

МИНИСТЕРСТВООБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования Дальневосточный федеральный университет (ЛВФУ)

ШКОЛА БИОМЕДИЦИНЫ

«СОГЛАСОВАНО» Школы биомедицины Руководитель ОП 19.03.01	«УТВЕРЖДАЮ» Директор департамента пищевых наук и/технологий
Биотехнология Пікола Биомедицины Биомедицина Био	Ю.В. Приходько
«11»072018r.	«11

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

«Электротехника и электроника»

Направление подготовки 19.03.01Биотехнология Профиль «Пищевая биотехнология» Форма подготовки очная

Школа биомедицины
Департамент пищевых наук и технологий
курс <u>2</u> семестр <u>4</u>
лекции <u>18</u> час.
практические занятия <u>36</u> час.
лабораторные работы0час.
в том числе с использованием МАО <u>лек. 10 /пр. 10 / лаб. 0</u> час.
всего часов аудиторной нагрузки <u>54</u> час.
в том числе с использованием MAO <u>20</u> час.
самостоятельная работа27 час.
в том числе на подготовку к экзамену <u>63</u> час.
зачет семестр
экзамен 4 семестр

УМКД составлен в соответствии с требованиями образовательного стандарта, самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора от 22.03.2017 г. №12-13-485

УМКД обсужден на заседании Департамента пищевых наук и технологий, протокол № __5_ от «_11_» июля 2018_ г.

Директор Департамента пищевых наук и технологий <u>д.т.н., профессор Приходько Ю.В.</u> Составитель (ли): к.т.н., доцент Яблокова В.С.

КИЦАТОННА

учебно-методического комплекса дисциплины «Электротехника и электроника»

Направление подготовки: 19.03.01 «Биотехнология»

Профиль: «Пищевая биотехнология»

Учебно-методический комплекс дисциплины «Электротехника и электроника» разработан для студентов 2 курса по направлению 19.03.01 «Биотехнология» профиль подготовки «Пищевая биотехнология» в соответствие с требованиями ОС ВО по данному направлению.

Дисциплина «Электротехника и электроника» входит в базовую часть учебного плана, модуль биотехнологии пищевых продуктов.

Общая трудоемкость освоения дисциплины составляет 144 часа. Учебным планом предусмотрены лекционные занятия (18 часов), практические занятия (0 часов), лабораторные работы (36 часов), самостоятельная работа студента (90 часов). Дисциплина реализуется на 2 курсе в 4 семестре.

Содержание дисциплины охватывает следующий круг вопросов: основные понятия, определения и фундаментальные законы, методы анализа электрических, магнитных и электронных цепей; принципы действия, эксплуатационные особенности и выбор электротехнических устройств и электронных устройств; принципы действия и возможности применения электроизмерительных приборов и способы измерения электрических величин.

Дисциплина «Электротехника и электроника» логически и содержательно связана с такими курсами как «Физика», «Теплотехника», «Процессы и аппараты биотехнологии» и т.д.

Учебно-методический комплекс включает в себя:

Директор Департамента пищевых наук

и технологий ______Ю.В. Приходько

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет»

(ДВФУ)

ШКОЛА БИОМЕДИЦИНЫ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Электротехника и электроника

Направление подготовки 19.03.01 Биотехнология

профиль «Пищевая биотехнология»

Форма подготовки очная

курс 2 семестр 4	
лекции – 18 час.	
практические занятия —час	
лабораторные работы - 36 час.	
в том числе с использованием МАО -20 час.	
всего часов аудиторной нагрузки –54 час.	
самостоятельная работа – 27 час.	
контроль (СРС на подготовку к экзамену) - 63	3 час.
контрольные работы (количество)	
курсовая работа / курсовой проект	семестр
зачет семестр	
экзамен 4 семестр	

Рабочая программа составлена в соответствии с требованиями образовательного стандарта, самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора от 22.03.2017 г. №12-13-485

Рабочая программа обсуждена на заседании Департамента пищевых наук и технологий протокол № 5 от « 11 » июля 2018 г.

Директор Департамента пищевых наук и технологий <u>д.т.н., профессор Приходько Ю.В.</u> Составитель (ли): к.т.н., доцент Яблокова В.С.

Оборотная сторона титульного листа РПУД

има пересмотрена н	а заседании департамента	:
»	20 г. №	
(подпись)	(И.О. Фамилия)	
мма пересмотрена	на заседании департамент	a:
»	20 г. №	
ента		
	(И.О. Фамилия)	
	»ента	(подпись) (И.О. Фамилия) мма пересмотрена на заседании департамент "» 20 г. № ента

ABSTRACT

Bachelor's degree in 19.03.01 «Biotechnology»

Study profile « Food biotechnology».

Course title: "Electrical engineering and Electronics"

Basic (variable) part of Block B 1. B.07.03, 4 credits Basic part of Block

Instructor: Yablokova Victoria.

At the beginning of the course a student should be able to:

-the ability to search, storage, processing and analysis of information from various sources and databases, to represent it in required format using the information, computer and network technologies;

-willingness to take measurements and observations be descriptions of research, analyze research findings and use them when writing reports and scientific publications;

-know principles, structure, properties and uses and potential of electric and electronic devices measuring devices used in the operation.

Learning outcomes:

OK-5 ability to use modern methods and technology (including news) in a professional activity;

OPK-2 ability and willingness to use the basic laws of natural science disciplines in their professional activities, the use of methods of mathematical analysis and modeling, theoretical and experimental research;

OPK-3 ability to use knowledge about modern physical picture of the world, spatio-temporal patterns, building materials for understanding of the world and nature;

OPK-7 ability to find and evaluate new technological solutions, to implement the results of biotechnology research and development;

PC-19 willingness to engage in the design and the working of technical documentation.

Course description: The purpose of the discipline "Electrical engineering and Electronics" is that students receive theoretical training in the field of electrical engineering and electronics, the acquisition of practical skills in assembling and calculation of electric circuits, reading schemes, familiarity with the basics of instrumentation and with the basic electrical codes.

This training provides the skills of the qualitative calculation of production capacity and efficiency of the process equipment, as well as the skills of the evaluating and planning the implementation of innovations in production.

Main course literature:

1. Usoltsev A.a. General electrical engineering: tutorial. -St. Petersburg: SpbSU ITMO, 2009. -301 s.

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

- 2. Dondokov D.d. electrical engineering textbook Ulan-Ude, 2007 http://window.edu.ru/resource/411/77411/files/dondokov_posobie.pdf
- 3. Analysis of linear electric circuits: tutorial/M. Gorbenko, N. Mazaleva, A. N. Shein, V.S. Yablokova: Vladivostok: FAR EAST STATE UNIVERSITY, 2008. -112 s.
- 4. M.v. Galperin electronic engineering: tutorial. -2 Ed.-m.: Forum ID: infra-m, 2014.-352 s. access mode: http://www.kgau.ru/distance/etf_03/el-teh-ppp/et200.htm
- 5. Rekus G. G. Total electrical and industrial electronics basics [online resource]: tutorial/ G.G. Rekus; University Library online (OD). -Moscow: Abris, 2012 http://www.for-stydents.ru/details/uchebnoe-posobie-po-kursu-elektrotehniki-i-elektroniki.html
- 6. Ermuratskij P.V. Electrical and Electronics Engineering [online resource]: tutorial/ P.V. Ermuratskij, G.P.. Lychkina, J.B. Minkin: DMK Press, 2011 (http://e.lanbook.com/view/book/908)

- 7. Belov N.V. Electrical and electronics basics [online resource]: tutorial/ N.V. Belov, Y.S. Volkov. St. Petersburg, «Lan'», 2012 (http://e.lanbook.com/view/book/3553)
- 8. Serebryakov A. C. Electrical equipment and electronics. Laboratory workshop on ElectronicsWorkbench and Multisim [online resource]: Tutorial/ A. S. Serebryakov; University Library online (OD). -Moscow: Abris, 2012 http://www.studentlibrary.ru/book/ISBN9785437200674.html
- 9. Glushak l.v., Gorbenko Ym, Shein a.n., Yablokova V.s. electrical and magnetic ckpi: for students of all forms of learning at home study course electrical engineering: tutorial [electronic resource]/FEFU engineering school.-electron. Dan-Vladivostok: Dalnevost. Federal. UN-t. 2016.-[109]. -1 CD.. requirements 1.3 Ghz processor (Intel, AMD); RAM from 1 Gb. Windows (XP, Vista, 7, etc.); Acrobat Reader or any other equivalent. ISBN 978-5-7444-3803-6

http://elib.dvfu.ru/vital/access/manager/Repository/fefu:2501

10. Gorbenko Yu.m., Zhukov V.a., Yablokova V.S. Lab course "electrical and electronics engineering: Workshop/FEFU engineering school. -Vladivostok: Dalnevost. Federal. UN-t, 2018. – 26 s. – ISBN 978-5-7444-4247-7 www.dvfu.ru/schools/engineering/science/scientific-and-educational-publications/manuals/

Form of final knowledge control: examination

АННОТАЦИЯ

Дисциплина «Электротехника и электроника» ведется на 2 курсе 4 подготовки 19.03.01 семестра ДЛЯ направления «Биотехнология», квалификация (степень) бакалавр. Входит в базовую часть профессионального цикла – Б1.Б.07.03. Общая (специального) трудоемкость освоения дисциплины составляет 144 часа. Учебным планом предусмотрены лекционные занятия (18 часов), лабораторные работы (36 часов), самостоятельная работа студента (90 час.) (4 ЗЕТ).

1. Цели и задачи дисциплины

Целью изучения дисциплины является освоение и приобретение знаний и навыков:

- получать теоретическую подготовку в области электротехники и электроники,
- приобретать практические навыки по сборке и расчету электрических цепей, чтения схем, знакомству с принципами работы измерительных приборов и правилами электробезопасности;
- развивать инженерное мышления, необходимое для изучения специальных дисциплин, связанных с эксплуатацией электротехнического и электронного оборудования;
 - самостоятельно приобретать и использовать в практической деятельности новые знания и умения, расширять и углублять свое научное мировоззрение;
 - находить творческие решения профессиональных задач, уметь принимать нестандартные решения;
 - профессионально эксплуатировать современное оборудование;
 - оформлять, представлять и докладывать результаты работы;
- использовать современные и перспективные компьютерные и информационные технологии;
- решать инженерно-технические и экономические задачи с применением средств прикладного программного обеспечения.

Задачи:

- научить устанавливать приоритеты в сфере производства продукции питания;
- научить обосновывать принятие конкретного технического решения при разработке новых технологических процессов производства продуктов питания;
- выбирать технические средства и технологии с учетом экологических последствий их применения.

В результате изучения дисциплины студент должен:

иметь представление:

- о роли и месте дисциплины в развитии современной техники;
- о перспективах и направлениях ее развития;
- об основных понятиях, определениях и фундаментальных законах, методах анализа электрических, магнитных и электронных цепей;
- о принципах действия, эксплуатационных особенностях и выборе электротехнических устройств и электронных устройств;
- о принципах действия и возможностях применения электроизмерительных приборов и способах измерений электрических величин.

После завершения изучения дисциплины студент должен быть подготовлен к решению следующих задач для осуществления своей профессиональной деятельности:

- методически правильно осуществлять измерения в различных режимах электропотребления и эксплуатацию энергопотребляющего оборудования различного назначения;
- обладать навыками работы с приборами с различными по принципу действия и назначения, осуществляющие инструментальное исследование объектов, имеющих место в технологическом процессе;

- по результатам инструментальных измерений уметь диагностировать и прогнозировать техническое состояние электротехнических устройств.

2. Начальные требования к освоению дисциплины

Содержание дисциплины: Дисциплина «Электротехника и электроника» предусматривает изучение вопросов оценки И прогнозирования технического состояния по результатам инструментального обследования, сервисного обслуживания ДЛЯ безаварийной эксплуатации методов электрооборудования и базируется на общеинженерных и естественно – научных дисциплинах учебного плана (высшая математика, физика, химия, информатика, теоретическая механика, инженерная графика, теоретические основы теплотехники).

Требования к результатам освоения дисциплины «Электротехника и электроника»

В результате изучения данной дисциплины у студентов формируются следующие общепрофессиональные и профессиональные компетенции (элементы компетенций).

Код и формулировка компетенции	Этапы формирования компетенции		
ОК-5 способностью использовать современные методы и технологии (в том числе	Знает	современные прикладные задачи электротехники, методы и средства их решения в научно-исследовательской, проектно- конструкторской, производственно-технологической и других видах профессиональной деятельности	
информационные) в профессиональной деятельности	Умеет	применять инновационные технологии для создания энергосберегающих мероприятий используемых в различных устройствах	
	Владеет	способами работы с различными источниками информации; способами и методами решения задач инновационного развития техники	
ОПК-2 способностью и готовностью	Знает	современные проблемы отечественной и зарубежной электроэнергетики и электротехники	
использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы	Умеет	быстро находить и анализировать актуальную информацию в области профессиональной деятельности; творчески воспринимать и использовать углубленные теоретические и практические знания, которые находятся на передовом рубеже науки и техники в области электроэнергетики	

математического анализа и моделирования, теоретического и экспериментального исследования	Владеет	способностью к быстрому восприятию новых теоретических и практических знаний в области профессиональной деятельности и навыками принятия самостоятельных решений с их использованием
ОПК-3 способностью использовать знания о современной физической картине	Знает	терминологию, основные понятия и определения применяемых в электротехнике и электронике; показатели энергоэффективности эксплуатируемого электрооборудования
мира, пространственно- временных	Умеет	использовать для решения прикладных задач по электрическим цепям и электротехническим устройствам
закономерностях, строении вещества для понимания окружающего мира и явлений природы	Владеет	способностью выполнять исследования современных электротехнических устройств для решения производственных задач с использованием современной материальнотехнической базы
ОПК-7 способностью находить и оценивать новые	Знает	основные электротехнические законы и методы решения, необходимые для анализа электрических цепей
технологические решения, внедрять результаты биотехнологических исследований и разработок	Умеет	экспериментально определять параметры и характеристики типовых электротехнических и электронных элементов и устройств; производить измерение основных электрических величин, а также некоторых неэлектрических величин; включать электротехнические приборы и машины
	Владеет	методами математического описания протекающих процессов в электромагнитных устройствах и интерпретации полученных результатов в результате проведенных экспериментов
ПК-19 готовностью участвовать в разработке проектной и рабочей	Знает	сборку, монтаж, регулировку и ремонт узлов и механизмов оборудования, агрегатов, машин, станков и другого электрооборудования промышленных организаций
технической документации	Умеет	практический опыт: заполнения технологической документации; работы с измерительными электрическими приборами, средствами измерений, стендами
	Владеет	навыками реализации путей построения электрической сети с минимальными потерями с применением энергосберегающих технологий для повышения их энергоэффективности

Для формирования вышеуказанных компетенций в рамках дисциплины «Электротехника и электроника» применяются следующие методы активного обучения: лекция-дискуссия, методы проектов и мозгового штурма, рейтинговый метод, метод малых полемических групп.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

(18 ч., в том числе в форме активного обучения –10 ч.)

РАЗДЕЛ 1. Основные определения и методы расчета линейных и нелинейных электрических цепей постоянного тока

Тема 1. Введение. Основные задачи курса (2 часа).

Содержание и задачи курса. Роль электротехники в научнотехническом прогрессе. Краткая история развития. Общие вопросы теории цепей. Понятие об электрической цепи. Элементы цепей и их классификация. Реальные и идеализированные элементы. Основные топологические понятия теории электрических цепей. Законы Ома и Кирхгофа. Анализ цепей постоянного тока с одним источником энергии.

Тема 2. Анализ цепей постоянного тока с одним источником энергии (2 часа).

Мощность цепи постоянного тока. Баланс мощностей. Расчет нелинейных цепей постоянного тока.

РАЗДЕЛ 2. Анализ и расчет линейных цепей переменного тока Тема 1. Однофазные линейные электрические цепи (2 часа).

Переменные токи и напряжения. Основные определения. Активное сопротивление, индуктивность, емкость в цепи переменного тока. Цепи переменного тока с последовательным, параллельным соединением сопротивления, индуктивности и емкости. Активная, реактивная и полная проводимости. Смешанное соединение элементов. Мощность.

Тема 2. Трехфазные линейные электрические цепи (2 часа).

Основные элементы трехфазной цепи. Схемы звезда четырех- и трехпроводная, схема треугольник. Мощность трехфазной цепи. Измерение мощности в трехфазных цепях. Коэффициент мощности и пути его повышения. Вращающееся магнитное поле.

РАЗДЕЛ 3. Анализ и расчет магнитных цепей

Тема 1. Основные понятия теории электромагнитного поля и основные магнитные величины (2 часа).

Свойства ферромагнитных материалов. Определения, классификация, законы магнитных цепей. Магнитные цепи с постоянными магнитными потоками. Магнитные цепи с переменными магнитными потоками. Катушка с ферромагнитным сердечником. Электромагнитные устройства. Дроссели, контакторы, реле и т.п. Их принцип действия, характеристики и области применения.

РАЗДЕЛ 4. Электромагнитные устройства, электрические машины, основы электропривода и электроснабжения

Тема 1. Трансформаторы (1 час).

Однофазные трансформаторы. Назначение и область применения. Устройство и принцип действия однофазного трансформатора. Коэффициент трансформации. Опыты холостого хода и короткого замыкания. Векторная диаграмма и схема замещения. Работа трансформатора под нагрузкой. Потери энергии и КПД трансформатора. Внешние и рабочие характеристики трансформатора.

Тема 2. Электрические машины постоянного тока (1 час).

Основные физические явления в электрических машинах. Преобразование энергии. ЭДС обмоток, электромагнитный момент. Обратимость машин. Машины постоянного тока. Устройство и принцип действия. Режимы работы: генератор, двигатель, торможение. Основные характеристики. Области применения.

Тема 3. Асинхронные машины (1 час).

Область применения. Устройство и принцип действия трехфазной асинхронной машины. Паспортные данные асинхронных двигателей. Принцип работы и применение однофазных и двухфазных асинхронных двигателей.

Тема 4. Синхронные машины (1 час).

Синхронные машины. Синхронные генераторы. Устройство и принцип действия. Характеристики синхронного генератора. Особенности работы синхронного генератора в энергосистеме. Синхронные двигатели. Пуск синхронного двигателя. Механические и рабочие характеристики.

РАЗДЕЛ 5. Основы электроники и электрические измерения

Тема 1. Элементная база современных электронных устройств (2 часа).

Общие вопросы электроники. Место и роль электроники в научнотехническом прогрессе. Классификация полупроводниковых приборов. Образование и свойства P-N перехода. Полупроводниковые диоды. Биполярные и полевые транзисторы. Тиристоры. Полупроводниковые выпрямители. Сглаживающие фильтры. Усилители электрических сигналов.

Тема 2. Регенеративные импульсные устройства (2 часа).

Принцип построения и режимы работы регенеративных импульсных устройств. Мультивибраторы. Триггеры. Элементы вычислительных устройств. Логические элементы. Триггеры в интегральном исполнении. Счетчики импульсов. Регистры памяти. Шифраторы и дешифраторы. Сумматоры. Микропроцессоры.

Электрические измерения и приборы. Классификация измерительных приборов, их устройство. Методы измерений.

І. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Лабораторные работы (36 часов, в том числе в форме активного обучения –10 ч.)

Лабораторная работа №1. Определение параметров линейных элементов электрических цепей и исследование последовательного соединения этих элементов (4 часа).

Цель работы: изучение методов и техники прямого и косвенного измерений параметров электрической цепи постоянного тока, экспериментальная проверка основных законов для линейных цепей.

Задачи: ознакомиться с методами элементов электрической цепи, ознакомиться с последовательным соединением элементов электрической цепи, построить электрическую цепь.

Литература:

- 1. Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток:
- Изд-во ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- **3.** Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]: учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). –Москва: Абрис, 2012. 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html
- **4.** Усольцев А.А. Общая электротехника: Учебное пособие. СПб: СПбГУ ИТМО, 2009. 301 с. Режим доступа:

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

Лабораторная работа №2. Разветвленная цепь переменного тока. Резонанс токов (4 часа).

Цель работы: теоретический расчет токов и напряжений разветвленной цепи постоянного тока и экспериментальное подтверждение полученных результатов на лабораторном стенде.

Задачи: ознакомиться с электрической цепью разветвленного типа, провести теоретический расчет токов и напряжений с заданными данными, экспериментально подтвердить полученный результат.

Литература:

- 1.Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- 3. Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]: учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). –Москва: Абрис, 2012. 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html
- **4.** Усольцев А.А. Общая электротехника: Учебное пособие. СПб: СПбГУ ИТМО, 2009. 301 с. Режим доступа:

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

Лабораторная работа №3. Определение параметров и исследование режимов работы трехфазной цепи при соединении потребителей в звезду (4 часа).

Цель работы: изучение соотношений между токами и напряжениями в трехфазной цепи при соединении нагрузки по схеме «звезда» с нейтральным проводом и без него в различных режимах.

Задачи: ознакомиться с работой трехфазной цепи, рассчитать трехфазную электрическую цепь, соединенную по схеме «звезда».

Литература:

- 1. Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- **3.** Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]:

учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). –Москва: Абрис, 2012. – 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html

4. Усольцев А.А. Общая электротехника: Учебное пособие. - СПб: СПбГУ ИТМО, 2009. - 301 с. – Режим доступа:

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

Лабораторная работа №4. Определение параметров и исследование режимов работы трехфазной цепи при соединении потребителей в треугольник (4 часа).

Цель работы: изучение соотношений между токами и напряжениями в трехфазной цепи при соединении нагрузки по схеме «треугольник» в различных режимах.

Задачи: ознакомиться с работой трехфазной цепи, рассчитать трехфазную электрическую цепь, соединенную по схеме «треугольник».

Литература:

- 1.Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- **3.** Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]: учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). –Москва: Абрис, 2012. 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html
- **4.** Усольцев А.А. Общая электротехника: Учебное пособие. СПб: СПбГУ ИТМО, 2009. 301 с. Режим доступа:

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

Лабораторная работа №5. Испытание однофазного трансформатора (4 часа).

Цель работы: изучение устройства и принципа действия однофазного трансформатора.

Задачи: испытать однофазный трансформатор в режимах холостого хода, короткого замыкания и нагрузки, рассчитать параметры схемы замещения.

Литература:

- 1.Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- **3.** Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]: учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). –Москва: Абрис, 2012. 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html
- **4.** Усольцев А.А. Общая электротехника: Учебное пособие. СПб: СПбГУ ИТМО, 2009. 301 с. Режим доступа:

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

Лабораторная работа №6. Определение параметров и оценка статических характеристик генератора постоянного тока с независимым возбуждением (4 часа).

Цель работы: изучение и сравнительные исследования статических характеристик электропривода постоянного тока с двигателем независимого возбуждения с источником постоянного напряжения питания и по системе «Генератор-двигатель».

Задачи: ознакомиться со статистическими характеристиками электропривода постоянного тока, изучение системы «Генератор-двигатель», провести сравнительные исследования характеристик электропривода с двигателем независимого возбуждения с источником постоянного напряжения питания.

Литература:

- 1. Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- **3.** Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]: учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). –Москва: Абрис, 2012. 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html
- **4.** Усольцев А.А. Общая электротехника: Учебное пособие. СПб: СПбГУ ИТМО, 2009. 301 с. Режим доступа:

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

Лабораторная работа №7. Определение параметров и оценка статических характеристик электродвигателя постоянного тока с параллельным возбуждением (4 часа).

Цель работы: изучение принципа работы двигателя постоянного тока с параллельным возбуждением и его характеристик.

Задачи: ознакомиться с принципом работы двигателя с параллельным возбуждением, ознакомиться с характеристиками двигателя с параллельным возбуждением, построить рабочие характеристики, собрать схему с параллельным возбуждением по заданным условиям.

Литература:

- 1.Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- 3. Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]: учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). –Москва: Абрис, 2012. 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html
- **4.** Усольцев А.А. Общая электротехника: Учебное пособие. СПб: СПбГУ ИТМО, 2009. 301 с. Режим доступа:

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

Лабораторная работа №8. Испытание асинхронного трехфазного электродвигателя с короткозамкнутым ротором (4 часа).

Цель работы: изучить конструкцию трехфазного асинхронного двигателя с короткозамкнутым ротором.

Задачи: ознакомиться с конструкцией трехфазного асинхронного двигателя с короткозамкнутым ротором, освоить приемы опытной проверки обозначений выводов обмотки статора и исследовать экспериментально рабочие характеристики двигателя.

Литература:

- 1. Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- **3.** Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]:

учебное пособие / А. С.Серебряков ; Университетская библиотека онлайн (ЭБС). –Москва : Абрис, 2012. – 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html

4. Усольцев А.А. Общая электротехника: Учебное пособие. - СПб: СПбГУ ИТМО, 2009. - 301 с. – Режим доступа:

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

Лабораторная работа №9. Испытание однокаскадного транзисторного усилителя (4 часа).

Цель работы: Изучение принципа работы и исследование характеристик усилительных каскадов напряжения на биполярных транзисторах, включенных по схеме с общим эмиттером (стоком) и общим коллектором.

Задачи: ознакомиться с принципом работы усилительных каскадов напряжения, изучение характеристик усилительных каскадов на биполярных транзисторах, построить схему с общим стоком и общим коллектором.

Литература:

- 1. Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- **3.** Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]: учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). –Москва: Абрис, 2012. 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html
- **4.** Усольцев А.А. Общая электротехника: Учебное пособие. СПб: СПбГУ ИТМО, 2009. 301 с. Режим доступа:

http://window.edu.ru/resource/929/62929/files/itmo347.pdf

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Электротехника и электроника» представлено в Приложении 1 и включает в себя:

- характеристика заданий для самостоятельной работы студентов и методические рекомендации по их выполнению;
- требования к представлению и оформлению результатов самостоятельной работы;
 - критерии оценки выполнения самостоятельной работы.

КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

<u>№</u> п/п	Контролируемые модули/ разделы /	Коды и этапы формирования			ые средства - енование
	темы дисциплины	компетенций		текущий	промежуточная
				контроль	аттестация
1	Разделы 1, 2, 3	ОК-5,	Знает физическую	3,5,7	Зачет
		ОПК-2,	картину мира,	недели –	Вопросы 1-14
		ОПК-3,	пространственно-	блиц-опрос	перечня
		ОПК-7,	временные	на лекции	типовых
		ПК-19	закономерности,	И	вопросов
			строение вещества	практическ	зачета. ИДЗ.
			для понимания	ом занятии	(Приложение
		окружающего мира и		(YO)	2).
		явлений природы.			
			Умеет использовать		Зачет
			основные законы	недели –	Вопросы 15-29
			естественнонаучных	блиц-опрос	перечня
			дисциплин в	на лекции	типовых
			профессиональной	И	вопросов
			деятельности,	практическ	зачета. ИДЗ.
			применять методы	ом занятии	(Приложение
			математического	(YO)	2).
			анализа и		
			моделирования,		
			теоретического и		
			экспериментального		
			исследования.		

			D		
			Внедрять результаты		
			биотехнологических		
			исследований и		
			разработок.		
			Участвовать в		
			разработке		
			проектной и рабочей		
			технической		
			документации.		
			Владеет	3,5,7	Зачет
			способностью	недели –	Вопросы 30-42
			применения	блиц-опрос	перечня
			_ -	-	-
			современных	на лекции	типовых
			методов и	И	вопросов
			технологий (в том	практическ	зачета. ИДЗ.
			числе	ом занятии	(Приложение
			информационные) в	(YO)	2).
			профессиональной		
			деятельности.		
			Способностью		
			находить и		
			оценивать новые		
			технологические		
		0.74. 7	решения.	0.11.10	
2	Разделы 4,5	OK-5,	Знает физическую	9, 11, 13,	Зачет
		ОПК-2,	картину мира,	15, 17	Вопросы 43-46
		ОПК-3,	пространственно-	недели-	перечня
		ОПК-7,	временные	блиц-опрос	типовых
		ПК-19	закономерности,	на лекции	вопросов, ИДЗ.
			строение вещества	И	(Приложение
			для понимания	практическ	2)
			окружающего мира и	ом занятии	,
			явлений природы.	(YO)	
				12 неделя –	
				тестирован	
				ие (ПР-1);	
				14 неделя –	
				защита	
				ИДЗ	
				18 неделя-	
				защита	
				индивидуа	
				льной	
				домашней	
				задачи	
				(ПР-11),	
				тестирован	
	i	i	İ	ipopuii	i
				ие (ПР-1)	

X7	0 11 12	n
Умеет использовать	9, 11, 13,	Зачет
основные законы	15, 17	Вопросы 47-50
естественнонаучных	недели-	перечня
дисциплин в	блиц-опрос	типовых
профессиональной	на лекции	вопросов, ИДЗ.
деятельности,	И	(Приложение
применять методы	практическ	2)
математического	ом занятии	
анализа и	(Y O)	
моделирования,	12 неделя –	
теоретического и	тестирован	
экспериментального	ие (ПР-1);	
исследования.	14 неделя –	
Внедрять результаты	защита	
биотехнологических	защита ИДЗ	
исследований и	18 неделя-	
разработок.	защита	
Участвовать в	индивидуа	
разработке	льной	
проектной и рабочей	домашней	
технической	задачи	
документации.	(ΠP-11) ,	
	тестирован	
	ие (ПР-1)	
Владеет	9, 11, 13,	Зачет
способностью	15, 17	Вопросы 51-53
применения	недели-	перечня
современных	блиц-опрос	типовых
методов и	на лекции	
технологий (в том	И	вопросов, ИДЗ.
числе		(Приложение
		2)
	практическ	2)
информационные) в	ом занятии	2)
информационные) в профессиональной	ом занятии (УО)	2)
информационные) в профессиональной деятельности.	ом занятии (УО) 12 неделя –	2)
информационные) в профессиональной деятельности. Способностью	ом занятии (УО) 12 неделя – тестирован	2)
информационные) в профессиональной деятельности. Способностью находить и	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ;	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ; 14 неделя —	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ; 14 неделя — защита	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ; 14 неделя — защита ИДЗ	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ; 14 неделя — защита ИДЗ 18 неделя-	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ; 14 неделя — защита ИДЗ	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ; 14 неделя — защита ИДЗ 18 неделя-	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ; 14 неделя — защита ИДЗ 18 неделя-защита	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ; 14 неделя — защита ИДЗ 18 неделя-защита индивидуа	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1); 14 неделя — защита ИДЗ 18 неделязащита индивидуа льной домашней	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1); 14 неделя — защита ИДЗ 18 неделя-защита индивидуа льной домашней задачи	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1) ; 14 неделя — защита ИДЗ 18 неделя-защита индивидуа льной домашней задачи (ПР-11) ,	2)
информационные) в профессиональной деятельности. Способностью находить и оценивать новые технологические	ом занятии (УО) 12 неделя — тестирован ие (ПР-1); 14 неделя — защита ИДЗ 18 неделя-защита индивидуа льной домашней задачи	2)

Контрольные и методические материалы, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы

формирования компетенций в процессе освоения образовательной программы представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Кузовкин В.А., Филатов В.В., Электротехника и электроника: учебник для академического бакалавриата, Москва, Юрайт, 2015. 431 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:840941&theme=FEFU
- 2. Ермуратский П.В., Лычкина Г.П., Электротехника и электроника: учебник для вузов, Москва, ДМК Пресс, 2015. 416 с.

http://lib.dvfu.ru:8080/lib/item?id=chamo:800693&theme=FEFU

3. Прянишников В.А., Теоретические основы электротехники: курс лекций: учебное пособие для высших и средних учебных заведений, Санкт-Петербург, Корона принт, 2016. – 366 с.

http://lib.dvfu.ru:8080/lib/item?id=chamo:845566&theme=FEFU

- 4. Бессонов Л.А., Теоретические основы электротехники. Электромагнитное поле: учебник для бакалавров: учебник для технических вузов, Москва, Юрайт, 2014. 317 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:739131&theme=FEFU
- 5. Ермуратский, П.В. Электротехника и электроника [Электронный ресурс]: учебник / П. В. Ермуратский, Г. П. Лычкина, Ю. Б. Минкин. М.: ДМК Пресс, 2011. 417 с. http://e.lanbook.com/view/book/908/
- 6. Белов, Н. В. Электротехника и основы электроники [Электронный ресурс]: учебное пособие / Н. В. Белов, Ю. С. Волков. Спб.: Издательство Лань, 2012. 432 с. http://e.lanbook.com/view/book/3553/
- 7. Серебряков А. С. Электротехника и электроника. Лабораторный практикум на ElectronicsWorkbench и Multisim [Электронный ресурс]:

учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). — Москва: Абрис, 2012. — 337 с. http://www.studentlibrary.ru/book/ISBN9785437200674.html

8. Круглов, Г.А. Теплотехника [Электронный ресурс]: учебное пособие / Г.А. Круглов, Р.И. Булгакова, Е.С. Круглова. — Электрон. дан. — Санкт-Петербург: Лань, 2012. — 208 с. https://e.lanbook.com/book/3900

Дополнительная литература

- 1.Р.А.Кисаримов Ремонт электрооборудования. Справочник.-М.:ИП РадиоСофт.2006-544с.
- 2.Полупроводниковые приборы. Транзисторы. Справочник/Под.ред.Н.Н.Горюнова.-М.: Энергоатомиздат.2005- 901 с.

Перечень информационных технологий и программного обеспечения

При осуществлении образовательного процесса используется следующее программное обеспечение: Microsoft Office (Access, Excel, PowerPoint, Word и т. д); программное обеспечение для выполнения математических расчётов Mathcad; программное обеспечение электронного ресурса сайта ДВФУ, включая ЭБС ДВФУ.

образовательного При осуществлении процесса используются ЭБС следующие информационно ДВФУ, справочные системы: профессиональная поисковая система JSTOR, электронная библиотека диссертаций РГБ, Научная электронная библиотека eLIBRARY, электроннобиблиотечная система издательства «Лань», электронная библиотека электронно-библиотечная "Консультант студента", система IPRbooks, информационная система "ЕДИНОЕ ОКНО доступа к образовательным ресурсам".

Интернет-ресурсы:

www.edulib.ru – сайт Центральной библиотеки образовательных ресурсов.

http://elibrary.ru - Научная электронная библиотека.

http://www.auditiorium.ru – сайт «Российское образование».

http://www.rating.fio.ru – сайт Федерации Интернет-образования.

http://www.netlibrary.com – Сетевая библиотека.

http://www.rsl.ru – Российская Государственная библиотека.

https://www.dvfu.ru/library/ - Библиотека ДВФУ

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

На изучение дисциплины «Электротехника и электроника» отводится 54 час. аудиторных занятий и 90 час. самостоятельной работы.

Современные образовательные технологии предусматривают взаимосвязанную деятельность преподавателя и учащихся. При изучении данной дисциплины используются традиционные и интерактивные образовательные технологии:

- **лекции** (рассмотрение теоретического материала) с использованием мультимедийных технологий (презентации), диалог с аудиторией, устные блиц-опросы в начале лекции ориентированы на обобщение и определение взаимосвязи лекционного материала;

-лабораторные работы проводятся на основе совмещения коллективного и индивидуального обучения. На практических занятиях преподаватель методику расчета электрооборудования, расчёт дает электрических нагрузок, расчёта режимов ПО пройденным темам. Преподаватель контролирует работу студентов, отвечает на возникающие вопросы, подсказывает ход и методы решения. Последующая защита домашних индивидуальных заданий развивает навыки работы в коллективе, умение доказательно обосновывать свою речь, развивает коммуникативные и творческие навыки;

-самостоятельная работа в виде подготовки к рубежному тестированию и выполнению индивидуальных заданий направлена на закрепление материала, изученного в ходе лекций и практических занятий. Самостоятельная работа студентов в виде сообщений на семинаре основана на самостоятельном выборе обучающимися вопроса, который вызывает у него наибольший интерес, и позволяет расширить знания по изучаемой дисциплине.

По данной дисциплине разработаны учебные пособия, которые доступны в фондах НБ ДВФУ в соответствующем разделе.

Фонд оценочных средств

Оценка уровня освоения дисциплины «Электротехника и электроника» осуществляется в виде текущего и промежуточного контроля успеваемости студентов университета.

Контроль представляет собой набор заданий и проводится в форме контрольных мероприятий по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Объектами оценивания выступают:

- учебная дисциплина (посещаемость всех видов занятий по аттестуемой дисциплине и активность на занятиях);
- степень усвоения теоретических знаний (блиц-опросы, тестирование по разделам теоретического материала);
- результаты самостоятельной работы (защита реферата, выступление с докладом).

Оценивание проводится преподавателем независимо от наличия или отсутствия обучающегося (по уважительной или неуважительной причине) на занятии. Оценка носит комплексный характер и учитывает достижения обучающегося по основным компонентам учебного процесса за текущий период.

В случае, если студент не набирает баллов на положительную оценку, то он может участвовать в **экзамене** по этой дисциплине.

Экзаменационный билет содержит два теоретических вопроса, вопросы подбираются из различных разделов и тем, изучаемых в семестре. Время подготовки к ответу на зачете составляет 30-40 минут. При ответе на вопросы билета студент должен продемонстрировать знание теоретического материала и умение применить эти знания на практике.

Изложение материала должно быть четким, кратким и аргументированным. Ответ на экзамене оценивается максимально в 20 баллов, которые суммируются с накопленными баллами в течение семестра.

Суммарные баллы переводятся в традиционные «удовлетворительно», «хорошо», «отлично».

V. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Лекционные и практические занятия по дисциплине «Электротехника и электроника» проходят в аудиториях, оборудованных компьютерами типа Lenovo C360G-i34164G500UDK с лицензионными программами MicrosoftOffice 2010 и аудио-визуальными средствами проектор Panasonic DLPProjectorPT-D2110XE, плазма LG FLATRON M4716CCBAM4716CJ. Для выполнения самостоятельной работы студенты в жилых корпусах ДВФУ обеспечены Wi-Fi.

Лабораторные устройства:

- исследование преобразовательных устройств (схемы выпрямления);
- исследование однотактных и двухтактных полупроводниковых усилителей;
- исследование операционных усилителей;
- определение параметров полупроводниковых элементов и интегральных микросхем;

Лабораторные установки:

- испытание маломощных (60 Вт) 3 – х фазных электродвигателей;

- испытание маломощных (40 Вт) 2 х фазных электродвигателей;
- испытание маломощных (80 Вт) коллекторных двигателей.

Лабораторные стенды:

- определение параметров электротехнических устройств R,L и C;
- исследование одно трех фазных электрических цепей;
- испытание однофазного трансформатора;
- испытание маломощных электрических машин постоянного тока;
- испытание маломощных электрических машин переменного тока

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА БИОМЕДИЦИНЫ

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Электротехника и электроника» Направление подготовки 19.03.01 Биотехнология

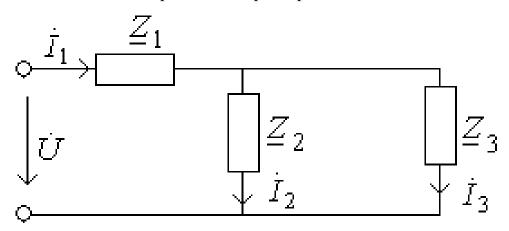
профиль «Пищевая биотехнология»

Форма подготовки очная

Владивосток 2018

План-график выполнения самостоятельной работы по дисциплине "Электротехника и электроника"

№	Дата/сроки	Вид	Примерные	Форма контроля
п/п	выполнения	самостоятельной	нормы	
11/11		работы	времени на	
			выполнение	
1.	1 неделя	тест, контрольный	1	ПР-1, УО-1
		опрос		
2.	2 неделя	тест, контрольный	1	ПР-1, УО-1
2.	2 педели	опрос	1	III -1, 5 O-1
		опрос		
3.	4 неделя	Выполненное ИДЗ.	3	ПР-2, УО-1, ПР-7
		Контрольный опрос		
4.	6 неделя	реферат	2	ПР-4, УО-1
		контрольный опрос		ŕ
5.	7 неделя	Выполненное ИДЗ,	3	УО-1, УО-3
		контрольный опрос		
6.	9 неделя	доклад	3	ПР-3, УО-1
		контрольный опрос		·
7.	10 неделя	Выполненное ИДЗ,	3	ПР-2, УО-1, ПР-7
		контрольный опрос		
8.	12 неделя	реферат	2	ПР-4, УО-1
		контрольный опрос		
9.	13 неделя	тест	1	УО-1, ПР-1,ПР-7
10.	15 неделя	Выполненное ИДЗ,	3	УО-1, УО-3
		контрольный опрос		
11.	16 неделя	контрольная работа	1	УО-1, ПР-2
12.	17 неделя	Выполненное ИДЗ,	3	УО-1, УО-3
		контрольный опрос		,
13.	18 неделя	тест	1	ПР-1, ПР-7
I	Итого)	27	


Материалы для самостоятельной работы студентов подготовлены в виде индивидуальных заданий по каждому разделу РПУД «Электротехника и электроника». Индивидуальные домашние задания (ИДЗ) «Электротехника и электроника» представлены Приложении 1.

Для расчётов и оформления ИДЗ используются программы: World, Excel, Vizio.

Характеристика заданий для самостоятельной работы студентов и методические рекомендации по их выполнению Варианты ИДЗ «Электротехника и электроника» Индивидуальное домашнее задание (ИДЗ) №1

Для каждого варианта определить

$$I_1, I_2, I_3, P, Q, U = 30B$$

Определить характер цепи.

Электрическая схема для расчета

Таблица 1

вариант	1, Ом	2, Ом	3, Ом
1	2-j2	_z -j6	_z 6
2	2-j2	10	-j10
3	2-j2 1+j3	5	-j5
4	1+j3	2	-j2
5	5+j10	-j5	-j5 -j2 5
6	5-j7	j2	2
7	4-j8 3+j6	4	j4
8	3+j6	-j3 j4	3
9	2-j6	j4	4
10	2-j6 2-j2 5+j5 4-j12	-j10	10
11	5+j5	j10	10
12	4-j12	j8	8
13	8-j16	j8 j8 -j2 j5	8
14	4+j6	-j2	2
15	10+j10	j5	5
16	j8 3-j6	4+j12	10
17	3-j6	j3	3
18	4-j4	j3 -j4	4
19	10+j22	-j12	12
20	-j5	5	5+j5

Индивидуальное домашнее задание №2

В трехфазную четырехпроводную сеть с симметричной системой линейных напряжений $\mathfrak{G}_{_{\! /}}$ включен несимметричный трехфазный потребитель электроэнергии, фазы которого имеют сопротивление \underline{Z}_a , \underline{Z}_b , \underline{Z}_c и соединены "звездой". Составить электрическую схему питания потребителей электроэнергии с указанием токов и напряжений, действующих в системе, с учетом приведенных в табл. 2 для каждого варианта задания данных. Определить: фазные токи \mathfrak{K}_a , \mathfrak{K}_b , \mathfrak{K}_c , ток в нейтральном проводе \mathfrak{K}_N , а также активную и реактивную мощности трехфазного потребителя в несимметричном режиме и при обрыве фазного провода В. При составлении схемы учесть характер сопротивлений каждой фазы, указанных в таблице вариантов.

Таблица 2

Номер варианта	$\mathfrak{G}_{_{\Pi}},\mathrm{B}$	\underline{Z}_a , Om	\underline{Z}_{b} ,Ом	\underline{Z}_{c} , Om
1	220	2	2	1.5+j2
2	380	8	6+j8	8
3	660	9+j12	12	12
4	220	16	16	12+j16
5	380	20	15+j20	20

6	660	18+j24	24	24
7	220	1.5	1.5	1.5+j2
8	380	3	3	3+j4
9	660	6+j8	6	6
10	220	9	9+j12	9
11	380	21	21	21+j32
12	660	24+j32	24	24
13	220	18	18+j24	18
14	380	12+j16	12	12
15	660	15	15	15+j20
16	220	24+j18	24	24
17	380	36	36+j48	36
18	660	24	24	24+j48
19	220	-3+j4	4	4
20	380	2	1.5+j2	2
21	660	32	32	24+j32
22	220	27+j36	27	27
23	380	21	21+j28	21
24	660	8	8	6+j8

Индивидуальное домашнее задание №3

Потребитель электроэнергии, фазы которого имеют сопротивления \underline{Z}_{ab} , \underline{Z}_{bc} , \underline{Z}_{ca} и соединены в трехфазную электрическую цепь "треугольником", питается симметричной системой линейных напряжений $\mathcal{E}_{\mathcal{J}}$. С учетом данных, приведенных в табл. 3. для каждого варианта задания определить фазные \mathcal{E}_{ϕ} и линейные токи, активную мощность P_a , P_b , P_c в каждой фазе и полную мощность трехфазного потребителя электроэнергии. Составить схему потребителя и обозначить все токи и напряжения.

Таблица 3

Номер варианта	७ , B	$\underline{Z}_{ab}, O_{M}$	$\underline{Z}_{bc}, O_{M}$	$\underline{Z}_{\mathrm{ca}},\mathrm{Om}$
1	220	5+j12	12	12

2	380	4	3+j4	4
3	660	8	6	6+j8
4	220	9+j12	9	9
5	380	16	16	12+j16
6	660	20	15+j20	20
7	220	24	18+j24	24
8	380	21+j28	20	20
9	660	24+j32	24	24
10	220	36	36	27+j36
11	380	2+j2	2	2
12	660	4	4+j4	4
13	220	5	5+j5	5
14	380	6	6	6+j6
15	660	7+j7	10	10
16	220	8+j8	8	8
17	380	10	2+j2	10
18	660	15+j20	15	15
19	220	12	12+j16	12

Индивидуальное домашнее задание №4

Трехфазный асинхронный электродвигатель с короткозамкнутым ротором единой серии 4A имеет номинальные данные, указанные для каждого варианта задания в табл. 4. К номинальным данным относятся:

- $U_{1\text{ном}}$ линейное напряжение питающей сети,
- f_1 =50 Гц частота питающего тока,
- $P_{2\text{ном}}$ мощность на валу,
- $n_{1\text{ном}}$ синхронная частота вращения магнитного поля,
- s_{HOM} скольжение ротора,
- η_{ном} КПД,
- $cos \phi_{HOM}$ коэффициент мощности,
- $m_i = I_{nyc\kappa}/I_{HOM}$ отношение начального пускового тока к номинальному току,
- $K_{\Pi} = M_{nyc\kappa}/M_{HOM}$ отношение начального пускового момента к номинальному моменту на валу:,
- $m_{max} = M_{max}/M_{HoM}$ отношение максимального к номинальному моменту. Определить номинальный M_{HoM} , максимальный M_{max} , пусковой M_{nyck} моменты,

номинальный $I_{1\text{ном}}$ иначальный пусковой $I_{1\text{пуск}}$ токи, число пар полюсов обмотки статора и мощность на зажимах двигателя $P_{1\text{ном}}$.

Таблица 4

			Е	Вариант	ы конт	рольног	о задани	я 1			
Техничес кие	1	2	3	4	5	6	7	8	9		10
данные		Тип электродвигателя									
электро-	4AA5	4AA6	4AA6	4A7	4A7	4AA8	4AA8	4A9	4A1	10 4	4A100L
двигателя	6B4	3A4	3B4	1A4	1B4	0A4	0B4	0L4	0S		4
$U_{1\text{HOM}}$, B	220	380	220	380	660	220	380	660	220	0	380
$P_{2\text{ном}}$, к B т	0,18	0,25	0,37	0,55	0,75	1,1	1,5	2,2	3		4
<i>п</i> _{1ном} , об∕мин	1500	1500	1500	1500	1500	1500	1500	1500	150	00	1500
S _{HOM} , %	8,9	8	9	7,3	7,5	5,4	5,8	5,1	4,4	4	4,6
$cos \varphi_{\text{hom}}$	0,64	0,68	0,68	0,7	0,72	0,75	0,77	0,8	0,8	2	0,84
$\eta_{\scriptscriptstyle HOM}$	0.64	0,65	0,69	0,7	0,73	0,81	0,83	0,83	0,8	3	0,84
m_i $=I_{nyc\kappa}/I_{HOM}$	3,5	4	4	4,5	5	5	6	6	6		6
$K_{\Pi} = M_{nyc\kappa}$ M_{HOM}	2,1	2	2	2	2	2	2	2,1	2		2
$K_m=M_{Max}/M_{HOM}$	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,4	2,4	4	2,4
			Ba	арианты	ы контр	ольного	задания	4			
	11	12	13	14	15	16	17	1	8	19	20
Техничес				Tı	 ип элек	 тродвига	ателя				
кие данные										4A2	
электро-	4A11	4A13	4A13	4A16					20	00L	4A22
двигателя	2M4	2S4	2M4	0S4	0M	4 0S ²	4 0M	4 ON	Л4	4	5M4
$U_{1{\scriptscriptstyle { m HOM}}}$, B	660	220	380	660	220	380) 660) 22	20	380	660
$P_{2\text{ном}}$, кВт	5,5	7,5	11	15	18,5	5 22	30	3	7	45	55
<i>п</i> _{1ном} , об∕мин	1500	1500	1500	1500	150	0 150	0 150	0 15	000	1500	1500

S_{HOM} , %	3,6	2,9	2,8	2,3	2,2	22	1,9	1,7	1,6	1,4
$cos \ \varphi_{\text{hom}}$	0,85	0,86	0,87	0,88	0,88	0,9	0,9	0,91	0,93	0,92
$\eta_{\scriptscriptstyle HOM}$	0,85	0,86	0,87	0,88	0,88	0,9	0,9	0,9	0,9	0,9
$m_i = I_{nyc\kappa}/I_{HOM}$	7	7	7,5	7	7	6,5	6,5	7	7	7
$K_{\Pi}=M_{nyc\kappa}/M_{HOM}$	2	2,2	2,2	1,4	1,4	1,4	1,4	1,4	1,4	1,3
$K_m=M_{Max}/M_{HOM}$	2,2	3	3	2,3	2,3	2,3	2,3	2,5	2,5	2,5

Таблица 4 а

			Bap	ианты ко	онтрольн	ного зада	ния 3.			
	21	22	23	24	25	26	27	28	29	30
Техничес кие				Тип э	лектрод	вигателя				
данные							4AA			
электро- двигателя	4A25 0S4	4A25 0M4	4A28 0S4	4AA5 6A2	4AA5 6B2	4AA6 3A2	63B 2	4A7 1A2	4A7 1B2	4A8 0A2
дынателя	051	01/11	051	0712	052	3112		1112	152	0112
ار م	220	200	660	220	200	220	200	200	220	200
$U_{1\text{HOM}}$, B	220	380	660	220	380	220	380	380	220	380
$P_{2\text{ном}}$, кВт	75	90	110	0,18	0,25	0,37	0,55	0,75	1,1	1,5
$n_{1_{HOM}}$,	1500	1500	1500	2000	2000	2000	2000	2000	2000	2000
об/мин	1500	1500	1500	3000	3000	3000	3000	3000	3000	3000
S_{HOM} , %	1,2	1,3	2,3	8	7,5	8,3	8,5	5,9	6,3	4,2
$\cos \varphi_{\text{HOM}}$	0,93	0,93	0,92	0,66	0,68	0,7	0,73	0,77	0,77	0,81
$\eta_{\scriptscriptstyle HOM}$	0,9	0,9	0,9	0,76	0,77	0,86	0,86	0,78	0,78	0,85
m_i $=I_{nyc\kappa}/I_{hom}$	7	7	6	4	4	4,5	4,5	5,5	5,5	6,5
,	,	,	0	7	7	7,5	7,5	3,3	3,3	0,3
$K_{\Pi}=M_{nyc\kappa}/M_{HOM}$	1,2	1,2	1,2	2	2	2	2	2	2	2,1
$K_m = M_{Max}$, 	, 								,
M_{HOM}	2,3	2,3	2	2,2	2,2	2,2	2,2	2,2	2,2	2,6

Индивидуальное домашнее задание №5

Определить расчетную мощность P_P и выбрать из табл.5. трехфазный асинхронный короткозамкнутый электродвигатель центробежного насоса, предназначенного для перекачки воды с производительностью Q. Частота вращения при непосредственном сочленении насоса с электродвигателем $n_{\text{ном}}$, коэффициент полезного двигателя насоса $\eta_{\text{ном}}$, напор насоса Н (данные в соответствии с вариантом представлены в табл. 5).

Таблина 5

				таолица 5
).C	Q	Н	$n_{{\scriptscriptstyle HOM}}$	$\eta_{{\scriptscriptstyle HOM}}$
№ варианта	M^3/H	M	об/мин	%
1	100	23	1450	70
2	100	19.8	1450	70
3	200	95	2950	70
4	200	77	2950	70
5	200	36	1450	72
6	200	23	1450	72
7	320	70	2950	78
8	300	44	2950	78
9	320	50	1450	76
10	320	37	1450	76
11	500	65	1450	76
12	500	40	1450	76
13	630	90	1450	75
14	630	76	1450	75
15	500	36	960	75
16	490	28	960	75
17	440	23	960	75
18	800	57	1450	82
19	1250	65	1450	86
20	800	28	960	86

Марки насосов и типы двигателей к заданию 5 а.

Марка	Тип	Мощность	Напряжение	Частота	Оптимальный
насоса	двигателя	двигателя	U	вращения	η не менее
		P		n_{HOM}	
		кВт	В	Об/мин	%
	4A280S2	110		2950	
Д200-95	AO2-92-2	100	220/380	2950	70
	AO2-91-2	75		2950	
	4A225M2	55		1450	
	AO2-61-4	13		1450	
	AO2-81-4	40			
Д200-36	4A200M-4	37	220/380		
	A02-72-4	30		1450	72
	4A180M-4	30			
	4A180S4	22			
	AO2-92-2	100			
Д320-70	4A250M-2	90	220/380	2950	78
	AO2-91-2	75			
	4A250S2	75			
	4A225M2	55			

Д320-50	4A280S4	75	220/380	1450	
Д320-30	AO2-91-4	75 75	220/360	1430	76
	AO2-91-4 AO2-82-4	7 <i>5</i> 55			70
	AO2-82-4	33			
H500.65	4 4 2003 #4	160	200/660	1450	
Д500-65	4A280M4	160	380/660	1450	7.6
	A03-315S4-4	160			76
	4H280S4	132			
Д630-90	AO3-355S-4	250	380	960	75
	A111-4M	250	380		
	A112-4M	200	6000		
	4A280M4	160	380/660		
	AO3355S-4	250	380		
Д800-57	A03-315-M4	200	380/660		82
2000 57	4AH280S4	132	380/660	1450	02
	4A280S4	110	380/660	1130	
	СД12-42-4	500	6000		
Д1250-65	AO113-4M	320	380		_
	A111-4M	250	380	1450	86
	A03-314M-4	200	380/660		
	A3-315S-6	110	220/380		
Д1250-65	4A280S6	75	220/380	960	86
	AO2-91-6	55	220/380		
Д1250-125	A12-52-4	630	6000	1450	
. ,	СД12-52-4	630	6000		76
	A12-41-4	500	6000		
	4A11355M4	400	380/660		
Д1600-90	A12-41-4	500	6000	1450	
	4AH355M4	400	6000		87
	4AH355S4	315	380/660		2.
Д1600-90	AO114-6	160	6000	960	87
71000 70	A30315M-6	132	220/380		<i>3 1</i>
	AO-315S6	110	220/380		
	AO-31380	110	220/300		

Индивидуальное домашнее задание №6

Определить действующее U_2 и амплитудное $U_{2\mathrm{m}}$ значения напряжения на вторичной обмотке трансформатора, его коэффициент трансформации K, постоянную составляющую выпрямленного тока I_0 , мощность P, выделяемую в сопротивлении нагрузочного резистора R_{H} Выбрать из табл.6 полупроводниковые вентили для двухполупериодного выпрямителя, выполненного по мостовой схеме (рис.1. \mathfrak{s}). Выпрямленное напряжение U_0 на нагрузочном резисторе R_{H} , напряжение питающей сети U_1 в соответствии с вариантом выбирается из табл. 6.

Таблица 6.

Варианты	1	2	3	4	5	6	7	8	9	10	11	12	13
$\underline{\mathbf{U}_0}, \underline{\mathbf{B}}$													

	265	254	318	380	95	63,7	159	127	254	127	382	127	64
<u>U₁, B</u>	220	380	127	220	380	127	380	220	380	500	220	380	600
$R_{\scriptscriptstyle{\mathcal{H},,,}}\mathrm{Om}$	26,5	25,4	31,8	380	9,5	3,2	8	6,4	25,4	12,7	19	6,6	3,2

Таблица а

Величины	14	15	16	17	18	19	20	21	22	23	24	25
<u>U₀, B</u>												
	44	127	95	158	76	50	159	127	64	16	22	382
<u>U₁, B</u>	380	220	380	380	220	127	380	380	220	127	127	600
$R_{\scriptscriptstyle H_{\scriptscriptstyle}}$ $O_{\scriptscriptstyle}M$	1,5	4	3,2	5,3	2,5	1,7	8	6,4	3,2	0,5	0,7	19

Технические параметры силовых диодов

Тип	КД30	КД20	КД20	КД20	2Д23	2Д23	2Д23	2Д24	КД298
прибора	3M	6A	6Б	6B	1A	9A	9Б	5A	9A
<u>Io, A</u>	10	1,0	1,0	1,0	10	20	20	10	20
Imax, A	10	10	10	10	10	20	20	10	20
<u>Umax,B</u>	420	400	500	600	150	100	150	400	600
Тип	2Д25	2Д25	2Д29	КД29	КД29	2Д29	2Д29	2Д29	2Д299
прибора	1B	2A	9Б	89B	94A	95B	95Д	95Ж	7A
Io, A	10	30	20	20	20	30	30	30	30
Imax, A	10	30	20	20	20	25	25	25	30
Umax, B	100	80	200	200	100	100	200	150	250

Требования к представлению и оформлению результатов самостоятельной работы Результаты самостоятельной работы студент выполняет в виде письменного отчета, содержащего пояснительную записку Изложение в пояснительной записке должно быть сжатым, ясным и сопровождаться формулами, цифровыми данными, схемами. Цифровой материал необходимо оформлять в виде таблиц.

Материал в представляется в следующей последовательности:

- титульный лист;
- задание на ИДЗ;
- материал по теме индивидуального задания;
- заключение;
- список использованных источников;
- приложения.

Материалы пояснительной записки должны быть изложены последовательно, лаконично, логически связаны. Пояснительная записка выполняется на компьютере на одной стороне листа формата A4. Таблицы и схемы могут быть выполнены на листах иного формата, но должны быть аккуратно сложены по формату A4. Объем отчета составляет не более 8- 10 страниц.

Титульный лист не нумеруется. На следующем листе ставится номер «2». Номер проставляется арабскими цифрами в нижнем правом углу страницы.

Допускается использование цветных рисунков, схем и диаграмм.

Текст оформляется в соответствии с требованиями делопроизводства, печатается через 1,5 интервала. Сверху страницы делается отступ 20 мм, слева — 25 мм, справа — 15 мм, снизу — 20 мм. Абзацные отступы должны быть равны 5 знакам.

Текст должен быть разделен на разделы и подразделы (заголовки 1-го и 2-го уровней), в случае необходимости – пункты, подпункты (заголовки 3-го

и 4-го уровней). Заголовки должны быть сформулированы кратко. Все заголовки иерархически нумеруются.

Основной текст следует набирать шрифтом Times New Roman с обычным начертанием. Заголовки 1-го и 2-го уровней следует набирать с полужирным начертанием, заголовки 3-го и 4-го уровней — обычным. Названия рисунков и таблиц рекомендуется набирать 12 шрифтом с полужирным начертанием.

По итогам выполнения ИДЗ выводится интегральная оценка, которая будет являться основной составляющей итоговой аттестации (зачет) по дисциплине «Электротехника».

Критерии оценки (письменный ответ)

- ✓ 100-86 баллов если ответ показывает глубокое и систематическое знание всего программного материала и структуры конкретного вопроса, а также основного содержания и новаций лекционного курса по сравнению с учебной литературой. Студент демонстрирует отчетливое и свободное владение концептуально-понятийным аппаратом, научным языком и терминологией соответствующей научной области. Знание основной литературы и знакомство с дополнительно рекомендованной литературой. Логически корректное и убедительное изложение ответа.
- ✓ 85-76 баллов знание узловых проблем программы и основного содержания лекционного курса; умение пользоваться концептуальнопонятийным аппаратом в процессе анализа основных проблем в рамках данной темы; знание важнейших работ из списка рекомендованной литературы. В целом логически корректное, но не всегда точное и аргументированное изложение ответа.
- ✓ 75-61 балл фрагментарные, поверхностные знания важнейших разделов программы и содержания лекционного курса; затруднения с использованием научно-понятийного аппарата и терминологии учебной дисциплины; неполное знакомство с рекомендованной литературой; частичные затруднения с выполнением предусмотренных программой

заданий; стремление логически определенно и последовательно изложить ответ.

✓ 60-50 баллов — незнание, либо отрывочное представление о данной проблеме в рамках учебно-программного материала; неумение использовать понятийный аппарат; отсутствие логической связи в ответе.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА БИОМЕДИЦИНЫ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Электротехника и электроника» Направление подготовки 19.03.01 Биотехнология

профиль «Пищевая биотехнология»

Форма подготовки очная

Владивосток 2018

Паспорт ФОС

по дисциплине «Электротехника и электроника»

Код и формулировка		Этапы формирования компетенции
компетенции		
ОК-5 способностью использовать современные методы и технологии (в том числе	Знает	современные прикладные задачи электротехники, методы и средства их решения в научно-исследовательской, проектно- конструкторской, производственно-технологической и других видах профессиональной деятельности
информационные) в профессиональной деятельности	Умеет	применять инновационные технологии для создания энергосберегающих мероприятий используемых в различных устройствах
	Владеет	способами работы с различными источниками информации; способами и методами решения задач инновационного развития техники
ОПК-2 способностью и готовностью	Знает	современные проблемы отечественной и зарубежной электроэнергетики и электротехники
использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы	Умеет	быстро находить и анализировать актуальную информацию в области профессиональной деятельности; творчески воспринимать и использовать углубленные теоретические и практические знания, которые находятся на передовом рубеже науки и техники в области электроэнергетики
математического анализа и моделирования, теоретического и экспериментального исследования	Владеет	способностью к быстрому восприятию новых теоретических и практических знаний в области профессиональной деятельности и навыками принятия самостоятельных решений с их использованием
ОПК-3 способностью использовать знания о современной физической картине	Знает	терминологию, основные понятия и определения применяемых в электротехнике и электронике; показатели энергоэффективности эксплуатируемого электрооборудования
мира, пространственно- временных	Умеет	использовать для решения прикладных задач по электрическим цепям и электротехническим устройствам
закономерностях, строении вещества для понимания окружающего мира и явлений природы	Владеет	способностью выполнять исследования современных электротехнических устройств для решения производственных задач с использованием современной материальнотехнической базы
ОПК-7 способностью находить и оценивать новые	Знает	основные электротехнические законы и методы решения, необходимые для анализа электрических цепей
технологические решения, внедрять результаты биотехнологических	Умеет	экспериментально определять параметры и характеристики типовых электротехнических и электронных элементов и устройств; производить измерение основных электрических величин, а

исследований и разработок		также некоторых неэлектрических величин; включать электротехнические приборы и машины
	Владеет	методами математического описания протекающих процессов в электромагнитных устройствах и интерпретации полученных результатов в результате проведенных экспериментов
ПК-19 готовностью участвовать в разработке проектной и рабочей	Знает	сборку, монтаж, регулировку и ремонт узлов и механизмов оборудования, агрегатов, машин, станков и другого электрооборудования промышленных организаций
технической документации	Умеет	практический опыт: заполнения технологической документации; работы с измерительными электрическими приборами, средствами измерений, стендами
	Владеет	навыками реализации путей построения электрической сети с минимальными потерями с применением энергосберегающих технологий для повышения их энергоэффективности

Шкала оценивания уровня сформированности компетенций по дисциплине «Электротехника и электроника»

Код и Этапы формирования формулировка компетенции		Критерии	Показатели	Баллы	
ОК-5 способностью использовать современные методы и технологии (в том числе информационные) в профессиональ ной деятельности	Знает (пороговы й уровень)	современные прикладные задачи электротехни ки, методы и средства их решения в научно-исследовател ьской, проектно-конструкторс кой, производстве нно-технологичес кой и других видах профессиона льной	Знание современных прикладных задач электротехники, методов и средств их решения в научно-исследовательск ой, проектно-конструкторской , производственно - технологической и других видах профессиональн ой деятельности	Способность решать современные прикладные задачи электротехники, методы и средства их решения в научно-исследовательско й, проектно-конструкторской, производственнотехнологической и других видах профессионально й деятельности	45-64

		деятельности			
	Умеет (продвину тый)	применять инновационные технологии для создания энергосберегающих мероприятий, используемых вразличных устройствах	Умение применять инновационные технологии для создания энергосберегаю щих мероприятий, используемых в различных устройствах	Способность использовать инновационные технологии для создания энергосберегающ их мероприятий, используемых в различных устройствах	65-84
	Владеет (высокий)	способами работы с различными источниками информации; способами и методами решения задач инновационн ого развития техники	Владение способами работы с различными источниками информации; способами и методами решения задач инновационного развития техники	Способность работать с различными источниками информации; способами и методами решения задач инновационного развития техники	85-100
ОПК-2 способностью и готовностью использовать основные законы естественнонау чных дисциплин в профессиональ ной	Знает (пороговы й уровень)	современные проблемы отечественно й и зарубежной электроэнерг етики и электротехни ки	Знание современных проблем отечественной и зарубежной электроэнергети ки и электротехники	Способность использовать знания современных проблем отечественной и зарубежной электроэнергетик и и электротехники	45-64
нои деятельности, применять методы математическо го анализа и моделирования , теоретического и экспериментал ьного исследования	Умеет (продвину тый)	быстро находить и анализироват ь актуальную информацию в области профессиона льной деятельности; творчески воспринимат ь и использовать углубленные теоретически	Умение быстро находить и анализировать актуальную информацию в области профессиональн ой деятельности; творчески воспринимать и использовать углубленные теоретические и	Способность быстро находить и анализировать актуальную информацию в области профессионально й деятельности; творчески воспринимать и использовать углубленные теоретические и	65-84

		е и практические знания, которые находятся на передовом рубеже науки и техники в области электроэнергетики способность ю к быстрому восприятию	практические знания, которые находятся на передовом рубеже науки и техники в области электроэнергети ки Владение способностью к быстрому	практические знания, которые находятся на передовом рубеже науки и техники в области электроэнергетик и Способность быстро воспринимать	85-100
	Владеет (высокий)	новых теоретически х и практических знаний в области профессиона льной деятельности и навыками принятия самостоятель ных решений с их использовани ем	восприятию новых теоретических и практических знаний в области профессиональн ой деятельности и навыками принятия самостоятельны х решений с их использованием	новые теоретические и практические знания в области профессионально й деятельности и навыки принятия самостоятельных решений с их использованием	
ОПК-3 способностью использовать знания о современной физической картине мира, пространствен но-временных закономерност ях, строении вещества для понимания окружающего мира и явлений	Знает (пороговы й уровень)	терминологи ю, основные понятия и определения применяемых в электротехни ке и электронике; показатели энергоэффект ивности эксплуатируе мого электрообору дования	Знание терминологии, основных понятий и определений, применяемых в электротехнике и электронике; показателей энергоэффектив ности эксплуатируемог о электрооборудов ания	Способность оперировать основными понятиями и определениями, применяемых в электротехнике и электронике	45-64
природы	Умеет (продвину тый)	использовать накопленные знания для	Умение использовать накопленные	Способность использовать накопленные	65-84

		решения прикладных задач по электрически и цепям и электротехни ческим устройствам	знания для решения прикладных задач по электрическим цепям и электротехничес ким устройствам	знания для решения прикладных задач по электрическим цепям и электротехническ им устройствам	
	Владеет (высокий)	способность ю выполнять исследования современных электротехни ческих устройств для решения производстве нных задач с использовани ем современной материальнотехнической базы	Владение способностью выполнять исследования современных электротехничес ких устройств для решения производственн ых задач с использованием современной материально- технической базы	Способность выполнять исследования современных электротехническ их устройств для решения производственных задач с использованием современной материальнотехнической базы	85-100
ОПК-7 способностью находить и оценивать новые технологическ ие решения, внедрять результаты биотехнологич еских	Знает (пороговы й уровень)	основные электротехни ческие законы и методы решения, необходимые для анализа электрически х цепей	Знание основных электротехничес ких законов и методов решения, необходимых для анализа электрических цепей	Способность анализировать электрические цепи при решении задач	45-64
исследований и разработок	Умеет (продвину тый)	эксперимента льно определять параметры и характеристи ки типовых электротехни ческих и электронных элементов и устройств; производить измерение	Умение экспериментальн о определять параметры и характеристики типовых электротехничес ких и электронных элементов и устройств; производить измерение	Способность определять параметры и характеристики типовых электротехническ их и электронных элементов и устройств; производить измерение основных электрических	65-84

		основных электрически х величин, а также некоторых неэлектричес ких величин; включать электротехни ческие приборы и машины	основных электрических величин, а также некоторых неэлектрических величин; включать электротехничес кие приборы и машины	величин, а также некоторых неэлектрических величин	
	Владеет (высокий)	методами математическ ого описания протекающих процессов в электромагни тных устройствах и интерпретаци и полученных результатов в результате проведенных эксперименто в	Владение методами математического описания протекающих процессов в электромагнитн ых устройствах и интерпретации полученных результатов в результате проведенных экспериментов	Способность проводить математическое описание протекающих процессов в электромагнитных устройствах и интерпретации полученных результатов в результате проведенных экспериментов	85-100
ПК-19 готовностью участвовать в разработке проектной и рабочей технической документации	Знает (пороговы й уровень)	сборку, монтаж, регулировку и ремонт узлов и механизмов оборудовани я, агрегатов, машин, станков и другого электрообору дования промышленн ых организаций	Знание сборки, монтажа регулировки и ремонта узлов и механизмов оборудования, агрегатов, машин, станков и другого электрооборудов ания промышленных организаций	Способность собирать, ремонтировать узлы и механизмы оборудования, агрегатов, машин, станков и другого электрооборудова ния промышленных организаций	45-64
	Умеет	заполнять	Умение	Способность	65-84

тый)	кую	технологическу	технологическую	
	документаци	Ю	документацию;	
	ю; работать с	документацию;	работать с	
	измерительн	работать с	измерительными	
	ыми	измерительными	электрическими	
	электрически	электрическими	приборами,	
	МИ	приборами,	средствами	
	приборами,	средствами	измерений,	
	средствами	измерений,	стендами	
	измерений,	стендами		
	стендами			
		D	0 6	05.100
	навыками	Владение	Способность	85-100
	реализации	навыками	реализовывать	
	путей	реализации	путеи построения	
	построения	путей	электрической	
	электрическо	построения	сети с	
	й сети с	электрической	минимальными	
	минимальны	сети с	потерями с	
	ми потерями	минимальными	применением	
Владеет	c	потерями с	энергосберегающ	
(высокий)	применением	применением	их технологий для	
	энергосберег	энергосберегаю	повышения их	
	ающих	щих технологий	энергоэффективно	
	технологий	для повышения	сти	
	для	их		
	повышения	энергоэффектив		
	их	ности		
	энергоэффект			
	ивности			

Методические материалы, определяющие процедуры оценивания результатов освоения дисциплины

Текущая аттестация студентов. Текущая аттестация студентов по дисциплине «Электротехника и электроника» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной. Текущая аттестация по дисциплине «Электротехника и электроника» проводится в форме контрольных мероприятий (устного опроса, защиты расчётно-графической работы и индивидуального домашнего задания,

тестирования) по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Объектами оценивания выступают:

- учебная дисциплина (активность на занятиях, своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
 - степень усвоения теоретических знаний;
- уровень овладения практическими умениями и навыками по всем видам учебной работы;
 - результаты самостоятельной работы.

Каждому объекту оценивания присваивается конкретный балл. Составляется календарный план контрольных мероприятий по дисциплине и внесения данных в АРС. По окончании семестра студент набирает определенное количество баллов, которые переводятся в пятибалльную систему оценки.

Промежуточная аттестация студентов. Промежуточная аттестация студентов по дисциплине «Электротехника и электроника» проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Согласно учебному плану ОС ВО ДВФУ видом промежуточной аттестации по дисциплине «Электротехника и электроника» предусмотрен зачет.

Вопросы к экзамену по дисциплине «Электротехника и электроника»

- 1. Элементы электрической цепи и их параметры: сопротивление, катушка, емкость.
 - 2. Соединение элементов электрической цепи. Законы Кирхгофа.

- 3. Законы электромагнитных явлений: закон электромагнитной индукции, закон электромагнитных сил, правило Ленца.
 - 4. Тепловое действие электрического тока. Закон Джоуля Ленца
- 5. Основные понятия и определения однофазного переменного тока. Временная и векторная диаграмма переменного тока.
 - 6. Действующие значения переменного тока. Вывод, анализ.
- 7. Неразветвленные электрические цепи: цепь с активным сопротивлением.
 - 8. Неразветвленные цепи: цепь с индуктивностью, свойства, ВД.
- 9. Неразветвленные цепи: цепь с активным сопротивлением и индуктивностью. Схема, работа, ВД.
 - 10. Неразветвленные цепи: цепь с емкостью. Схема, работа, ВД.
- 11. Неразветвленные цепи: цепь с активным сопротивлением, индуктивностью и емкостью. Схема, работа, ВД.
- 12. Разветвленные цепи: цепь с активным сопротивлением, индуктивностью и емкостью. Схема, работа, ВД.
- 13. Мощности цепей переменного тока с активным сопротивлением. Схема, свойства.
- 14. Мощности цепей переменного тока с индуктивным сопротивлением. Схема, свойства.
 - 15. Активная, реактивная и полная мощность электрической цепи
- 16. Расчет цепей переменного тока символическим методом. Последовательное соединение элементов *R,L,C*.
- 17. Расчет цепей переменного тока символическим методом. Параллельное соединение элементов R, L, C.
 - 18. Резонанс напряжения. Схема, работа, свойства.
 - 19. Резонанс токов. Схема, работа, свойства.
 - 20. Коэффициент мощности и методы его повышения.
 - 21. Получение трехфазного тока. Свойства трехфазных цепей.
 - 22. Трехфазные электрические цепи: соединение по схеме звезда.

Анормальные режимы в соединении по схеме звезда.

- 23. Трехфазные электрические цепи: соединение по схеме треугольник. Анормальные режимы в соединении по схеме треугольник.
- 24. Мощность в цепи трехфазного тока. Измерение мощности в 3-х фазной цепи.
- 25. Физика Р- N перехода. Выпрямительные диоды, статическаяхаркка.
- 26.Статические преобразователи электрической энергии. Показать на примере однофазной, однополупериодной схемы выпрямления. Схема, работа, параметры.
- 27. Статические преобразователи электрической энергии. Показать на примере однофазной, мостовой схемы выпрямления. Схема, работа, параметры.
- 28.Статические преобразователи электрической энергии. Показать на примере трехфазной, мостовой схемы выпрямления. Схема, работа, параметры.
 - 29. Биполярный транзистор. Принцип действия, статические свойства.
- 30. Однокаскадный усилитель переменного тока. Схема, работа, свойства.
- 31.Логические элементы цифровых устройств. Элементы "HE", "ИЛИ", "И", применение.
 - 32. Цифроаналоговые преобразователи (ЦАП). Схема, работа.
 - 33. Аналогоцифровой преобразователь (АЦП). Схема, работа.
 - 34. Полевой транзистор. Принцип действия, статические свойства
 - 35. Устройства на логических элементах. RS- триггер. Схема, работа.
- 36. Устройства на логических элементах. Счетчики, регистры. Схема, работа.
 - 37. Оптроны. Принцип действия, схема, применение.

- 38. Аналоговые измерительные приборы. Приборы электромагнитной системы. Принцип действия, конструкция.
- 39. Аналоговые измерительные приборы. Приборы магнитоэлектрической системы. Принцип действия, конструкция.
- 40. Аналоговые измерительные приборы. Приборы электродинамической системы. Принцип действия, конструкция.
- 41. Трансформатор. Устройство, принцип действия, режим холостого хода.
- 42. Трансформатор. Рабочий режим, испытания трансформатора. Внешняя характеристика.
- 43. Асинхронные электродвигатели. Устройство и принцип действия 3фазного АД.
- 44. Вращающий момент и механическая характеристика 3-фазного А.Д.
- 45. Управление 3-фазным А.Д. Пуск, регулирование скорости вращения, торможение.
- 46. Электрические машины постоянного тока. Конструкция, принцип действия, основные уравнения.
- 47. Двигатель постоянного тока. Вращающий момент и мощность двигателя.
 - 48. Управление двигателем постоянного тока. Способы управления.
- 49. Генераторы постоянного тока. Способы возбуждения. Схема, характеристики.
- 50. Синхронный генератор. Устройство принцип действия. Магнитные потоки в СГ.
 - 51. Аппаратура управления двигателем. Магнитный пускатель.
 - 52. Оптроны. Схемы управления двигателем на оптронах.
 - 53. Разветвленные магнитные цепи. Схема.
 - 54. Ветвь, контур, узел электрической цепи. Схема.
 - 55. Закон Ома.

- 56. Изобразите электрическую цепь с последовательным подключением.
 - 57. Синхронные машины.
 - 58. Асинхронные машины.
 - 59. Виды сопротивлений в цепях переменного тока.
 - 60. Виды сопротивлений в цепях постоянного тока.
 - 61. Пуск электродвигателя.
 - 62. Закон полного тока.
 - 63. Измерение мощности. Схема.
 - 64. Изобразите электрическую цепь с параллельным подключением.
 - 65. Виды и методы электрических измерений.
 - 66. Соединения по схеме «Звезда».
- 67. Система охлаждения. Дать характеристику искусственного воздушного охлаждения трансформатора.
 - 68. Соединение по схеме «Треугольник».
 - 69. Составить простейшую электрическую цепь.
 - 70. Классификация вакуумных приборов.
 - 71. Расчет магнитной цепи.
 - 72. Составить простейшую магнитную цепь.
 - 73. Комбинированные лампы.
 - 74. Ионные приборы.
 - 75. Простейшие схемы переменного тока.

1. Однофазные цепи переменного тока

1. Стандартной единицей ЭДС является:

- а) Ом; б) Кулон; в) Ампер; г) Вольт; д) Ни одна из них.
- 2.Пять резисторов с номиналом в 100 Ом каждый соединены в параллельную цепь. Чему равно эквивалентное сопротивление.
 - а) 500 Ом; б) 50 Ом; в) 20 Ом; г) 100 Ом.

3.	Частота	волны	переменного	тока	обратно	пропорі	іиональна:
\sim	iacivia	DOMIND	IICDCMCIIIUI U	ivixa	oopaino	HOHIODI	tiiviiajibiia.

- а) амплитуде; б) току; в) сопротивлению; г) периоду.
- 4. Согласно закону Ома, если сопротивление в цепи остается постоянным, а напряжение, приложенное к сопротивлению, падает, тогда:
 - а) ток через сопротивление увеличивается;
 - б) ток через сопротивление уменьшается;
 - в) ток через сопротивление падает до нуля;
 - г) необходимо больше информации для ответа на этот вопрос.

5. Для того чтобы сложить два комплексных числа:

- а) действительные и мнимые части должны быть перемножены;
- б) действительные и мнимые части нужно сложить отдельно;
- в) действительные и мнимые части должны быть сокращены;
- г) действительные и мнимые части должны быть возведены в степень.

6. В резонансной цепи реактивные проводимости:

- а) равны и подобны (обе индуктивные или обе емкостные);
 - б) равны и противоположны (одна индуктивная, а другая емкостная);
 - в) обе равны нулю;
 - г) обе неопределимы.

7. Цепь переменного тока содержит конденсатор сопротивлением

$$X_c=40$$
 Ом. Напряжение на входе схемы $u=120\sin\left(\omega t-\frac{\pi}{2}\right)$.

Мгновенное значение тока, протекающего через конденсатор:

а) определить невозможно;

6)
$$i = 3\sin(\omega t - \pi)$$
; B) $i = 3\sin\omega t$ Γ) $i = 3\sin(\omega t - \frac{\pi}{2})$.

- 8. Напряжение сети составляет 120 В. Общий ток, потребляемый четырьмя параллельно включенными одинаковыми лампами, равен 6 А. Сопротивление каждой лампы равно:
- а) 5 Ом; б) 20 Ом; в) 10 Ом; г) необходимо больше информации для ответа на этот вопрос.
- 9. В электрическую цепь, напряжением 200 В последовательно включены резистор сопротивлением 50 Ом, катушка индуктивности активным сопротивлением 30 Ом и индуктивным сопротивлением 40 Ом, а также конденсатор емкостным сопротивлением 100 Ом. Активная и реактивная мощности:
 - a) P = 240 Bm, Q = 320 BAp;
 - 6) P = 320 Bm, Q = 240 BAp;
 - B) P = 640 Bm, Q = 480 BAp;
 - г) невозможно определить мощности.
- 10. Действующее значение напряжения, приложенного к однофазной цепи равно 220 В. Полное сопротивление цепи 100 Ом. Амплитуда тока в цепи равна:
 - a) 2,2 A;
 - б) $2,2\sqrt{2}$ A;
 - B) $2,2/\sqrt{2}$ A;
 - г) необходимо больше информации для ответа на этот вопрос.
- 2. Трехфазные цепи
- 1. Активная симметричная нагрузка трехфазной цепи соединена треугольником. Линейное напряжение 200 В, фазный ток 10 А. Мощность, потребляемая нагрузкой:
 - а) 3 кВт; б) 2 кВт; в) 6 кВт; г) 12 кВт.
- 2. Активная симметричная нагрузка трехфазной сети соединена в звезду с нулевым проводом. Фазные напряжения симметричной

системы равны 380 В. Сопротивление нагрузки каждой фазы равно 100 Ом. Чему будут равны ток и сопротивление в фазе *В*, если произошел обрыв этой фазы. Сопротивлением проводов пренебречь.

- a) $I_B = 0$, $R_B = \infty$;
 - б) $I_B = 3.8 A$, $R_B = 100 O_M$;
 - B) $I_B = 3.8\sqrt{3} A$, $R_B = 100 O_M$;
- 3. В трехфазной сети, активная нагрузка в которой соединена в треугольник, сопротивления в фазах BC и CA равны по 100 Ом, сопротивление в фазе AB 200 Ом. Действующее значение напряжения в каждой фазе $U_{\phi}=220$ В. Действующее значение тока в нулевом проводе:
 - a) 1,1 A;
 - б) 0;
 - в) нулевой провод отсутствует;
 - г) ток в нулевом проводе определить невозможно.
- 4. Симметричная нагрузка трехфазной цепи соединена звездой, линейное напряжение 380 В. Фазное напряжение:
 - а) 127 В; б) 660 В; в) 380 В; г) 220 В.
- 5. Полная мощность, потребляемая трехфазной нагрузкой, $S = 2000\,$ В A, реактивная мощность $Q = 1200\,$ Вар. Коэффициент мощности:
 - a) $\cos \varphi = 1$; 6) $\cos \varphi = 0.8$; B) $\cos \varphi = 0$;
 - г) необходимо больше информации для ответа на этот вопрос.
- 6. В четырехпроводной трехфазной цепи произошел обрыв нулевого провода. Изменятся или нет фазные и линейные напряжения.
 - а) U_{ϕ} не изменятся, U_{π} не изменятся;
 - б) U_{ϕ} изменятся, U_{π} не изменятся;
 - в) U_{ϕ} изменятся, U_{π} изменятся;
 - г) U_{ϕ} не изменятся, U_{π} изменятся.

- 7. В симметричной трехфазной цепи, соединенной в треугольник ток в фазе $CAi_{CA}=10$ А. Определите ток в линейном проводе A.
 - a) $10\sqrt{3}$ A; 6) 10 A; b) $10/\sqrt{3}$ A;
 - г) необходимо больше информации для ответа на этот вопрос.
- 8. Симметричная нагрузка трехфазной цепи соединена в треугольник. Активная мощность, потребляемая одной фазой, равна 1000 Вт. Полная мощность трехфазной цепи составляет 3000 В А. Реактивная мощность, потребляемая трехфазной нагрузкой и угол нагрузки:
 - а) $Q = 2000 \,\mathrm{Bap}$, $\varphi = 45^{\circ}$; б) Q = 0, $\varphi = 0$; в) $Q = 1000 \,\mathrm{Bap}$, $\varphi = 0$; г) Q = 0.
- 9. Симметричная нагрузка трехфазной цепи соединена звездой. Ток в фазе равен 1 А. Токи в линейном и нулевом проводах:
 - a) $I_{JI}=1,732$ A, $I_{N}=1,732$ A; 6) $I_{JI}=1,732$ A, $I_{N}=0$; B) $I_{JI}=1$ A, $I_{N}=0$;
 - Γ) $I_{\mathcal{I}} = 0$, $I_{\mathcal{N}} = 0$.
- 10. В фазах трехфазной нагрузки, соединенной в треугольник установлены следующие сопротивления: $Z_{AB}=10+j10$, $Z_{BC}=10-j10$, $Z_{CA}=10+j10$. Является ли эта нагрузка: 1) симметричной; 2) равномерной.
 - а) 1. да, 2 нет; б) 1. нет, 2. да; в) 1. нет, 2. нет; г) 1. да, 2. да
 - 3. Трансформаторы
- 1. Для чего предназначены трансформаторы?
- а) для преобразования переменного напряжения одной величины в переменное напряжение другой величины без изменения частоты тока;
 - б) для преобразования частоты переменного тока;
 - в) для повышения коэффициента мощности;

- г) все перечисленные выше ответы верны.
- 2. Для чего сердечник трансформатора собирают из тонких листов электротехническойстали, изолированных друг от друга?
 - а) для уменьшения нагревания магнитопровода;
 - б) для увеличения коэффициента трансформации;
 - в) для уменьшения коэффициента трансформации.
- 3. Где широко применяются трансформаторы?
 - а) в линиях электропередачи;
 - б) в технике связи;
 - в) в автоматике и измерительной технике;
 - г) во всех перечисленных выше областях.
- 4. Можно ли использовать повышающий трансформатор для понижения напряжения сети?
 - а) можно; б) нельзя; в) затрудняюсь ответить.
- 5. Определите напряжение сети, в которую можно включить однофазный трансформатор с напряжением на вторичной обмотке 400 В и коэффициентом трансформации 20,5.
- a) 8200 B; б) 195 B; в) 4100 В.
- **6.** Чем принципиально отличается автотрансформатор от трансформатора?а) малым коэффициентом трансформации;
- б) возможностью изменения коэффициента трансформации;
- в) электрическим соединением первичной и вторичной цепей;
- г) меньшими размерами сердечника.
- 7. Что показывает ваттметр, включенный в первичную цепь трансформатора, если вторичная цепь разомкнута?
- а) потери энергии в сердечнике трансформатора;
- б) потери энергии в первичной обмотке трансформатора;
- в) потери энергии в обмотках трансформатора;
- г) ничего не показывает (нуль).

8. Как изменятся потери в обмотках трансформатора при уменьшении тока нагрузки в два раза?

- а) уменьшатся в два раза;
- б) уменьшатся в четыре раза; в) увеличатся в два раза;
- г) не изменятся.

9. В каком режиме нормально работает измерительный трансформатор тока?

- а) в режиме холостого хода;
- б) в режиме короткого замыкания;
- в) в режиме, при котором КПД максимален;г) в режиме оптимальной нагрузки.

10. Сколько стержней должен иметь сердечник трехфазного трансформатора?

а) один; б) два; в) три; г) четыре.

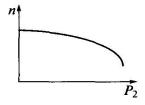
Машины постоянного тока

1. Каково основное назначение коллектора в машине постоянного тока?

- а) крепление обмотки якоря;
- б) электрическое соединение вращающейся обмотки якоря с неподвижными зажимами машины;
- в) выпрямление переменного тока, индуцируемого в секциях обмотки якоря;
 - г) все перечисленные выше ответы.

2. Почему сердечник якоря машины постоянного тока набирают из тонких листов электротехнической стали, электрически изолированных друг от друга?

- а) для уменьшения магнитных потерь в машине;
- б) для уменьшения электрических потерь в машине;
- в) для уменьшения тепловых потерь;
- г) из конструктивных соображений.


3. Почему в момент пуска двигателя через обмотку якоря протекает большой ток?

- а) трение в подшипниках неподвижного ротора больше, чем у вращающегося;
 - б) в момент пуска активное сопротивление обмотки якоря мало;
 - в) в момент пуска отсутствует ЭДС в обмотке якоря;
 - г) по всем перечисленным выше причинам.

4. Какое явление называют реакцией якоря?

- а) Уменьшение магнитного поля машины при увеличении нагрузки;
 - б) Искажение магнитного поля машины при увеличении его нагрузки;
 - в) Уменьшение ЭДС обмотки якоря при увеличении нагрузки;
 - г) Воздействие магнитного поля якоря на основное магнитное поле машины.
- 5. Какая характеристика двигателя постоянного тока изображена на рис.

1?

Рис. 1

а) механическая; б) рабочая; в) нагрузочная; г) регулировочная.

6. Какой ток опасен для генератора параллельного возбуждения?

- а) ток короткого замыкания; б) ток холостого хода; в) пусковой ток; г) критический ток.
- 7. На рис. 2 показана механическая характеристика двигателя постоянного тока. Какой параметр должен быть отложен на оси ординат?
 - а) P_2 б) I_H ; в) n; г) U_2 .

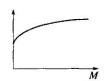


Рис. 2

- 8. Генератор постоянного тока последовательного возбуждения не имеет:
- а) внешней характеристики;
- б) характеристики холостого хода;
- в) регулировочной характеристики;
- г) всех перечисленных.
- 9. При постоянном напряжении питания магнитный поток двигателя постоянного тока параллельного возбуждения уменьшился. Как изменилась частота вращения двигателя?
 - а) увеличилась; б) не изменилась; в) уменьшилась
- 10. Как следует включить обмотки возбуждения компаундного генератора, чтобы уменьшить влияние тока нагрузки на напряжение генератора?
- а) согласно; б) встречно; в) не имеет значения.

Машины переменного тока

Асинхронные машины

- 11. Чему равен вращающий момент асинхронного двигателя, если скольжение его ротора равно нулю?
 - a) 0; б) M_{max} ; в) $M_{\text{пуск}}$; г) $M_{\text{ном}}$.
- 12. Чему равен вращающий момент асинхронного двигателя, если скольжение его ротора равно 1?
- а) 0; б) M_{max} ; в) $M_{\text{пуск}}$; г) $M_{\text{ном}}$.
- 13. Как изменится скольжение, если увеличить момент на валу асинхронного двигателя?
 - а) увеличится; б) уменьшится; в) не изменится;
 - г) уменьшится до нуля, если нагрузка превысит вращающий момент.
- 14. Частота вращения магнитного поля статора асинхронного двигателя 3000 мин⁻¹, частота вращения ротора 2940 мин⁻¹. Определите скольжение.

- а) 0,03; б) 0,6; в) 0,02; г) 0,06.
- 15. Магнитное поле двигателя трехфазного тока частотой 50 Гц вращается с частотой 3000 мин⁻¹. Определите, сколько полюсов имеет этот двигатель.
 - a) 1 б) 2 в) 3; г) 4.
- 16. Скольжение асинхронного двигателя s = 0.05, частота питающей сети $f = 50 \, \Gamma$ ц, число пар полюсов p = 1. Определите частоту вращения ротора.
 - а) 2950; б) 3000; в) 2850; г) 2940.
- 17. Частота питающего тока 400 Гц. Определите частоту вращения магнитного поля четырехполюсного двигателя.
 - а) 4000; б) 5000; в) 6000; г) 7000.
- 18. Определить скольжение (в процентах) для трехполюсного асинхронного двигателя, если его ротор вращается с частотой 960 об/мин (частота питающего тока 50 Гц).
 - a) 4 %; б) 40 %; в) 2 %; г) 20 %.
- 19. Какой из перечисленных способов регулирования частоты вращения асинхронных двигателей в настоящее время наиболее экономичен?
- а) изменение частоты тока статора;
 - б) изменение числа пар полюсов;
 - в) введение в цепь ротора дополнительного сопротивления;
 - г) изменение напряжения на обмотке статора.
- 20. Какие существуют типы асинхронных электродвигателей? Укажите неправильный ответ.
- а) с фазным ротором; б) с короткозамкнутым ротором; в) универсальные.

Синхронные машины

Каким должен быть зазор между ротором и статором синхронного генератора для обеспечения синусоидальной формы индуцируемой ЭДС?

а) увеличивающимся от середины к краям полюсного наконечника;

- б) уменьшающимся от середины к краям полюсного наконечника;
- в) неизменным от середины к краям наконечника.
- **21.** При выполнении каких условий зависимость U = f(I) является внешней характеристикой синхронного генератора?
- а) $\omega = const$; б) $\cos \varphi = const$; в) $I_{\theta} = const$; г) всех перечисленных.
- 22. Можно ли трехфазную обмотку синхронного генератора большой мощности расположить на роторе?
- а) можно; б) нельзя; в)можно, нонецелесообразно
- 23. Двухполюсный ротор синхронного генератора вращается с частотой 3000 об/ мин. Определить частоту тока.
- а) 50 Гц; б) 500 Гц; в) 100 Гц.
- 24. Чему пропорциональна индуцируемая ЭДС синхронного генератора?
- а) магнитному потоку машины; б) частоте вращения тока; в) всем перечисленным.
- 25. Чем отличается синхронный двигатель от асинхронного?
- а) устройством статора; б) устройством ротора; в) устройством статора и ротора.
- 26. Нужны ли щетки и контактные кольца для синхронного двигателя, ротор которого представляет собой постоянный магнит?
- а) нужны; б) не нужны; в) нужны только в момент запуска двигателя.
- 27. Определить частоту вращения синхронного двигателя, если f = 50 Γ ц, p = 1.
- а) 285 об/мин; в) 1500 об/мин. б) 3000 об/мин;
- 28. С какой целью на роторе синхронного двигателя размещают дополнительную короткозамкнутую обмотку?
- а) для увеличения вращающего момента;
- б) для раскручивания ротора при запуске;
- в) для увеличения пускового тока.
- 29. Механическая характеристика синхронного двигателя является:
- а) мягкой; б) жесткой; в) абсолютно жесткой.

ЭЛЕКТРОНИКА

- 1. Какой пробой опасен для р-п-перехода?
 - а) тепловой;б) электрический; в) тепловой и электрический; г) пробой любого вида не опасен.
- 2. В каких полупроводниковых приборах используется управляемая барьерная емкость?
 - а) в стабилитронах; б) в туннельных диодах;в) в варикапах.
- 3. Для вольт-амперной характеристики каких полупроводниковых приборов характерно наличие участка с отрицательным дифференциальным сопротивлением?
 - а) варикапов;
 - б) туннельных диодов;
 - в) фотодиодов.
- 4.У какого транзистора входное сопротивление максимально?
 - а) у биполярного;
 - б) у полевого с затвором в виде *p-n*-перехода;
 - в) у МДП-транзистора;
 - Γ) у транзистора типа *p-n-p*.
- 5. Какая схема включения транзистора обладает наибольшим коэффициентом усиления?
 - а) с общим эмиттером;
 - б) с общей базой;
 - в) с общим коллектором.
- 6. Какая из перечисленных схем выпрямителей является самой распространенной в электронике?
 - а) двухполупериодная с выводом средней точки;
 - б) мостовая;
 - в) однополупериодная;
 - г) схема трехфазного мостового выпрямителя.

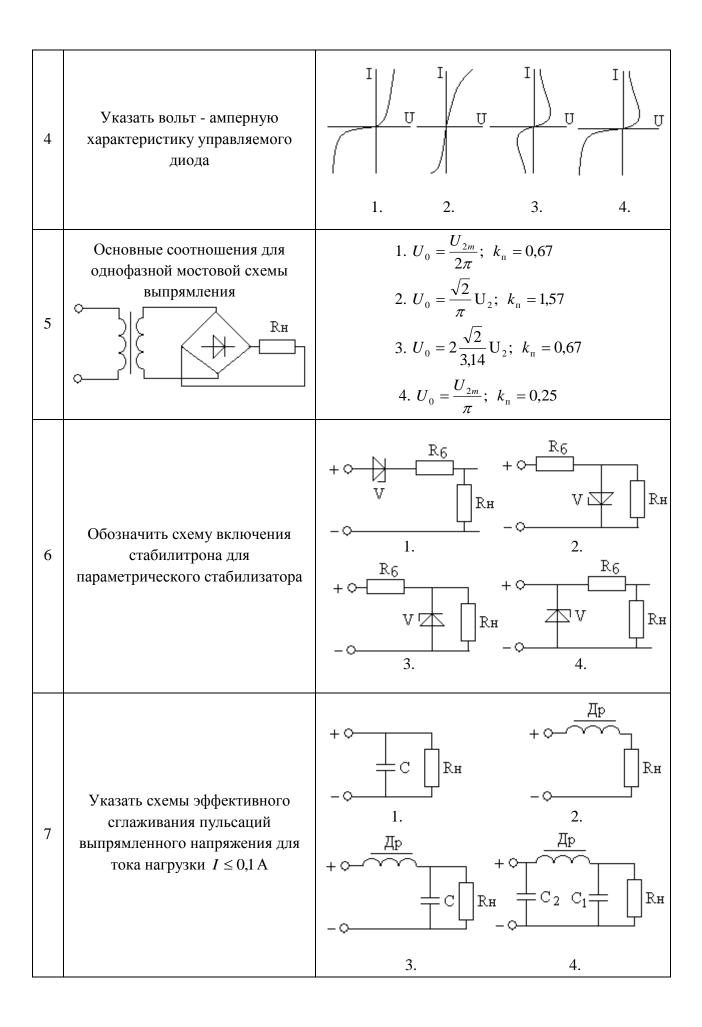
7. Как повлияет увеличение частоты питающего напряжения на работу емкостного сглаживающего фильтра?

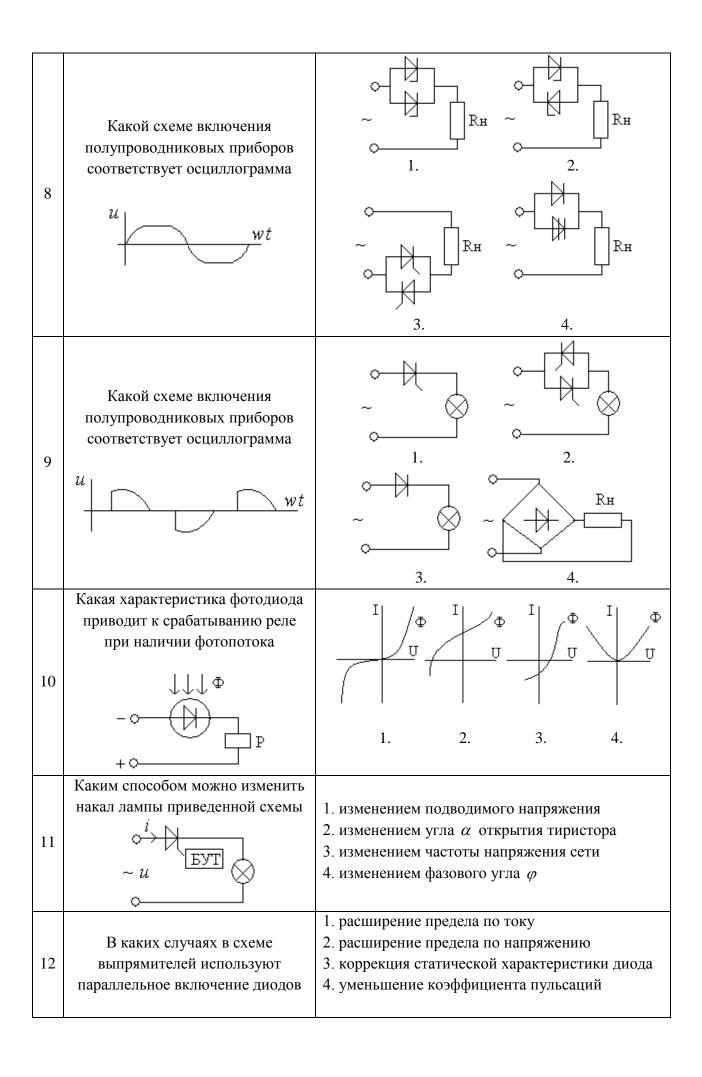
- а) сглаживание не изменится;
- б) сглаживание улучшится;
- в) сглаживание ухудшится.

8. В течение какого промежутка времени открыт каждый диод в схеме трехфазного выпрямителя?

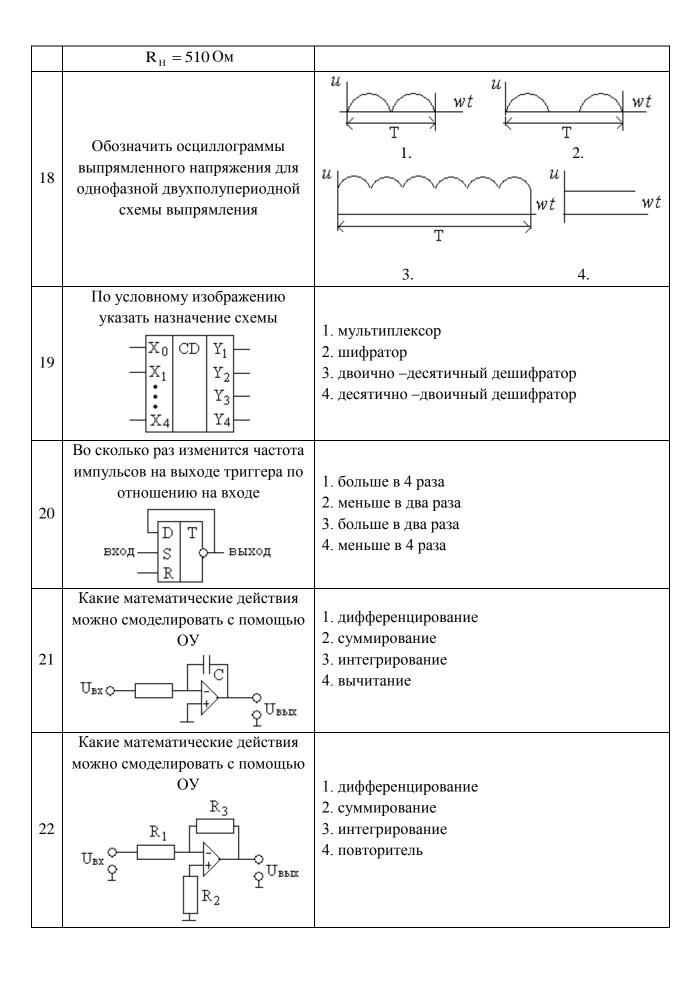
a)
$$\frac{T}{2}$$
; 6) $\frac{T}{3}$; B) $\frac{T}{4}$; Γ) $\frac{T}{6}$.

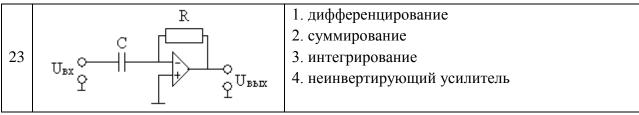
9. Каково главное достоинство схемы трехфазного выпрямителя?


- а) малая пульсация выпрямленного напряжения;
- б) отсутствие трансформатора с выводом средней точки;
- в) малое обратное напряжение;
- г) малые токи диодов.

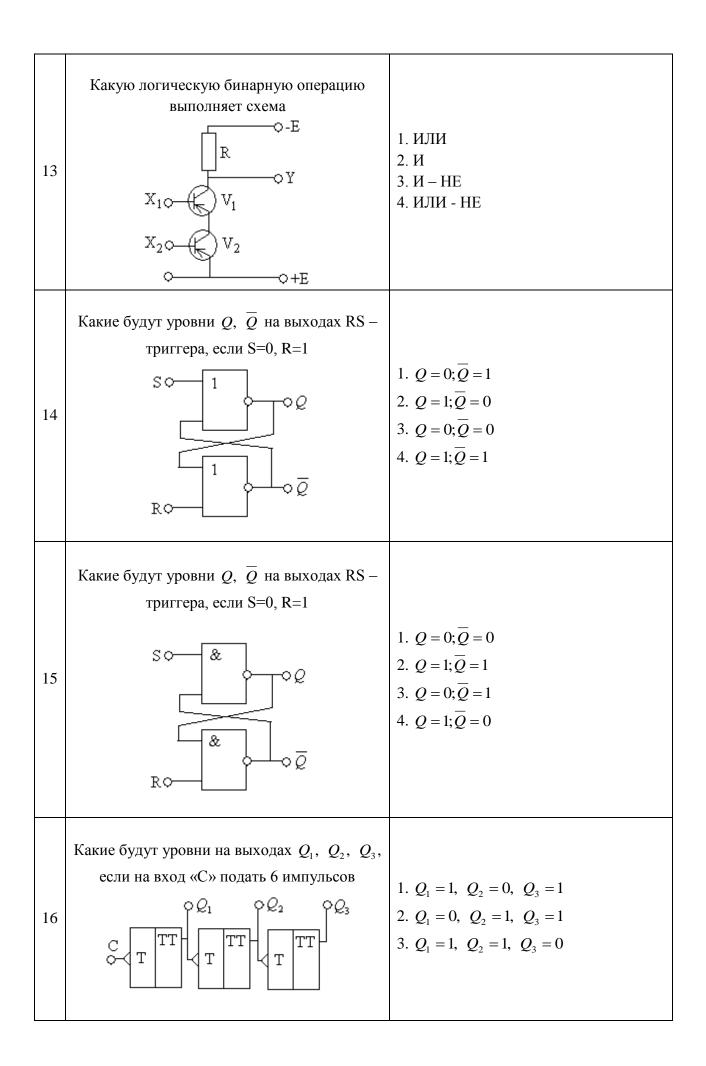

10. Какие носители обеспечивают ток в базе фототранзистора типа p-n-p?

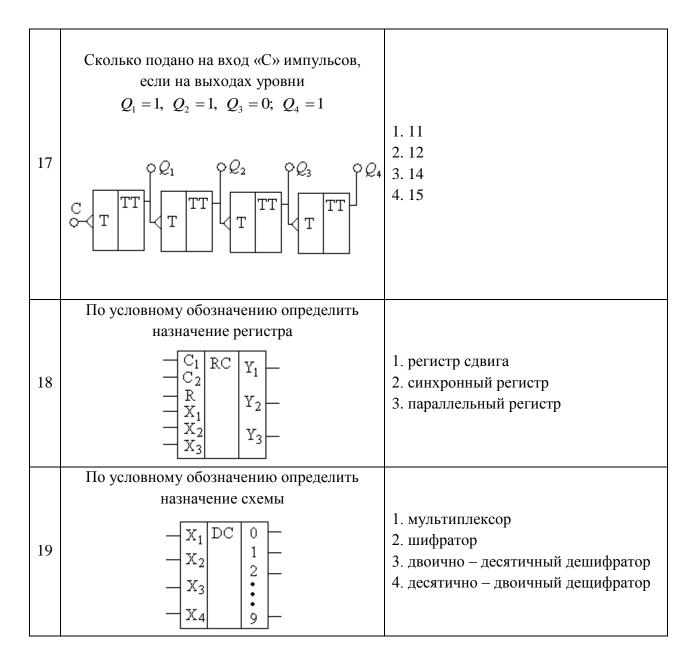
а) электроны и дырки; б) только электроны; в) только дырки.


Тесты по электронике Элементы электроники

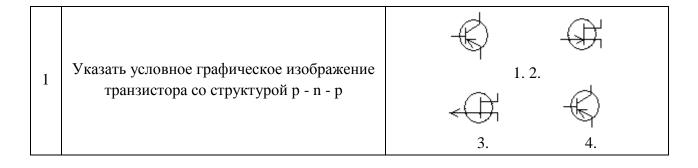

1	Указать условное обозначение выпрямительного диода	1. 2. 3. 4.
2	Указать условное обозначение управляющего диода	1. 2. 3. 4.
3	Какому прибору принадлежит это условное обозначение	 варистор позистор резистор фоторезистор

13	Какой схеме выпрямления соответствует осциллограмма	1. однофазная двухтактная схема выпрямления (схема Миткевича) 2. однофазная мостовая схема выпрямления (схема Герца) 3. трехфазная мостовая схема выпрямления (схема Ларионова) 4. однофазная однополупериодная схема выпрямления		
14	Укажите назначение инвертора	 преобразование переменного тока в выпрямленный преобразователь постоянного тока в переменный сглаживание пульсаций выпрямленного напряжения преобразование частоты переменного напряжения 		
15	Каким накалом будет светиться лампа, если угол открытия тиристора составляет $\alpha = 90^{\circ}$ $\sim u$	1. полный накал 2. в половину накала 3. в четверть накала 4. нет накала		
16	Предложите схему управляемого выпрямителя для сварочного устройства, если напряжение $U_0 = U_{2m} \frac{1 + \cos \alpha}{\pi}$	1. 2. RH 3. 4.		
17	Амплитуда напряжения вторичной обмотки трансформатора двухполупериодной схемы выпрямления $U_{2m}=210\mathrm{B}.$ Определить выпрямленный ток, проходящий через каждый диод I_0 , если сопротивление нагрузки	1. $I_0 = 121 \cdot 10^{-3} \text{ A}$ 2. $I_0 = 131 \cdot 10^{-3} \text{ A}$ 4. $I_0 = 141 \cdot 10^{-3} \text{ A}$ 5. $I_0 = 151 \cdot 10^{-3} \text{ A}$		





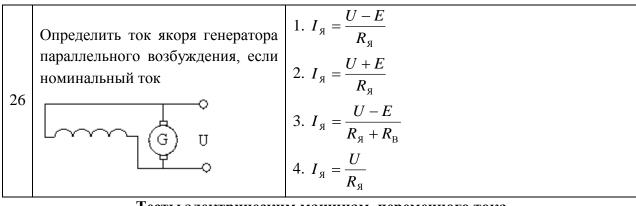
Логические элементы


2	Какую операцию выполняет логический элемент «НЕ» Какую операцию выполняет логический элемент «ИЛИ»	1. логическое сложение 2. инверсия 3. конъюнкция 4. логическое умножение 1. инверсия 2. конъюнкция 3. логическое умножение 4. дизъюнкция	
3	Какую операцию выполняет логический элемент «И»	1. инверсия 2. логическое сложение 3. конъюнкция 4. дизъюнкция	
4	Записать в десятичной форме число, представленное в регулярном двоичном коде «1101»	1. 16 2. 14 3. 13 4. 15	
5	Записать в регулярном двоичном коде число, представленное в десятичной форме «21»	1. 11001 2. 10110 3. 10101 4. 11010	
6	Какая схема моделирует логическую операцию 1 x 1 = 1	1. ИЛИ 2. НЕ 3. И 4. НЕ - И	
7	Какая схема моделирует логическую операцию $1+1=1$	1. ИЛИ 2. НЕ 3. И 4. НЕ - И	
8	Какому логическому элементу соответствует таблица истинности $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$X_1 - 1$ $X_2 - Y$ $X_2 - Y$ $X_2 - Y$ $X_3 - Y$ $X_4 - X_2 - Y$ $X_2 - Y$ $X_2 - Y$ $X_3 - Y$ $X_4 - X_2 - Y$ $X_4 - X_2 - Y$ $X_4 - X_4 - Y$ $X_5 - Y$ $X_6 - Y$ $X_6 - Y$ $X_7 - Y$ $X_8 - Y$	

Элементы усилительных устройств

2	Указать статическую характеристику биполярного транзистора, включенного по схеме с общим эмиттером	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3	Указать условное графическое изображение полевого транзистора с управляющим переходом и каналом n - типа	1. 2. 3. 4.
4	Какому режиму работы транзистора соответствует точка «А» на статической характеристике I_{κ} U_{κ}	 активный режим режим насыщения режим отсечки режим усиления
5	В какой режим класса усиления должен быть включен предварительный каскад	 режим класса «А» режим класса «В» режим класса «С» режим класса «АВ»
6	Как влияет отрицательная обратная связь (ООС) на статические свойства усилителя	1. уменьшает коэффициент усиления 2. увеличивает коэффициент усиления 3. не изменяет коэффициент усиления
7	Укажите причины, приводящие к появлению нелинейных искажений на выходе	1. наличие отрицательной обратной связи 2. наличие положительной обратной связи 3. увеличение амплитуды входного сигнала 4. изменение напряжения источника питания
8	Укажите способ повышения коэффициента передачи (усиления) транзисторного усилительного устройства	1. повышение напряжения источника питания 2. увеличение входного сигнала 3. применение отрицательной обратной связи 4. изменение крутизны статической характеристики транзистора

		1. усилительные свойства транзистора
	Какой способ положен в основу принципа действия транзисторного усилительного устройства	2. управление энергией источника
9		питания по закону изменения
		входного сигнала
		4. изменение положительной рабочей
		точки на входной характеристики


Тесты по электрическим машинам постоянного тока

	Назначение коллектора в конст-	1. режим инвертора		
1	рукции машины постоянного	2. режим выпрямителя		
	тока, работающей в режиме дви-	3. режим конвертора		
	гателя	4. сглаживающее устройство		
2	Какому способу регулирования скорости вращения двигателя соответствуют кривые 1, 2, 3 механической характеристики	1. изменение тока в цепи возбуждения 2. изменение сопротивления в цепи якоря двигателя 3. изменение величины подводимого напряжения 4. изменение момента сопротивления на валу двигателя		
3	Какому способу регулирования скорости вращения двигателя соответствуют кривые 1, 2, 3 механической характеристики п 1 2 3 М	1. изменение тока в цепи возбуждения 2. изменение сопротивления в цепи якоря двигателя 3. изменение величины подводимого напряжения 4. изменение момента сопротивления на валу двигателя		
4	Назначение коллектора в конструкции машины постоянного тока, работающей в режиме генератора	 режим инвертора режим выпрямителя режим конвертора сглаживающее устройство 		
5	Какие законы физических явлений в электротехнике положены в основу принципа действия машин постоянного тока	1. закон Джоуля - Ленца, закон полного тока 2. закон электромагнитной индукции, закон электромагнитных сил 3. законы Кирхгофа, закон Ома 4. законы магнитных цепей		

6	Указать уравнение механической характеристики двигателя с параллельным возбуждением	1. $n = \frac{U}{c_e \Phi} - \frac{R}{c_e \Phi} I_{\text{A}}$ 2. $n = \frac{U}{c_e} - \frac{R_{\text{A}}}{c_e \Phi} I_{\text{A}}$ 3. $n = \frac{U}{c_e \Phi} - \frac{R_{\text{A}}}{c_e \Phi} I$ 4. $n = \frac{U}{c_e \Phi} - \frac{R_{\text{A}} + R_{\text{A}}}{c_e \Phi} I_{\text{A}}$
7	Определить вращающий момент двигателя, если мощность на валу $P_2 = 10 \text{ кВт}$, а частота вращения $n = 955 \text{ об/мин}$	1. M = 200 Hm 2. M = 50 Hm 3. M = 100 Hm 4. M = 400 Hm
8	Как изменится скорость вращения двигателя с параллельным возбуждением при обрыве цепи обмотки возбуждения в режиме холостого хода	 скорость возрастет скорость уменьшится (двигатель остановится) скорость не изменится двигатель пойдет в «разнос»
9	В каком режиме будет работать двигатель с параллельным возбуждением, если скорость вращения ротора (под воздействием внешних причин) окажется выше скорости вращения при идеальном холостом ходе	 режим работы двигателя не изменится двигатель перейдет в генераторный режим
10	Какое из перечисленных действий не приведет к изменению реверса двигателя с параллельным возбуждением	1. изменение направления токов в обмотке якоря и в обмотке возбуждения одновременно 2. изменение направления тока в обмотке якоря при неизменном направлении тока в обмотке возбуждения 3. изменение направления токов в обмотке возбуждения при неизменном направлении тока в обмотке якоря 4. изменение полярности подводимого напряжения к обмотке якоря
11	Какая рабочая характеристика двигателя с параллельным возбуждением приведена на рис. Р ₂	1. $n = f(P_2)$ 2. $M = f(P_2)$ 3. $I = f(P_2)$ 4. $\eta = f(P_2)$

12	Какое из перечисленных соотно- шений не соответствует для дви- гателя с параллельным возбужде- нием	1. $U = E + I_{R}R_{R}$; $I_{R} = \frac{U - E}{R_{R}}$ 2. $I_{B} = \frac{U}{R_{OB} + R_{p}}$; $I = I_{R} + I_{B}$ 3. $M = C_{M}\Phi I$; $n = \frac{U - I_{R}R_{R}}{C_{e}\Phi}$ 4. $E = C_{e}n\Phi$; $n = \frac{U}{C_{e}\Phi} - \frac{R_{R}M}{C_{e}C_{M}\Phi^{2}}$
13	Какая рабочая характеристика двигателя с параллельным возбуждением приведена на рис.	1. $n = f(P_2)$ 2. $M = f(P_2)$ 3. $I = f(P_2)$ 4. $\eta = f(P_2)$
14	Какой вид имеет регулировочная характеристика двигателя с параллельным возбуждением	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
15	По виду механических характеристик определить систему включения обмоток возбуждения двигателя, обозначенной под №3	1. двигатель с последовательным возбуждением 2. двигатель с параллельным возбуждением 3. двигатель со смешанным возбуждением 4. двигатель с независимым возбуждением
16	По виду механической характеристики, обозначенной под №2, определить выражение для частоты вращения двигателя	1. $n = \frac{U - (R_{\text{g}} - R_{\text{B.\PiOC}})I_{\text{g}}}{c_{e}(\Phi_{\text{пос}} - \Phi_{\text{пар}})}$ 2. $n = \frac{U - (R_{\text{g}} + R_{\text{B.\PiOC}})I_{\text{g}}}{c_{e}\Phi_{\text{пос}}}$ 3. $n = \frac{U - (R_{\text{g}} + R_{\text{goo}})I_{\text{g}}}{c_{e}\Phi_{\text{пар}}}$ 4. $n = \frac{U - R_{\text{g}}I_{\text{g}}}{c_{e}\Phi}$

	Как изменится ток двигателя с па-	1. уменьшится в два раза		
17	раллельным возбуждением, если	2. увеличится в два раза		
1 /	ток якоря и магнитный поток воз-	3. не изменится		
буждения увеличились в два раза?		4. увеличится в четыре раза		
	Ток якоря двигателя с параллель-	1. уменьшится в два раза		
	ным возбуждением увеличился в	2. увеличится в два раза		
18	два раза, а магнитный поток	3. не изменится		
	уменьшился в два раза. Как изме-	4. увеличится в четыре раза		
	нится вращающий момент?			
	По внешней характеристике гене-			
	ратора со смешанным возбужде-			
10	нием определить как включены	1. согласно		
19	обмотки возбуждения U i	2. встречно		
	°	-		
	_			
	<u> </u>			
	Определить э.д.с. от остаточного			
	магнетизма генератора по харак-	1. 10 B		
20	теристике	2. 20 B		
20	40	3. 30 B		
	30 1 20 - 1	4. 40 B		
	¹⁰ / I _B			
	У какого генератора (с независи-			
	мым возбуждением или с само-			
21	возбуждением) при возрастании			
	частоты вращения якоря быстрее			
	нарастает напряжение на зажимах	1. 2.		
	По приведенным характеристикам			
22	определить внешнюю характери-			
	стику генератора с параллельным			
	возбуждением	1. 2. 3. 4.		
	Как изменится э.д.с. генератора с	1. не изменится		
23	независимым возбуждением при	2. уменьшится		
	понижении частоты вращения	3. увеличится		
	якоря в два раза			
24	Как изменится к.п.д. генератора	1. повысится		
24	при изменении тока в цепи на-	 уменьшится не изменится 		
	грузки Как изменится вращающий мо-			
25	мент генератора при увеличении	 увеличится уменьшится 		
23	тока в обмотке якоря	3. не изменится		
	тока в оошотке якоря	J. He MANGHMICA		

Тесты электрическим машинам переменного тока

1	При регулировании скорости вращения асинхронного двигателя с короткозамкнутым ротором были получены следующие скорости вращения: 1450, 1425, 1400, 1375 об/мин. Каким способом осуществлялось регулирование скорости вращения	1. изменением величины подводимого напряжения U_{C} 2. изменением частоты питающей сети f_{C} 3. переключением числа пар полюсов обмоток статора 4. реостатное регулирование
2	Магнитное поле трехфазного тока частотой 50 Гц вращается со скоростью 3000 об/мин. Сколько полюсов имеет это поле	1. 2 полюса 2. 3 полюса 3. 4 полюса 4. 6 полюсов
3	Какова частота пересечения силовыми линиями магнитного поля стержней обмотки ротора двигателя в режиме холостого хода	1. максимальна 2. равна нулю 3. минимальна
4	При регулировании скорости вращения асинхронного двигателя были получены следующие скорости вращения: 2940, 1470, 980, 710 об/мин. Каким способом осуществлялось регулирование скорости вращения	1. изменением величины подводимого напряжения U_C 2. изменением частоты питающей сети f_C 3. переключением числа пар полюсов обмоток статора 4. реостатное регулирование
5	Из предложенных выражений определить незаконченную форму записи	1. $s = \frac{n_n - n_p}{n_p}$; $n_n = \frac{60 f_n}{p}$ 2. $n_p = n_n (1 - s)$; $f_p = s f_n = s \frac{p n_n}{60}$ 3. $P_1 = \sqrt{3} U_1 I_1 \cos \varphi$; $Q_1 = 3 U_1 I_1 \sin \varphi$ 4. $M = 9.55 \frac{P_2}{n_p}$; $K_1 = \frac{I_n}{I_{\text{HOM}}}$
6	Найти частоту вращения ротора, если $s=0.05;\ f=50$ Гц; $p=1$	1. 3000 об/мин 2. 1425 об/мин 3. 2850 об/мин

7	Вращающееся магнитное поле статора является шестиполюсным. Найти скорость вращения ротора, если $s=0.05;\ f=50\ \Gamma$ ц	1. 2850 об/мин 2. 1425 об/мин 3. 950 об/мин		
8	обмотки ротора индуцируется э.д.с. 1 В. чему будет равна эта э.д.с., если ротор остановится	1. 0 B 2. 1 B 3. 50 B		
9	Как будет изменяться сдвиг фаз между э.д.с. и током в обмотке ротора по мере раскручивания ротора	1. останется неизменным 2. увеличится 3. уменьшится		
10	В сети, питающей асинхронный трехфазный двигатель, напряжение уменьшили в 1,5 раза. Как изменится скорость вращения ротора, если двигатель работает в режиме холостого хода	1. не изменится 2. увеличится 3. уменьшится		
11	Трехфазный двигатель подготовили для работы от однофазной сети. Как изменится его номинальная мощность	 не изменится увеличится уменьшится 		
12	Как изменится вращающий момент асинхронного двигателя при увеличении скольжения от 0 до1	 уменьшится увеличится сначала увеличится, затем уменьшится сначала уменьшится, затем увеличится 		
13	Укажите основной недостаток асинхронного двигателя	1. зависимость скорости вращения от момента нагрузки на валу 2. зависимость электромагнитного момента от напряжения питающей сети 3. отсутствие экономичных устройств для плавного регулирования скорости вращения ротора 4. малый к.п.д.		
14	Как изменится $\cos \varphi$ асинхронного двигателя при уменьшении его нагрузки	 не изменится увеличится уменьшится 		

	Каким образом осуществляют	1. изменением числа пар полюсов	
	плавное регулирование скорости	2. изменением частоты питающей сети	
15	вращения асинхронного двигателя	3. изменением величины подводимого напряже-	
	с короткозамкнутым ротором	Рин	
	Напряжение сети 220 В. В пас-		
	порте асинхронного двигателя		
	указано напряжение 220/380 В.	1. а) звездой; б) треугольником	
16	Как должны быть соединены об-	2. а) звездой; б) звездой	
	мотки статора двигателя, если	3. а) треугольником; б) треугольником	
	кратность пускового тока более 7:	4. а) треугольником; б) звездой	
	а) при пуске; б) в рабочем режиме		
	При каком режиме работы асин-	1. в режиме холостого хода	
17	хронного двигателя $\cos \varphi$ самый	2. в номинальном режиме	
	низкий	3. в режиме перегрузки	
		1. ток холостого хода увеличится, $\cos \varphi$ умень-	
		шится	
	Как повлияет на ток холостого	2. ток холостого хода не изменится, $\cos \varphi$ умень-	
	хода и коэффициент мощности	шится	
18	двигателя увеличение воздушного зазора между статором и ротором	3. ток холостого хода уменьшится, $\cos \varphi$ умень-	
		шится	
		4. ток холостого хода не изменится, $\cos \varphi$ увели-	
		чится	
	Ваттметр, подключенный к асин-		
	хронному двигателю, показывает	1. 95 %	
19	1000 Вт; при коротком замыкании	2. 90 %	
	50 Вт; при холостом ходе 50 Вт.	3. 85 %	
	Определить к.п.д. двигателя		
20	Из представленных рабочих характеристик определить зависимость $s=f(P_2)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		3. 4.	
	Из представленных характеристик		
	синхронного генератора опреде-	1. 2.	
21	лить внешнюю характеристику		
	при $\cos \varphi < 1$		
		+	
		3. 4.	

Приложение 3 к рабочей программе учебной дисциплины

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет»

(ДВФУ)

ШКОЛА БИОМЕДИЦИНЫ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по дисциплине «ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА»

направление 19.03.01 «Биотехнология»

Бакалавриат. Форма подготовки: очная

Владивосток

2018

- 1.Электротехника в оборудовании сварочных производств: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Издво ДВГТУ, 2009.-128 с.
- **2.** Электроника в оборудовании горных машин: учебное пособие /Авт.-сост.: В.А.Жуков, В.С.Яблокова.- Владивосток: Изд-во ДВГТУ, 2010.- 94 с.
- **3.** Серебряков, А. С. Электротехника и электроника. Лабораторный практикум на Electronics Workbench и Multisim [Электронныйресурс]: учебное пособие / А. С.Серебряков; Университетская библиотека онлайн (ЭБС). –Москва: Абрис, 2012. 337 с. –Режим доступа: http://www.studentlibrary.ru/book/ISBN9785437200674.html
- **4.** 4. Усольцев А.А. Общая электротехника: Учебное пособие. СПб: СПбГУ ИТМО, 2009. 301 с.

http://window.edu.ru/resource/929/62929/files/itmo347.pdf