	умеет	ПР-7	1-3
			владеет	ПР-7	1-3
			знает	ПР-7	4-23
2	Раздел II. Класс SIMD	ПК-3	умеет	УО-2	4-23
			владеет	УО-2	4-23
			знает	ПР-7	24-44
3	Раздел III. Класс MIMD	ПК-3	умеет	УО-2	24-44
			владеет	УО-2	24-44
			знает	ПР-7	45-54
4	Раздел IV. Основы 4 функционирования вычислительных систем	ПК-3	умеет	УО-2	45-54
			владеет	УО-2	45-54

Шкала оценивания уровня сформированности компетенций

Код и формулировка компетенции	Этапы компете	формирования нции	критерии	показатели
(ПК-3) способность разрабатыват ь компоненты аппаратно- программны х комплексов и баз	знает (поро говый урове нь)	основные понятия и термины, относящиеся к вычислительны м комплексам и средам;	полнота и системность знаний	изложение полученных знаний полное, в соответствии с требованиями учебной программы; ошибки отсутствуют или несущественны, обучающийся способен самостоятельно их исправить.
данных, используя современные инструмента льные средства и технологии программиро вания	умеет (прод винут ый)	проводить системный анализ и участвовать в разработке вычислительны х комплексов;	степень самостоятельно сти выполнения действия (умения); осознанность действия (умения).	обучающийся способен участвовать в разработке вычислительных комплексов индивидуально или в группе без помощи преподавателя; свободно отвечает на вопросы, касающиеся выполняемых действий.
	владе ет (высо кий)	современными методами и технологиями разработки вычислительны х комплексов и сред.	степень умения отбирать и интегрировать имеющиеся знания и навыки исходя из поставленной цели, проводить самоанализ и самооценку.	обучающийся способен самостоятельно выбрать и применить наиболее оптимальный подход для проектирования вычислительных комплексов с учётом различных факторов.

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Промежуточная форма аттестации по данной дисциплине в 4 семестре – экзамен, в 5 и 6 семестрах – зачёт.

Зачёт выставляется на основании сдачи всех практических заданий. В случае, если к дню проведения зачёта обучающийся не сдал какие-либо из практических заданий, он получает возможность сдать их на зачёте. Для допуска к экзамену также необходимо сдать все практические задания.

Экзамен проводится в форме собеседования (УО-1), вопросы к экзамену соответствуют темам, изучаемым на лекционных занятия, и представлены далее в Приложении. Для подготовки к ответу на экзамене обучающийся получает 20 минут. В ходе подготовки обучающийся может составлять любые записи, однако оценивается прежде всего устный, а не письменный ответ.

При определении оценки ответа обучающегося как на экзамене, так и на практическом занятии учитываются:

- соблюдение норм литературной речи;
- полнота и содержательность ответа;
- умение привести примеры;
- умение пользоваться дополнительной литературой при подготовке к занятиям;
- соответствие представленной в ответах информации материалам лекций и учебной литературы, актуальным сведениям из информационных ресурсов Интернет.

Оценочные средства для промежуточной аттестации Список вопросов на экзамен

- 1. Скалярная и векторная обработка информации. Матричная обработка. Мультипроцессорная обработка. Конвейер.
- 2. Специализированные ЭВМ.
- 3. Уровни параллелизма. Систематика Флинна и другие классификации.
- 4. Общие принципы магистральной обработки. Архитектурные принципы. Скалярные и векторные регистры.
- 5. Стадии параллелизма.
- 6. Уровни реализации магистрального принципа.
- 7. Матричная обработка информации. Общие принципы построения и функционирования матричных архитектур.
- 8. Многомодальная логика процессорных элементов.
- 9. Организация памяти в матричной архитектуре.
- 10. Управление вычислительным процессом. Массивы процессорных элементов. Сети обмена между процессорными элементами. (матричная архитектура)
- 11. Общие принципы ассоциативной обработки информации.
- 12.Особенности поиска в ассоциативной памяти: маскирование и сравнение.
- 13. Категории ассоциативных систем: полностью параллельные, поразрядно-последовательные, пословно-последовательные, блочно-ориентированные.
- 14. Подсистема управления ассоциативных систем. Память команд. Модули ассоциативных матриц.
- 15.Общие принципы систолической обработки. Синхронность вычислений.

- Методы синхронизации.
- 16.Модульность и регулярность систолических массивов. Особенности связей между процессорными элементами.
- 17. Пространственная и временная локальность. Конвейеризуемость.
- 18. Свойства систолических архитектур.
- 19. Методы синтеза систолических массивов. Отображение графа алгоритма на систолические матричные процессоры.
- 20. Общие принципы волновой обработки.
- 21. Асинхронные системы. Автосинхронность систем, управляемых данными.
- 22. Регулярность, модульность и локальность межсоединений. Конвейеризуемость вычислений.
- 23.Особенности проектирования процессорного элемента для волнового процессора. Отображение графа алгоритма на волновые матричные процессоры.
- 24.Общие принципы построения организации масштабируемых вычислительных систем. Структура процессорных узлов.
- 25. Пулы интерактивных, последовательных и параллельных заданий.
- 26. Назначение процессорных узлов: файл-серверы, серверы-шлюзы, серверы баз данных, серверы резервного копирования.
- 27.Общие принципы построения кластерных архитектур. Гетерогенные и гомогенные кластеры.
- 28. Коммуникационные структуры кластерных систем. Обмен сообщениями в кластерах.
- 29.Особенности организации МРР-систем. Узлы процессорных элементов.
- 30.Сеть связи МРР-систем. Чередование узлов. Маршрутизация. Организация памяти.
- 31.Общие принципы построения транспьютерных систем.
- 32.Внутренняя архитектура транспьютера. Процессор. Системный сервис. Интерфейс памяти. Внутренняя память. Регистры. Поддержка параллелизма.
- 33. Язык Оккам.
- 34. Модель коллектива вычислителей. Принципы построения.
- 35. Функциональная структура элементарной машины. Системные операции.
- 36.Организация межмашинных взаимодействий. Структура связей, системные команды, элементарные машины, программное обеспечение.
- 37. Распределенные вычислительные системы.
- 38.Принципы построения вычислительных сред. Среды с коллективным и индивидуальным поведением элементов.
- 39.Соединительные и функциональные элементы среды. Универсальность элементов вычислительной среды.
- 40. Настройка среды. Физическая реализация элементов вычислительной среды.
- 41. Концепция устойчивости вычислительных систем к отказам. Требования к системам высокой готовности.

- 42. Алгоритмы обнаружения неисправностей. Прямое и обратное восстановление в отказоустойчивых вычислительных системах.
- 43. Эффект «домино» и методы его устранения. Маскирование ошибок в отказоустойчивых вычислительных системах.
- 44.Перераспределение процессов в отказоустойчивых вычислительных системах.
- 45. Основные подходы при организации параллельных вычислений.
- 46. Естественный параллелизм. Распараллеливание на уровне алгоритмических языков. Крупноблочное распараллеливание.
- 47. Асинхронное программирование.
- 48.Особенности реализации Р-алгоритмов на распределенных вычислительных системах.
- 49.Основные понятия и методы планирования выполнения последовательности работ (заданий).
- 50.Основные режимы функционирования BC. Режим решения сложной задачи. Эффективность решения сложной задачи. Решение набора задач на BC.
- 51. Эвристические алгоритмы, основанные на минимизации функции штрафа.
- 52. Функционирование BC при поступлении потока задач. Основные подходы к решению задачи организации функционирования. Организация функционирования распределенных вычислительных систем.
- 53. Понятие о надежности и живучести ВС.
- 54. Пиковая и реальная производительность. Закон Гроша. Способы измерения реальной производительности. Методы оценки производительности.

Каждый экзаменационный билет содержит два вопроса из списка выше. Результаты экзамена оцениваются по четырёхбалльной системе («отлично», «хорошо», «удовлетворительно», «неудовлетворительно») и заносятся в экзаменационную ведомость и зачетную книжку. В зачетную книжку заносятся только положительные оценки.

При определении оценки учитываются:

- полнота и содержательность ответа;
- умение привести примеры;
- умение пользоваться дополнительной литературой при подготовке к занятиям;
- соответствие представленной в ответах информации материалам лекций и учебной литературы, сведениям из информационных ресурсов Интернет.

Оценка «**отлично**». Ответы на поставленные вопросы в билете излагаются логично, последовательно и не требуют дополнительных пояснений. Делаются

обоснованные выводы. Демонстрируются глубокие знания дисциплины. Соблюдаются нормы литературной речи.

Оценка «хорошо». Ответы на поставленные вопросы излагаются систематизировано последовательно. Материал И излагается уверенно. Демонстрируется умение анализировать материал, однако не все выводы носят аргументированный И доказательный характер. Соблюдаются литературной речи.

Оценка **«удовлетворительно».** Допускаются нарушения в последовательности изложения. Демонстрируются поверхностные знания вопроса. Имеются затруднения с выводами. Допускаются нарушения норм литературной речи.

Оценка **«неудовлетворительно».** Материал излагается непоследовательно, сбивчиво, не представляет определенной системы знаний по дисциплине. Имеются заметные нарушения норм литературной речи.

В случае неявки студента на экзамен в экзаменационной ведомости делается отметка «не явился».

Оценочные средства для текущей аттестации

В качестве оценочных средств для текущей аттестации применяются коллоквиум (УО-2) и конспект (ПР-7).

Конспект является показателем сформированности компетенции на пороговом уровне. Темы конспектов соответствуют темам теоретической части курса из Раздела II РПУД. Критерии оценки по данному виду оценочных средств представлены в таблице:

Оценка	Содержание конспекта		
Отлично	Конспект содержит все понятия, термины, положения,		
	изученные на лекции и/или с использованием основных		
	источников литературы, а также содержит сведения из		
	дополнительных источников.		
Хорошо	Конспект содержит все понятия, термины, положения,		
	изученные на лекции и/или с использованием основных		
	источников литературы.		
Удовлетворительно	Конспект содержит базовые понятия, термины,		
	положения, изученные на лекции.		
Неудовлетворительно	Конспект не содержит основных понятий, терминов,		
	положений по данной теме.		

Для оценки продвинутого и высокого уровня сформированности компетенции проводятся коллоквиумы. Темы коллоквиумов соответствуют темам практических занятий из Раздела II РПУД. Критерии оценки по данному виду оценочных средств представлены в таблице:

Оценка	Содержание ответа					
Отлично	Полные и точные ответы на все вопросы по теме					
	занятия;					
	Свободное владение основными терминами и					
	понятиями курса;					
	Последовательное и логичное изложение материала					
	курса;					
	Законченные выводы и обобщения по теме вопросов;					
	Соблюдаются нормы литературной речи.					
Хорошо	Полные и точные ответы на все вопросы по теме					
	занятия;					
	Знание основных терминов и понятий курса;					
	Последовательное изложение материала курса;					
	Умение формулировать некоторые обобщения по теме					
	вопросов;					
	Соблюдаются нормы литературной речи.					
Удовлетворительно	Полные и точные ответы на часть вопросов;					
	Удовлетворительное знание основных терминов и					
	понятий курса;					
	Удовлетворительное знание и владение методами и					
	средствами решения поставленных задач;					
	Недостаточно последовательное изложение материала					
	курса;					
	Умение формулировать отдельные выводы и					
	обобщения по теме вопросов.					
Неудовлетворительно	Полные и точные ответы на часть вопросов;					
	Материал излагается непоследовательно, сбивчиво;					
	Имеются заметные нарушения норм литературной речи.					