

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТЕСТВЕННЫХ НАУК

«СОГЛАСОВАНО»	«УТВЕРЖДАЮ»
Руководитель ОП	Заведующая кафедрой
<u>См.</u> С.Г. Красицкая «18» <u>сеее я ФР</u> 2018г.	Общей, неорганической и элементоорганической химии (название кафедры) А.А. Капустина «/8»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ (РПУД)

«Методы исследования веществ и материалов»
Направление подготовки 04.04.01 Химия
Магистерская программа «Фундаментальные химические исследования веществ и процессов»

Форма подготовки очная

Курс <u>1</u> семестр <u>2</u>
лекции <u>18</u> час.
практические занятия час.
лабораторные работы <u> 36</u> час.
в том числе с использованием МАО лек/пр/лаб час.
в том числе в электронной форме лек/пр/лаб час.
всего часов аудиторной нагрузки <u>54</u> _ час.
в том числе с использованием МАО час.
в том числе в электронной форме час.
самостоятельная работа <u>90</u> час.
в том числе на подготовку к экзамену <u>36</u> час.
курсовая работа / курсовой проект семестр
зачет <u>2</u> семестр
экзамен <u>З</u> семестр

Рабочая программа составлена в соответствии с требованиями образовательного стандарта, самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора ДВФУ № 12-13-592 от 04.04.2016.

Рабочая программа обсуждена на заседании кафедры Общей, неорганической и элементоорганической химии ШЕН протокол № 15 от « 06» июля 2018 г.

Заведующая кафедрой

Общей, неорганической и элементоорганической химии ШЕН к.х.н., доцент Капустина А.А. Составитель: старший преподаватель Хальченко И.Г.

Оборотная сторона титульного листа РПУД

Протокол от «»	20г. № _	
Заведующий кафедрой		
	(подпись)	(И.О. Фамилия)
II. Рабочая программа п	ересмотрена на заседании к	афедры:
Протокол от «»	20 г. №	
Заведующий кафедрой		
	(подпись)	(И.О. Фамилия)

ABSTRACT

Bachelor's degree in 04.04.01- Chemistry

Study profile: "The fundamental chemical research materials and processes"

Course title: Methods for studying substances and materials

Variable part of Block B.1, 4 credits

Instructor: I.G. Khalchenko

At the beginning of the course a student should be able to: for an understanding of the basic knowledge of Methods for studying substances and materials course used subjects "Physics", "Organic chemistry", "Physical chemistry".

Learning outcomes:

- **GC-1.** ability to creatively adapt the achievements of foreign science, technology and education to domestic practice, a high degree of professional mobility;
- **GC-4.** ability to quickly master new subject areas, identify contradictions, problems and develop alternative solutions to them;
- **GPC-3.** ability to implement safety standards in laboratory and process conditions;
- **SPC-2**. possession of the theory and skills of practical work in the chosen field of chemistry;
- **SPC-3.** the readiness to use modern equipment in the conduct of scientific research;
- **SPC-5.** mastering the skills of interpreting the results of physical and chemical methods of substance research.

Course description: working curriculum discipline; lecture notes; materials for practical exercises; materials for students' independent work; KIP materials; a list of references.

Main course literature:

1. Krishtafovich VI Physical and chemical research methods: a textbook for high schools / VI Krishtafovich, DV Krishtafovich, NV Eremeev. - M .: Publisher Dashkov and K °. - 2015. - 208 p.

 $\underline{http://lib.dvfu.ru:8080/lib/item?id=Znanium:Znanium-513811\&theme=FEFU}$

2. Lebuh VI Physical and chemical methods of research: the textbook / VI Lebuh AI Okara, LP Pavlyuchenkova; ed. AI Okara. - St. Petersburg: Lan Publishing. - 2012. - 480 p.

http://lib.dvfu.ru:8080/lib/item?id=chamo:734799&theme=FEFU

3. Yaryshev, NG Physical methods of research and their practical application in chemical analysis: a tutorial / NG Yaryshev DA Pankratov. - M .: Moscow State Pedagogical University. - 2012. - 160 p.

http://lib.dvfu.ru:8080/lib/item?id=IPRbooks:IPRbooks-18633&theme=FEFU

4. Pakhomov, LG Physical methods in chemical research (theory, problems and answers): Textbook / L. G. Pakhomov, KV Kiryanov AV Knyazev. Publishing House of the Nizhny Novgorod University. - 2007. - 286 p.

http://lib.dvfu.ru:8080/lib/item?id=chamo:267599&theme=FEFU

5. Chuprina, VG X-ray diffraction study of the phase composition of the liquid-phase interaction products powders W, Co and Sn / VG Chuprina, IM Shalya. - Powder metallurgy. - №11 / 12. 2008. - S. 111-117.

http://lib.dvfu.ru:8080/lib/item?id=chamo:586197&theme=FEFU

- 6. Reutov, VA Requirements for registration of written works, performed by students of the Institute of Chemistry and Applied Ecology FENU / VA Reutov. Vladivostok: Publishing house Dalnevost. University Press, 2010. 59 p.
- 7. Freeman, R. Magnetic resonance in chemistry and medicine / Ray Freeman; perform English. VA Volynkina, SN Bolotin, NV Paschevskoy. M .: URSS Publisher [KRASAND]. 2009. 331 p.

http://lib.dvfu.ru:8080/lib/item?id=chamo:289942&theme=FEFU

Form of final knowledge control: exam.

Аннотация к рабочей программе дисциплины «Методы исследования веществ и материалов»

Дисциплина «Методы исследования веществ и материалов» разработана для магистрантов, обучающихся по направлению подготовки 04.04.01 – Химия, образовательной программе «Фундаментальные химические исследования веществ и процессов». Входит в базовую часть учебного плана: Б1.Б.02.02. Трудоемкость дисциплины составляет 4 зачетных единиц (144 час.). Дисциплина включает 18 часов лекций, 36 часов лабораторных занятий, 90 час. самостоятельной работы, в том числе – 36 на подготовку к экзамену. Дисциплина реализуется в 2 семестре. Форма промежуточной аттестации: экзамен.

При разработке рабочей программы учебной дисциплины использован Образовательный стандарт ВО ДВФУ направлению подготовки 04.04.01 − Химия, утвержденный приказом ректора ДВФУ от 04.04.2016 № 12-13-592. и учебный план образовательной программы.

Дисциплина «Методы исследования веществ и материалов» логически и содержательно связана с такими курсами, как «Физика», «Органическая химия», «Физическая химия».

Содержание дисциплины охватывает следующий круг вопросов: спектральные методы исследования в химии, методы хроматографии и методы исследования поверхности твердых тел.

Цель дисциплины — изучение основ теории и практики физико-химического анализа веществ, основных экспериментальных закономерностей, лежащих в основе физико-химических методов исследования, их связи с современными технологиями, а также формирование у студентов компетенций, позволяющих осуществлять экспериментальное определение закономерностей изменения физико-химических свойств и проводить численные расчеты соответствующих физико-химических величин.

Задачи дисциплины:

- 1. Сформировать базовые знания и представления о фундаментальных законах и основных методах исследования физико-химических свойств и структуры веществ.
- 2. Обобщить и систематизировать знания, включающие фундаментальные законы, лежащие в основе физико-химического анализа.
- 3. Сформулировать основные задачи физико-химического анализа, установить область и границы применимости различных методов;
- 4. Рассмотреть основные экспериментальные закономерности, структуру и математическую форму основных уравнений, лежащих в основе физико-химического анализа, особенности их использования в различных методах;
- 5. Рассмотреть основные приемы и методы экспериментального и теоретического исследования физико-химических свойств, использование этих методов в современных технологиях;
- 6. Установить область применимости моделей, применяемых в физикохимических исследованиях, рассмотреть способы вычисления физикохимических величин, характеризующих явления; обеспечить овладение методологией физико-химических исследований.

Для успешного изучения дисциплины «Методы исследования веществ и материалов» у обучающихся должны быть сформированы следующие предварительные компетенции:

- Знание основных разделов физики и неорганической, органической, физической химий.
- Умение применять полученные при изучении основных разделов химии знания к объяснению фактов и решению расчетных задач.
- Навыки проведения химических исследований и объяснения их результатов.

Курсу «Методы исследования веществ и материалов» предшествуют все необходимые для его понимания курсы магистратуры и бакалавриата и практические навыки. Для успешного освоения курса необходимы знания и умения по химии соединений, общей химии, физики, навыки и умение работать

с химической литературой, электронными базами данных, навыки патентного поиска, умение работать с химическими программами по обработке данных физико-химического исследования вещества.

В результате изучения данной дисциплины у обучающихся формируются следующие общекультурные и профессиональные компетенции:

Код и формулировка компетенции		Этапы формирования компетенции
способностью творчески адаптировать достижения зарубежной	Знает	Основные тенденции развития в области современных методов исследования веществ и материалов, применяемых в зарубежной науке и технике
науки, техники и образования к отечественной практике, высокая степень профессиональной	Умеет	Адаптировать достижения зарубежной науки и техники к решению задачи по выбору метода исследования в зависимости от структуры вещества и поставленной задачи
мобильности (ОК-1)	Владеет	Способностью использовать полученные навыки для решения профессиональных задач
умение быстро осваивать новые	Знает	Базовую терминологию, основные понятия и законы, лежащие в основе различных методов исследования
предметные области, выявлять противоречия, проблемы и	Умеет	Анализировать результаты различных физико-химических методов исследования веществ и материалов
вырабатывать альтернативные варианты их решения (ОК-4);	Владеет	Навыками комплексного подхода к исследованию полученных веществ физико-химическими методами
способностью реализовать нормы	Знает	Нормы и правила техники безопасности при использовании различных приборов для определения физико-химических характеристик исследуемых веществ
техники безопасности в лабораторных и технологических	Умеет	Реализовать нормы техники безопасности в лабораторных и технологических условиях
условиях (ОПК-3)	Владеет	Навыками безопасного использования приборной базы и работы в лабораторных условиях при исследовании веществ различной природы
	Знает	Основные методы анализа научной литературы с использованием современных баз данных
владением теорией и навыками практической работы в избранной	Умеет	Использовать физико-химические методы исследования при выполнении квалификационных работ
области химии (ПК-2)	Владеет	Современными компьютерными программами необходимыми для проведения физико-химических исследований
готовностью использовать	Знает	Принципиальные схемы и возможности современной аппаратуры для проведения физико-химических

современную		исследований	
аппаратуру при проведении научных	Умеет	Выполнять требования, предъявляемые к образцам при проведении исследований	
исследований (ПК-3);	Владеет	Навыками пользователя приборов, а также пользователя программ при использовании физико-химических методов исследования	
владением навыками интерпретации результатов физико-	Знает	Современные базы данных спектральных характеристик исследуемых веществ, используемые при интерпретации результатов физико-химических методов исследования веществ	
химических методов исследования вещества	Умеет	Применять полученные знания в исследовательской работе;	
(ΠK-5).	Владеет	Навыками интерпретации результатов физико-химических методов исследования веществ	

Для формирования вышеуказанных компетенций в рамках дисциплины «Методы исследования веществ и материалов» применяются следующие методы активного/ интерактивного обучения: лекции-беседы.

I. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА Раздел 1. Спектральные методы исследования в химии (10 часов)

Тема 1. Электронная спектроскопия (2 часа)

Критерии, помогающие отнесению линий. Интенсивность электронных переходов. Правила отбора. Переходы с переносом заряда. Влияние растворителя на спектры. Хромофорные группы. Применение.

Тема 2. Колебательная спектроскопия, ИК-спектроскопия и спектроскопия комбинационного рассеяния (рамановская) (2 часа)

Колебательная спектроскопия. Поглощение излучения молекулярными колебаниями – правила отбора. Силовая постоянная. Закон Гука. Колебания многоатомных молекул. Правило 3N-6 (5). Эффекты, вызывающие появление Концепция групповых колебаний. полос поглошения. Спектроскопия комбинационного рассеяния. Правила отбора. Спектроскопия резонансного комбинационного рассеяния. Соотношение между прочностью связи и сдвигом частоты в ИК-спектрах.

Тема 3. Позитронно-аннигиляционная спектроскопия. Мессбауэровская или γ-резонансная спектроскопия (4 часа).

Общие сведения об экспериментальных методах позитронной спектроскопии. Сечение процессов аннигиляции, у-2-фотонная, у-3-фотонная аннигиляция. Состояние атома позитрония. Влияние магнитного поля (эффект Зеемана). Измерение времени жизни позитронов в веществе. Временной спектр. Методы определения вероятности Зу-аннигиляции позитрона.

Мессбауэровская или у-резонансная спектроскопия. Эффект Мессбауэра на атомах. Химический сдвиг и расщепление резонансной линии. Влияние симметрии окружения на химический сдвиг и расщепление. Примеры спектров веществ.

Тема 4. ЯМР-спектроскопия (1 часа).

Протонный магнитный резонанс. Принцип получения резонансного сигнала на ядре. Сдвиг по отношению к эталону. Обозначение шкалы. Спин-спиновое взаимодействие. Расщепление сигналов в постоянном магнитном поле на ядрах углерода, фосфора, кремния. Примеры.

Тема 5. Рентгенофазовый и рентгеноструктурный анализ. Рентгеноэлектронная спектроскопия (1 часа).

Рентгенофазовый и рентгеноструктурный анализ. Дифракция рентгеновского монохроматографического излучения. Формула Лауэ для расчета размера частиц и межпакетного расстояния в аморфных веществах. Уравнение Брэгга-Вульфа. Расчет межслоевых расстояний в кристаллических веществах. В качестве примера – структура NaCl. Рентгено-электронная спектроскопия. Фотоэлектронная спектроскопия. Общие положения. Отнесение полос в РФЭ-спектрах.

Раздел 2. Рефрактометрия (2 часа).

Тема 1. Электрические и оптические свойства молекул (1 часа).

Электрические и оптические свойства молекул. Дипольный момент. Электронная, атомная и ориентационная поляризация. Полярные и неполярные молекулы.

Тема 2. Дисперсия света (1 часа).

Дисперсия света. Применение молекулярной рефракции и дисперсии для установления строения молекул. Рефрактометрические константы как критерий чистоты вещества и средство идентификации.

Раздел 3. Хроматография (2 часа).

Тема 1. Гелевая хроматография (1 часа).

Определение молекулярной массы мономера и полимера. Средневесовой, среднечисловой, средневязкостный молекулярный вес. Определение величины полидисперсности. Молекулярно-массовое распределение в полимере. Основы гелевой хроматографии полимеров. Уравнение динамики сорбции. Определение нулевого объема, рабочего объема колонки.

Тема 2. Хромато-масс-спектрометрия высокого разрешения (1 часа).

Суть метода масс-спектрометрии. Границы метода. Варианты использования метода в решении структурных задач. В чем состоит техника эксперимента. Принципиальная схема масс-спектрометра. Разновидности современной масс-спектрометрии. Преимущества и недостатки некоторых видов современной масс-спектрометрии. Методы ионизации в масс-спектрометрии.

Раздел 4. Методы исследования поверхности твердых тел (4 часа).

Тема 1. Химия поверхности пористых и непористых носителей (1 часа).

Методы модификации поверхности твердых тел. Молекулярные наслаивания. Якорные группировки. Расчет степени модификации поверхности. Примеры практического использования.

Тема 2. Электронная оже-спектроскопия. Сканирующая туннельная микроскопия (2 часа).

Физические основы метода Оже-электронной спектроскопии. Аппаратура и методика измерений Оже-спектра. Методика подготовки образцов. Качественный и количественный анализ методом ЭОС.

Основы сканирующей туннельной микроскопии и спектроскопии. Схема сканирующего туннельного микроскопа. Сканирующие элементы зондовых микроскопов. Недостатки пьезокерамики. Устройства для прецизионных перемещений зонда и образца. Шаговые электродвигатели. Шаговые

пьезодвигатели. Измерительные методики CTM. Топографический режим. Токовый режим. Туннельная спектроскопия.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСАЛабораторные работы (36 часов)

Занятие 1-2. Строение атома и происхождение атомных спектров (3 часа)

Строение атома и происхождение атомных спектров. Строение молекул и происхождение молекулярных спектров. Наблюдение и регистрация спектроскопических сигналов

Занятие 3-4. Аппаратура для спектроскопии (3 часа)

Аппаратура для ИК спектроскопии, приготовление образцов. Аппаратура для спектроскопии КР. Сравнение методов ИК и КР, их преимущества и недостатки.

Занятие 5-6. Электронные спектры поглощения (3 часа)

Применение электронных спектров поглощения в качественном, структурном и количественном анализах. Техника и методики эмиссионной и абсорбционной спектроскопии в видимой и УФ областях, аппаратура, чувствительность методов.

Занятие 7-10. Позитронно-аннигиляционная спектроскопия. Мессбауэровская или γ-резонансная спектроскопия (4 часов).

Измерение времени жизни позитронов в веществе. Временной спектр. Методы определения вероятности 3γ-аннигиляции позитрона.

Химический сдвиг и расщепление резонансной линии. Влияние симметрии окружения на химический сдвиг и расщепление. Примеры спектров веществ.

Занятие 11-14. Протонный магнитный резонанс (4 часов)

Сравнение метода ЯМР с другими методами, его достоинства и ограничения. Применение спектров МР в химии. Техника и методика эксперимента.

Занятие 15-16. Определение молярной рефракции некоторых соединений (3 часа)

Определение молярной рефракции некоторых элементоорганических соединений. Рефрактометрические константы как критерий чистоты вещества и средство идентификации. Методы определения показателя преломления. Приборы для измерения показателей преломления.

Занятие 17-18. Методы экспериментального получения хроматографических спектров (4 часа)

Методы экспериментального получения хроматографических спектров Источники погрешностей при измерении параметров удерживания, влияющие на точность идентификации.

Занятие 19-20. Методы модификации поверхности твердых тел (3 часа).

Модификация поверхности твердых тел. Молекулярные наслаивания. Расчет степени модификации поверхности.

Занятие 21-24. Электронная оже-спектроскопия (4 часов).

Произвести первичную обработку спектров (фильтрация, сглаживание, вычитание фона, дифференцирование). Рассчитать концентрацию элементов на поверхности образца с помощью градуировочной характеристики и по коэффициентам выхода.

Занятие 25-28. Сканирующая туннельная микроскопия (4 часов).

Факторы, влияющие на качество изображения СТМ. Конструкция датчика туннельного тока сканирующего зондового микроскопа NanoEducator. Влияние направления туннелирования электронов на изображение поверхности кремния.

Занятие 29-30. Обобщение, повторение, сравнение. (4 часа)

Научная дискуссия. Групповое обсуждение результатов. Защита рефератов.

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ БУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Методы исследования веществ и материалов» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том

числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№	Контролируемые разделы / темы	/ темы Коды и этапы формирования компетенций		Оценочные средства - наименование	
п/п	дисциплины			текущий контроль	промежуточн ая аттестация
	Раздел 1. Спектральные методы исследования в химии		Знает	Собеседова ние (УО-1).	Зачёт
	Тема 1. Электронная спектроскопия Тема 2. Колебательная спектроскопия, ИК-спектроскопия и спектроскопия комбинационного рассеяния (рамановская) Тема 3. Позитронно-	OK-1; OK-4;	Умеет	Собеседова ние (УО-1), сдача коллоквиум а (УО-2).	Зачёт
1.	аннигиляционная спектроскопия. Мессбауэровская или у-резонансная спектроскопия Тема 4. ЯМР-спектроскопия Тема 5. Рентгенофазовый и рентгеноструктурный анализ. Рентгено-электронная спектроскопия.	ОПК-3; ПК-5.	Владеет	Собеседова ние (УО-1), групповой творческий проект (УО- 4).	Зачёт
	Раздел 2. Хроматография		Знает	Собеседова ние (УО-1), сдача коллоквиум а (УО-2).	Экзаменацио нные вопросы.
2.	Тема 1. Гелевая хроматография Тема 2. Хромато-масс-спектрометрия высокого разрешения	ОПК-3; ПК-1	Умеет	Собеседова ние (УО-1), сообщение.	Экзаменацио нные вопросы.
			Владеет	Собеседова ние (УО-1), реферат.	Экзаменацио нные вопросы.
3.	Раздел 3. Методы исследования поверхности твердых тел Тема 1. Химия поверхности	ОК-1; ОПК-3;	Знает	Собеседова ние (УО-1), реферат.	Экзаменацио нные вопросы.
	пористых и непористых носителей Тема 2.	ПК-3	Умеет	Собеседова ние (УО-1).	Экзаменацио нные

1	ектронная	оже-спектроскопия.			вопросы.
	анирующая кроскопия	туннельная		Собеседова ние (УО-1),	Экзаменацио нные
				доклад.	вопросы.

Типовые задания и тесты для коллоквиума, собеседования, темы групповых творческих проектов, рефератов, докладов, сообщений, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература (печатные издания)

- 1. Криштафович, В. И. Физико-химические методы исследования: учебник для вузов / В. И. Криштафович, Д. В. Криштафович, Н. В. Еремеева. М.: Издательство Дашков и К°. 2015. 208 с.
- http://lib.dvfu.ru:8080/lib/item?id=Znanium:Znanium-513811&theme=FEFU
- 2. Лебухов, В. И. Физико-химические методы исследования : учебник / В. И. Лебухов, А. И. Окара, Л. П. Павлюченкова; под ред. А. И. Окара. Санкт-Петербург: Издательство Лань. 2012. 480 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:734799&theme=FEFU
- 3. Ярышев, Н. Г. Физические методы исследования и их практическое применение в химическом анализе: учебное пособие / Н. Г. Ярышев, Д. А. Панкратов. М.: МПГУ. 2012. 160 с.

http://lib.dvfu.ru:8080/lib/item?id=IPRbooks:IPRbooks-18633&theme=FEFU

Дополнительная литература (печатные издания)

- 1. Пахомов, Л. Г. Физические методы в химических исследованиях (теория, задачи, ответы): учебное пособие / Л. Г. Пахомов, К. В. Кирьянов, А. В. Князев. Изд-во Нижегородского университета. 2007. 286 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:267599&theme=FEFU
- 2. Чуприна, В. Г. Рентгенографическое изучение фазового состава продуктов жидкофазного взаимодействия порошков W, Co и Sn / В. Г. Чуприна, И. М. Шаля. Порошковая металлургия. №11/12. 2008. C. 111-117. http://lib.dvfu.ru:8080/lib/item?id=chamo:586197&theme=FEFU
- 3. Реутов, В. А. Требования к оформлению письменных работ, выполняемых студентами Института химии и прикладной экологии ДВГУ / В. А. Реутов. Владивосток : Изд-во Дальневост. ун-та, 2010. 59 с.
- 4. Фримэн, Р. Магнитный резонанс в химии и медицине / Рэй Фримэн ; пер. с англ. В. А. Волынкина, С. Н. Болотина, Н. В. Пащевской. М.: Издательство URSS [Красанд]. 2009. 331 с.

http://lib.dvfu.ru:8080/lib/item?id=chamo:289942&theme=FEFU

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. http://e.lanbook.com/
- 2. http://www.studentlibrary.ru/
- 3. http://znanium.com/
- 4. http://www.nelbook.ru/

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендации по планированию и организации времени, отведенного на изучение дисциплины

Время, отведённое на самостоятельную работу, должно быть использовано обучающимся планомерно в течение семестра.

Планирование – важнейшая черта человеческой Для деятельности. учебной деятельности эффективным организации вариантом является использование средств, напоминающих о стоящих перед вами задачах, и их последовательности выполнения. В роли таких средств ΜΟΓΥΤ быть IT-(смартфоны, т.п.), технологии планшеты, компьютеры имеющие

приложения/программы по организации распорядка дня/месяца/года и сигнализирующих о важных событиях, например, о выполнении заданий по дисциплине «Методы исследования веществ и материалов».

Регулярность — первое условие поисков более эффективных способов работы. Рекомендуется выбрать день/дни недели для регулярной подготовки по дисциплине «Методы исследования веществ и материалов», это позволит морально настроиться на выполнение поставленных задач, подготовиться к ним и выработать правила выполнения для них, например, сначала проработка материала лекций, чтение первоисточников, затем выделение и фиксирование основных идей. Рекомендуемое среднее время два часа на одно занятие.

Описание последовательности действий, обучающихся при изучении лиспиплины

В соответствии с целями и задачами дисциплины студент изучает на занятиях и дома разделы лекционного курса, готовится к практическим занятиям, проходит контрольные точки текущей аттестации, включающие разные формы проверки усвоения материала (собеседование, тестирование и др.).

Освоение дисциплины включает несколько составных элементов учебной деятельности:

- 1. Внимательное чтение рабочей программы учебной дисциплины (помогает целостно увидеть структуру изучаемых вопросов). В ней содержится перечень контрольных испытаний для всех разделов и тем, включая экзамен; указаны сроки сдачи заданий, предусмотренных учебной программой курса дисциплины «Методы исследования веществ и материалов».
- 2. Неотъемлемой составной частью освоения курса является посещение лекций и их конспектирование. Глубокому освоению лекционного материала способствует предварительная подготовка, включающая чтение предыдущей лекции, работу с учебниками.
- 3. Регулярная подготовка к практическим занятиям и активная работа на них, включающая:
 - повторение материала лекции по теме;
- знакомство с планом занятия и списком основной и дополнительной литературы, с рекомендациями по подготовке к занятию;
 - изучение научных сведений по данной теме в разных учебных пособиях;
 - чтение первоисточников и предлагаемой дополнительной литературы;
- посещение консультаций с целью выяснения возникших сложных вопросов при подготовке к практическим занятиям.
- 4. Подготовка к экзамену (в течение семестра), повторение материала всего курса дисциплины.

Рекомендации по работе с литературой

Изучение дисциплины следует начинать с проработки тематического плана лекций, уделяя особое внимание структуре и содержанию темы и основных понятий. Изучение «сложных» тем следует начинать с составления логической схемы основных понятий, категорий, связей между ними. Целесообразно прибегнуть к классификации материала, в частности при изучении тем, в которых присутствует большое количество незнакомых понятий, категорий, теорий, концепций, либо насыщенных информацией типологического характера.

При работе с литературой обязательно выписывать все выходные данные по каждому источнику. Можно выписывать кратко основные идеи автора и иногда приводить наиболее яркие и показательные цитаты (с указанием страниц). Ищите аргументы «за» или «против» идеи автора.

Чтение научного текста является частью познавательной деятельности. Ее цель – извлечение из текста необходимой информации. От того на сколько осознанна читающим собственная внутренняя установка (найти нужные информацию полностью усвоить или частично, критически сведения, проанализировать материал и т.п.) зависит эффективность во МНОГОМ осуществляемого действия.

Изучая материал по учебной книге (учебнику, учебному пособию, монографии, хрестоматии и др.), следует переходить к следующему вопросу только после полного уяснения предыдущего, фиксируя выводы, в том числе те, которые в учебнике опущены или на лекции даны для самостоятельного вывода. Особое внимание следует обратить на определение основных понятий курса. Надо подробно разбирать примеры, которые поясняют определения, и приводить аналогичные примеры самостоятельно. Полезно составлять опорные конспекты. При изучении материала по учебной книге полезно либо в тетради на специально отведенных полях, либо в документе, созданном на ноутбуке, планшете и др. информационном устройстве, дополнять конспект лекций. Там же следует отмечать вопросы, которые есть необходимость разобрать на консультации с преподавателем. Выводы, полученные в результате изучения учебной литературы, рекомендуется в конспекте выделять, чтобы при перечитывании материала они лучше запоминались.

Используйте основные установки при чтении научного текста:

- 1. информационно-поисковая (задача найти, выделить искомую информацию);
- 2. усваивающая (усилия читателя направлены на то, чтобы как можно полнее осознать и запомнить, как сами сведения, излагаемые автором, так и всю логику его рассуждений);
- 3. аналитико-критическая (читатель стремится критически осмыслить материал, проанализировав его, определив свое отношение к нему);
- 4. творческая (создает у читателя готовность в том или ином виде как отправной пункт для своих рассуждений, как образ для действия по аналогии и

т.п. – использовать суждения автора, ход его мыслей, результат наблюдения, разработанную методику, дополнить их, подвергнуть новой проверке).

Для работы с научными текстами применяйте следующие виды чтения:

- 1. библиографическое просматривание карточек каталога, рекомендательных списков, сводных списков журналов и статей за год и т.п.;
- 2. просмотровое используется для поиска материалов, содержащих нужную информацию, обычно к нему прибегают сразу после работы со списками литературы и каталогами, в результате такого просмотра читатель устанавливает, какие из источников будут использованы в дальнейшей работе;
- 3. ознакомительное подразумевает сплошное, достаточно подробное прочтение отобранных статей, глав, отдельных страниц, цель познакомиться с характером информации, узнать, какие вопросы вынесены автором на рассмотрение, провести сортировку материала;
- 4. изучающее предполагает доскональное освоение материала; в ходе такого чтения проявляется доверие читателя к автору, готовность принять изложенную информацию, реализуется установка на предельно полное понимание материала;
- 5. аналитико-критическое и творческое чтение два вида чтения близкие между собой тем, что участвуют в решении исследовательских задач. Первый из них предполагает направленный критический анализ, как самой информации, так и способов ее получения и подачи автором; второе поиск тех суждений, фактов, по которым или в связи с которыми, читатель считает нужным высказать собственные мысли.

Основным для студента является изучающее чтение — именно оно позволяет в работе с учебной литературой накапливать знания в профессиональной области.

При работе с литературой можно использовать основные виды систематизированной записи прочитанного:

- 1. Аннотирование предельно краткое связное описание просмотренной или прочитанной книги (статьи), ее содержания, источников, характера и назначения.
- 2. Планирование краткая логическая организация текста, раскрывающая содержание и структуру изучаемого материала.
- 3. Тезирование лаконичное воспроизведение основных утверждений автора без привлечения фактического материала.
- 4. Цитирование дословное выписывание из текста выдержек, извлечений, наиболее существенно отражающих ту или иную мысль автора.
 - 5. Конспектирование краткое и последовательное изложение содержания прочитанного.

Подготовка к сдаче коллоквиумов

При подготовке к сдаче коллоквиума воспользуйтесь материалами лекций и

рекомендованной литературой. Коллоквиум является одной из составляющих учебной деятельности студента по овладению знаниями. Целью коллоквиума является определение качества усвоения лекционного материала и части дисциплины, предназначенной для самостоятельного изучения.

Задачи, стоящие перед студентом при подготовке и написании коллоквиума:

- 1. закрепление полученных ранее теоретических знаний;
- 2. выработка навыков самостоятельной работы;
- 3. выяснение подготовленности студента к будущей практической работе.

Коллоквиум проводится под наблюдением преподавателя. Тема коллоквиума известна и проводится она по сравнительно недавно изученному материалу, в соответствии с перечнем тем и вопросов для подготовки.

Преподаватель готовит задания либо по вариантам, либо индивидуально для каждого студента. По содержанию работа может включать теоретический материал, задачи, тесты, расчеты и т.п. Выполнению работы предшествует инструктаж преподавателя.

Ключевым требованием при подготовке к коллоквиуму выступает творческий подход, умение обрабатывать и анализировать информацию, делать самостоятельные выводы, обосновывать целесообразность и эффективность предлагаемых рекомендаций и решений проблем, чётко и логично излагать свои мысли. Подготовку К коллоквиуму следует начинать cповторения соответствующего раздела учебника, учебных пособий по данной теме и конспектов лекций.

Подготовка к экзамену

В процессе подготовки к экзамену, следует ликвидировать имеющиеся пробелы в знаниях, углубить, систематизировать и упорядочить знания. Особое внимание следует уделить организации подготовки к экзаменам. Для этого важны следующие моменты - соблюдение режима дня: сон не менее 8 часов в сутки; занятия заканчивать не позднее, чем за 2-3 часа до сна; прогулки на свежем воздухе, неутомительные занятия спортом во время перерывов между Наличие занятиями. полных собственных конспектов лекций необходимым условием успешной сдачи экзамена. Если пропущена какая- либо лекция, необходимо ее восстановить, обдумать, устранить возникшие вопросы, чтобы запоминание материала было осознанным. Следует помнить, что при подготовке к экзаменам вначале надо просмотреть материал по всем вопросам сдаваемой дисциплины, далее отметить для себя наиболее трудные вопросы и обязательно в них разобраться. В заключение еще раз целесообразно повторить основные положения.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Проведение лекций с использованием мультимедийной аппаратуры для демонстрации иллюстративного материала.

обеспечивает Имеющаяся материальная выполнение курса химическими реактивами, лабораторной посудой, учебно-научным и научным оборудованием в соответствии с реализуемой научной тематикой лабораторий. обучающимися исследований состава и Выполнение строения предоставлением возможности научного обеспечивается использования оборудования вуза: Спектрометр ядерного магнитного резонанса высокого разрешения AVANCE 400МГц (Bruker), жидкостной хроматограф AgilentTechnologies. США, жидкостной хроматограф 1100 AgilentTechnologies. США, газовые хроматографы 6890 с детектором 5975N, газовый хроматограф 6890 с детектором 5973N, газовый хроматограф 6850 с пламенно ионизационным детектором и детектором по теплопередачи, спектрофотометр Vertex 70 с приставкой комбинационного рассеивания RAMII микроскопом Hyperion 1000 (Bruker), ИК-Фурье спектрометр SpekctrumBX (PerkinElmer), двулучевой сканирующий спектрофотометр УФ\видимого диапозонаCintra 5 (JBCScientificequipment), анализатор углерода, водорода и азота(Thermofinnigan), микроволновая система Discoveri, а также использования научного оборудования в центрах коллективного пользования ДВФУ и ДВО РАН.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТЕСТВЕННЫХ НАУК

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Методы исследования веществ и материалов» Направление подготовки 04.04.01 Химия

Магистерская программа «Фундаментальные химические исследования веществ и процессов»

Форма подготовки очная

Владивосток 2018

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля					
	2 семестр								
1.	1-3-я недели	Изучение материала лекции, учебника, подготовка к семинару. Расшифровка спектра неизвестного вещества, определение строения.	11 часов	Собеседование (УО-1).					
2.	4-6-я недели	Изучение материала лекции, учебника, подготовка к семинару. Расшифровка спектра неизвестного вещества, определение строения.	11 часов	Собеседование (УО-1), сообщение.					
3.	7-9-я недели	Изучение материала лекции, учебника, подготовка к семинару. Расшифровка спектра неизвестного вещества, определение строения.	11 часов	Собеседование (УО-1), доклад.					
4.	10-12-я недели	Изучение материала лекции, учебника, подготовка к семинару. Расшифровка данных ПАС веществ, полученных магистрантом при проведении научной работы.	11 часов	Собеседование (УО-1).					
5	13-17-я недели	Изучение материала лекции, учебника, подготовка к семинару. Расшифровка ЯМР спектра вещества.	10 часов	Собеседование (УО-1), сдача коллоквиума №1 (УО-2).					
5.	18-я неделя	Подготовка к экзамену	36 часов	Беседа по темам к сдаче экзамена					

Структура реферата

Реферат относится к категории «письменная работа» и оформляется по правилам оформления письменных работ студентами $\mathcal{L}B\Phi V$.

Рефераты представляются в печатной и электронной форме, подготовленные как текстовые документы в редакторе MSWord.

Структурно реферат, как текстовый документ, комплектуется по следующей схеме:

- *Титульный лист обязательная* компонента реферата, первая страница (титульный лист реферата должен размещаться в общем файле, где представлен текст реферата);
- *Основная часть* материалы выполнения заданий, разбивается по рубрикам, соответствующих заданиям работы, с иерархической структурой: пункты подпункты и т. д.

Рекомендуется в основной части отчета заголовки рубрик (подрубрик)

давать исходя из формулировок заданий, в форме отглагольных существительных;

- *Выводы* обязательная компонента реферата, содержит обобщающие выводы по работе;
- Список литературы обязательная компонента реферата, с новой страницы, содержит список источников, использованных при выполнении работы, включая электронные источники (список нумерованный, в соответствии с правилами описания библиографии).

Набор текста осуществляется на компьютере, в соответствии со следующими требованиями:

- печать на одной стороне листа белой бумаги формата А4 (размер 210 на 297 мм.);
- интервал межстрочный полуторный;
- шрифт Times New Roman;
- размер шрифта 14 пт., в том числе в заголовках (в таблицах допускается 10-12 пт.);
- выравнивание текста «по ширине»;
- поля страницы левое -25-30 мм., правое -10 мм., верхнее и нижнее -20 мм.;
- нумерация страниц в правом нижнем углу страницы (для страниц с книжной ориентацией), сквозная, от титульного листа до последней страницы, арабскими цифрами (первой страницей считается титульный лист, на котором номер не ставиться, на следующей странице проставляется цифра «2» и т. д.).
- режим автоматического переноса слов, за исключением титульного листа и заголовков всех уровней (перенос слов для отдельного абзаца блокируется средствами MSWord с помощью команды «Формат» абзац при выборе опции «запретить автоматический перенос слов»).

Если рисунок или таблица размещены на листе формата больше A4, их следует учитывать как одну страницу. Номер страницы в этих случаях допускается не проставлять.

Список литературы и все *приложения* включаются в общую в сквозную нумерацию страниц работы.

Критерии оценки защиты реферата

Изложенное понимание реферата как целостного авторского текста определяет критерии его оценки: новизна текста; обоснованность выбора источника; степень раскрытия сущности вопроса; соблюдения требований к оформлению.

Новизна текста: а) новизна и самостоятельность в постановке проблемы, формулирование проблемы нового аспекта известной установлении внутрипредметных, новых связей (межпредметных, интеграционных); б) умение работать с исследованиями, критической литературой, систематизировать и структурировать материал; в) стилевое единство текста, единство жанровых черт.

Степень раскрытия сущности вопроса: а) соответствие плана теме реферата; б) соответствие содержания теме и плану реферата; в) полнота и глубина знаний по теме; г) обоснованность способов и методов работы с материалом; е) умение обобщать, делать выводы, сопоставлять различные точки зрения по одному вопросу.

Обоснованность выбора источников: а) оценка использованной литературы: привлечены ли наиболее известные работы по теме исследования (в т.ч. журнальные публикации последних лет, последние статистические данные, сводки, справки и т.д.).

Соблюдение требований к оформлению: а) насколько верно оформлены ссылки на используемую литературу, список литературы; б) оценка грамотности и культуры изложения (в т.ч. орфографической, пунктуационной, стилистической культуры), владение терминологией; в) соблюдение требований к объёму реферата.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Методы исследования веществ и материалов»
Направление подготовки 04.04.01 Химия
Магистерская программа «Фундаментальные химические исследования веществ и

процессов»

Форма подготовки очная

Владивосток 2018

I. Паспорт фонда оценочных средств по дисциплине «Методы исследования веществ и материалов»

Код и формулировка компетенции		Этапы формирования компетенции
способностью творчески адаптировать достижения зарубежной науки, техники и	Знает	Основные тенденции развития в области современных методов исследования веществ и материалов, применяемых в зарубежной науке и технике
образования к отечественной практике, высокая степень	Умеет	Адаптировать достижения зарубежной науки и техники к решению задачи по выбору метода исследования в зависимости от структуры вещества и поставленной задачи
профессиональной мобильности (ОК-1)	Владеет	Способностью использовать полученные навыки для решения профессиональных задач
умение быстро осваивать новые	Знает	Базовую терминологию, основные понятия и законы, лежащие в основе различных методов исследования
предметные области, выявлять противоречия, проблемы и вырабатывать	Умеет	Анализировать результаты различных физико- химических методов исследования веществ и материалов
альтернативные варианты их решения (ОК-4);	Владеет	Навыками комплексного подхода к исследованию полученных веществ физико-химическими методами
способностью реализовать нормы	Знает	Нормы и правила техники безопасности при использовании различных приборов для определения физико-химических характеристик исследуемых веществ
техники безопасности в лабораторных и технологических	Умеет	Реализовать нормы техники безопасности в лабораторных и технологических условиях
условиях (ОПК-3)	Владеет	Навыками безопасного использования приборной базы и работы в лабораторных условиях при исследовании веществ различной природы
	Знает	Основные методы анализа научной литературы с использованием современных баз данных
владением теорией и навыками практической работы в избранной	Умеет	Использовать физико-химические методы исследования при выполнении квалификационных работ
области химии (ПК-2)	Владеет	Современными компьютерными программами необходимыми для проведения физико-химических исследований
готовностью использовать	Знает	Принципиальные схемы и возможности современной аппаратуры для проведения физико-химических исследований
современную аппаратуру при проведении научных	Умеет	Выполнять требования, предъявляемые к образцам при проведении исследований
проведении научных исследований (ПК-3);	Владеет	Навыками пользователя приборов, а также пользователя программ при использовании физико-химических методов исследования

владением навыками интерпретации результатов физико-	Знает	Современные базы данных спектральных характеристик исследуемых веществ, используемые при интерпретации результатов физико-химических методов исследования веществ			
химических методов исследования вещества	Умеет	Применять полученные знания в исследовательской работе;			
(ПК-5).	Владеет	Навыками интерпретации результатов физико-химических методов исследования веществ			

	Контролируемы	Коды и э	тапы	Оценочные средства -	наименование
№ п/п	е разделы / темы дисциплины	формирования компетенций		текущий контроль	промежуточна я аттестация
	Раздел 1.		Знает	Собеседование (УО-1).	Зачёт
	Спектральные методы исследования в химии		Умеет	Собеседование (УО-1), сдача коллоквиума (УО-2).	Зачёт
1.	химии Тема 1. Электронная спектроскопия Тема 2. Колебательная спектроскопия, ИК- спектроскопия и спектроскопия комбинационно го рассеяния (рамановская) Тема 3. Позитронно-аннигиляционн ая спектроскопия. Мессбауэровска я или у-резонансная спектроскопия Тема 4. ЯМР-спектроскопия Тема 5. Рентгенофазовый и рентгенострукт урный анализ. Рентгено-	OK-1; OK-4; ОПК-3; ПК-5.	Владеет	Собеседование (УО-1), групповой творческий проект (УО-4).	Зачёт

	электронная спектроскопия.				
	Раздел 2. Хроматографи я Тема 1. Гелевая хроматография Тема 2. Хромато-масс-	OK-1;	Знает	Собеседование (УО-1), сдача коллоквиума (УО-2).	Экзаменацион ные вопросы.
2.		ОПК-3; ПК-1	Умеет	Собеседование (УО-1), сообщение.	Экзаменацион ные вопросы.
	спектрометрия высокого разрешения		Владеет	Собеседование (УО-1), реферат.	Экзаменацион ные вопросы.
	Раздел 3. Методы		Знает	Собеседование (УО-1), реферат.	Экзаменацион ные вопросы.
	исследования поверхности твердых тел		Умеет	Собеседование (УО-1).	Экзаменацион ные вопросы.
3.	Тема 1. Химия поверхности пористых и непористых носителей Тема 2. Электронная ожеспектроскопия. Сканирующая туннельная микроскопия	ОК-1; ОПК-3; ПК-3	Владеет	Собеседование (УО-1), доклад.	Экзаменацион ные вопросы.

II. Шкала оценивания уровня сформированности компетенций по дисциплине «Методы исследования веществ и материалов»

Код и	Этапы	критерии	показатели
формулировка компетенции	формирования компетенции		

OV 1				
ОК-1 — способностью творчески адаптировать достижения зарубежной науки, техники и			 методики анализа и систематизации информации на иностранном языке об основных тенденциях 	Демонстрирует
образования к отечественной практике, высокая степень профессиональной мобильности	знает (порог овый уровен ь)	Основные тенденции развития в области современных методов исследования веществ и материалов, применяемых в зарубежной науке и технике	развития в области современных методов исследования веществ и материалов • классическ ие и современные комплексные физико-химические методы исследования, применяемые в зарубежной науке и технике • методы оценки погрешностей результатов физико-химического эксперимента	знания проведения научных исследований по сформулированно й тематике с использованием основных современных методов исследования веществ и материалов, применяемых в зарубежной науке и технике.
	умеет (продв инутый)	Адаптировать достижения зарубежной науки и техники к решению задачи по выбору метода исследования в зависимости от структуры вещества и поставленной задачи	 • осуществит ь выбор соответствующ его физико-химического метода исследования в зависимости от структуры вещества и поставленной задачи; • адаптирова ть и модернизирова ть стандартные методы анализа и идентификаци и химических 	Способен проводить научные исследования по сформулированно й тематике с использованием современных методов исследования веществ и материалов, в том числе и зарубежных, самостоятельно составить план исследования и получить новые научные и прикладные

			веществ и материалов; • осуществит ь комплексный подход к исследованию полученных веществ физико-химическими методами • способност ью и готовностью быстро осваивать технические средства или изменения в них	Владеет способностью постоянно повышать свое образование и квалификацию в области исследования веществ,
	владее т (высок ий)	Способностью использовать полученные навыки для решения профессиональ ных задач	• способност ью постоянно повышать свое образование и квалификацию в области исследования веществ • навыками донести результаты исследования до аудитории при публичных выступлениях на семинарах, конференциях в выбранной области химии	использовать полученные навыки для решения поставленных задач и способностью донести результаты исследования до аудитории при публичных выступлениях на семинарах и конференциях.
ОК-4 - умение быстро осваивать новые предметные области, выявлять противоречия, проблемы и вырабатывать альтернативные варианты их решения.	знает (порог овый уровен ь)	Базовую терминологию, основные понятия и законы, лежащие в основе различных методов исследования	• базовую терминологию, относящуюся к физико-химическим методам исследования • основные понятия и законы, лежащие в основе различных методов	Демонстрир ует знания базовой терминологии, основных понятий и законов, лежащих в основе различных методов исследования.

умет (продв штутый) * Показать связь между различных физико- химическии методам исследования веществ и материалов и способен (продв истролов исследования веществ и материалов и способет ведения физико- химическии методам исследования веществ и материалов и способет ведения физико- химическии методам исследования веществ и материалов и способет ведения физико- химическии методам исследования веществ и проблемы и проблемы и проблемы и вырабатывать альтериативные веществ и материалов и способет ведения физико- химические методы исследования веществ вначатить противоречия, проблемы и вырабатывать альтериативные веществ, выявлять противоречия, проблемы и вырабатывать альтериативные веществ и материалов и способет ведения физико- химические методы исследования веществ вначатить противоречия, проблемы и вырабатывать альтериативные веществ и материалов и способен ведения физико- химические методы и профлессиональной и профлекти и профлессиональной и профлессиональной и профлекти и проф			исследования	
Навыками комплексного подхода к исследованию полученных веществ физико-химическими методами методами методами методами навыками компленного опыта и творческому анализу своих возможностей обосновать и профессиональной деятельности базовые знания в познавательной и профессиональной деятельности базовые знания в познавательной и профессиональной деятельности базовых знаний в области современных физико-химических методов исследования.	(продв	результаты различных физико- химических методов исследования веществ и	связь между различными физико- химическими методами исследования • показать связь между структурой и свойствами	и оценивает существующие научные методы исследования веществ и материалов и способен корректно применять их для решения конкретных научно-аналитических задач. Способен быстро осваивать новые физикохимические методы исследования веществ, выявлять противоречия, проблемы и вырабатывать альтернативные варианты их
ОПК-3 – знает Нормы правила правила реализовать нормы овый и принципы действия, основные способность сформулировать и обосновать	т (высок	комплексного подхода к исследованию полученных веществ физико-химическими	ью использовать в познавательно й и профессиональ ной деятельности базовые знания в области естественных наук; ■ навыками к критической переоценке накопленного опыта и творческому анализу своих	системой навыков использования в познавательной и профессионально й деятельности базовых знаний в области современных физико-химических методов
реализовать нормы овый техники основные обосновать		-	• принципы	
, posem peromenoem indomination in indomination	овый	техники	основные	обосновать

техники безопасности в лабораторных и технологических условиях	ь)	при использовании различных приборов для определения физико-химических характеристик исследуемых веществ	правила техники безопасности при работе на современной аппаратуре для проведения исследований веществ и материалов	техники безопасности при проведении лабораторных занятий по методам исследования веществ и материалов.
	умеет (продв инутый)	Реализовать нормы техники безопасности в лабораторных и технологически х условиях	• упр авлять действующими технологическ ими процессами с соблюдением норм техники безопасности • осва ивать новые технологии по направлениям профессиональ ной деятельности с соблюдением норм техники безопасности	Умеет идентифицироват ь опасности, характер воздействия вредных и опасных факторов на человека при работе в лабораторных и технологических условиях; свободно выбирает способы защиты от возможных последствий.
	владее т (высок ий)	Навыками безопасного использования приборной базы и работы в лабораторных условиях при исследовании веществ различной природы	• способност ью организовать своё рабочее место при проведении анализа вещества в соответствии с нормами техники безопасности	Владеет навыками оценки предельно- допустимых концентраций опасных химических веществ в лабораторных помещениях; владеет навыками защиты людей от возможных последствий химических аварий в лабораторных условиях;
ПК-2 - владением теорией и навыками практической работы в избранной области химии	знает (порог овый уровен ь)	Основные методы анализа научной литературы с использование м современных баз данных	• основные методы анализа научной литературы с использованием современных баз данных	В полной мере владеет знаниями основных методов анализа научной литературы с использованием современных баз

			1	Г
			• закономерности физико- химических процессов, протекающих при исследовании полученных в ходе научной работы веществ и материалов	данных, знаниями закономерностей физико-химических процессов, протекающих при исследовании полученных в ходе практической работы в избранной области химии научной работы веществ и материалов. Способен использовать физико-химические
	умеет (продв инутый)	Использовать физико- химические методы исследования при выполнении квалификацион ных работ	физико- химических процессов при выполнении исследования использова ть физико- химические методы исследования при выполнении квалификационны х работ	методы исследования при выполнении квалификационны х работ.
	владее т (высок ий)	Современными компьютерным и программами необходимыми для проведения физико-химических исследований	• методами и современными компьютерными программами необходимыми для проведения физико-химических исследований • навыками отбора проб материала, необходимого для исследования физико-химическими методами	В полной мере владеет методами и современными компьютерными программами необходимыми для проведения физико-химических исследований.
ПК-3 - готовностью использовать	знает (порог овый	Принципиальн ые схемы и возможности	• принципиальные схемы и возможности	Демонстрирует знания принципиальных

			~	
современную	уровен	современной	приборов для	схем и
аппаратуру при	ь)	аппаратуры для	проведения	возможностей
проведении		проведения	физико-	приборов для
научных		физико-	химических	проведения
исследований		химических	исследований	физико-
		исследований	• принципы	химических
			действия и	исследований, а
			основные	также принципов
			параметры	действия и
			современной	основных
			аппаратуры для	параметров
			проведения	современной
			научных	аппаратуры для
			исследований	проведения
				научных
				исследований.
			• определять	Способен
			методы	выполнить
			исследования	требования,
			необходимые для	предъявляемые к
		Выполнять	получения	образцам при
	умеет	требования,	соответствующих	проведении
	(продв	предъявляемые	результатов	исследований,
	инутый	к образцам при	• выполнять	определяет
)	проведении	требования,	методы
		исследований	предъявляемые к	исследования
			образцам при	необходимые для
			проведении	получения
			исследований	соответствующих
				результатов.
			• техникой	Владеет техникой
			проведения	проведения
		Навыками	эксперимента	эксперимента,
		пользователя	• навыками	навыками
		приборов, а	исполнения	исполнения
		также	правил	правил
	владее	пользователя	пользователя	пользователя
	T	программ при	приборов, а также	приборов, а также
	(высок	использовании	правил	правил
	ий)	физико-	пользователя	пользователя
		химических	программ при	программ при
		методов	проведении	проведении
		исследования	физико-	физико-
			химических	химических
			методов	методов
ПС 5		Commercia	исследования	исследования.
ПК-5 - владением		Современные	•	Демонстрирует
навыками	знает	базы данных	современн	знания
интерпретации	(порог	спектральных	ые базы данных	современных баз
результатов	овый	характеристик	спектральных	данных
физико-химических	уровен	исследуемых	характеристик	спектральных
методов	ь)	веществ,	исследуемых	характеристик
исследования		используемые	веществ,	исследуемых
вещества		при	используемые при	веществ, области

	интерпретации	интерпретации	применения и
	результатов	результатов	точности физико-
	физико-	физико-	химических
	химических	химических	методов
	методов	методов	исследования
	исследования	исследования	веществ.
	веществ	вещества	
		 области 	
		применения и	
		точности физико-	
		химических	
		методов	
		исследования	
		веществ	
	П	• применять	Способен
умеет	Применять	полученные	применить
(продв	полученные	знания в	полученные
инутый	знания в	исследовательско	знания в
	исследовательс	й работе;	исследовательско
'	кой работе;	F,	й работе.
		• навыками	Владеет навыками
		высококвалифици	интерпретации
		рованной	экспериментальн
		эксплуатации	ых данных: УФ-
		современного	спектров, ИК-
		оборудования и	спектров,
	Навыками	приборов по	спектров, ЯМР1Н,
	интерпретации	избранному	13С, масс-
рпопаа	* *	направлению	спектров, ПАС и
владее	результатов	_	* ′
T	физико-	исследований	др.
(высок	химических	• навыками	
ий)	методов	интерпретации	
	исследования	экспериментальн	
	веществ	ых данных: УФ-	
		спектров, ИК-	
		спектров,	
		спектров ЯМР1Н,	
		13С, масс-	
		спектров, ПАС и	
i		др.	

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

І. Промежуточная аттестация студентов. Промежуточная аттестация студентов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Зачёт – вопросы к зачёту. Экзамен – вопросы к экзамену.

Вопросы для подготовки к экзамену (зачёту)

по дисциплине «Методы исследования веществ и материалов»

- 1. Симметрия молекул. Элементы симметрии. Точечные группы.
- 2. Строение атома и происхождение атомных спектров.
- 3. Строение молекул и происхождение молекулярных спектров.
- 4. Молекулярные орбитали и аспекты симметрии.
- 5. Спектроскопия. Общее введение. Электромагнитный спектр.
- **6.** Критерии, помогающие отнесению линий. Интенсивность электронных переходов.
- 7. Правила отбора. Переходы с переносом заряда.
- 8. Влияние растворителя на спектры.
- 9. Хромофорные группы. Применение.
- **10.** Колебательная спектроскопия. Поглощение излучения молекулярными колебаниями правила отбора.
- **11.** Силовая постоянная. Закон Гука. Колебания многоатомных молекул. Правило 3N-6 (5).
- **12.** Эффекты, вызывающие появление полос поглощения. Концепция групповых колебаний
- 13. Спектроскопия комбинационного рассеяния. Правила отбора.
- **14.** Спектроскопия резонансного комбинационного рассеяния. Соотношение между прочностью связи и сдвигом частоты в ИК-спектрах.
- 15. Аппаратура для ИК спектроскопии, приготовление образцов.
- 16. Аппаратура для спектроскопии КР.
- 17. Сравнение методов ИК и КР, их преимущества и недостатки.
- **18.** Общие сведения об экспериментальных методах позитронной спектроскопии.
- **19.** Сечение процессов аннигиляции, γ-2-фотонная, γ-3-фотонная аннигиляция.
- **20.** Состояние атома позитрония. Влияние магнитного поля (эффект Зеемана).
- 21. Измерение времени жизни позитронов в веществе. Временной спектр.
- 22. Методы определения вероятности 3у-аннигиляции позитрона
- 23. Мессбауэровская или γ-резонансная спектроскопия. Эффект Мессбауэра на атомах.
- 24. Химический сдвиг и расщепление резонансной линии. Влияние симметрии окружения на химический сдвиг и расщепление.
- 25. Рентгенофазовый и рентгеноструктурный анализ. Общие положения.
- 26. Дифракция рентгеновского монохроматографического излучения.

- **27.** Формула Лауэ для расчета размера частиц и межпакетного расстояния в аморфных веществах.
- **28.** Уравнение Брэгга-Вульфа. Расчет межслоевых расстояний в кристаллических веществах. В качестве примера структура NaCl.
- 29. Рентгено-электронная спектроскопия.
- 30. Фотоэлектронная спектроскопия. Общие положения.
- 31. Отнесение полос в РФЭ-спектрах.
- **32.** Протонный магнитный резонанс. Принцип получения резонансного сигнала на ядре. Сдвиг по отношению к эталону. Обозначение шкалы.
- **33.** Спин-спиновое взаимодействие. Расщепление сигналов в постоянном магнитном поле на ядрах углерода, фосфора, кремния. Примеры.
- 34. Основы дериватографического анализа. Схема термических весов.
- 35. Кинетический спектр термодеструкции, модель Фримена-Кэррола.
- 36. Приближенные методы расчета энергии активации.
- **37.** Качественные методы определения температуры термодеструкции. Полуколичественные методы определения температуры разложения.
- **38.** Метод Райха и Леви. Возможные применения при исследовании элементоорганических и металлорганических соединений.
- **39.** Определение молекулярной массы мономера и полимера. Средневесовой, среднечисловой, средневязкостный молекулярный вес.
- 40. Определение величины полидисперсности.
- **41.** Молекулярно-массовое распределение в полимере. Основы гелевой хроматографии полимеров.
- 42. Методы экспериментального получения хроматографических спектров
- **43.** Источники погрешностей при измерении параметров удерживания, влияющие на точность идентификации.
- 44. Уравнение динамики сорбции. Определение нулевого объема, рабочего объема колонки
- **45.** Параметры колонки. Величина эффективности теоретической тарелки (ВЭТТ).
- 46. Метод Глюкауфа. Теоретические аспекты гелевой хроматографии.
- **47.** Модель Пората. Возможность применения при исследовании элементоорганических полимеров.
- **48.** Химия поверхности пористых и непористых носителей. Методы модификации поверхности твердых тел.
- 49. Молекулярные наслаивания. Якорные группировки.
- **50.** Расчет степени модификации поверхности. Примеры практического использования.
- **II. Текущая аттестация студентов**. Текущая аттестация студентов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Примерный перечень оценочных средств (ОС) Устный опрос

1. Коллоквиум (УО-2) (Средство контроля усвоения учебного материала темы, раздела или разделов дисциплины, организованное как учебное занятие в виде собеседования преподавателя с обучающимися.) — Вопросы по темам/разделам дисциплины.

2. Собеседование (УО-1) – Вопросы по темам/разделам дисциплины.

Вопросы для коллоквиумов, собеседования по дисциплине «Методы исследования веществ и материалов»

Раздел 1. Спектральные методы исследования в химии

- 1. Какие основные принципы и законы лежат в основе электронной спектроскопии?
- 2. Дайте характеристику и проведите классификацию электронных переходов в молекулах органических соединений.
- 3. Сформулируйте основные определения, используемые в электронной спектроскопии.
- 4. Какова принципиальная схема оптического спектрометра?
- 5. Применение правил Вудворда-Физера для расчёта $\lambda_{\text{макс.}}$ полос поглошения?
- 6. Сформулируйте общие положения колебательной спектроскопии.
- 7. Каковы физические основы метода колебательной спектроскопии: колебательные состояния двухатомных молекул, колебательные состояния многоатомных молекул?
- 8. Колебательные спектры молекул. Правила отбора.
- 9. Основные параметры колебательного спектра: концепция групповых частот и структурный анализ, интенсивность спектральных линий, ширина спектральных линий.
- 10.Сформулируйте основные задачи, которые позволяет решать колебательная спектроскопия и области её применения.
- 11. Что такое позитрон (e⁺) и позитроний (Ps) в конденсированных средах? В чём заключаются специфические свойства и аннигиляция позитрония? Какие возможны процессы аннигиляции и взаимодействия позитронов и позитрония с веществом?
- 12.В чём суть методов тройных совпадений, угловой корреляции аннигиляционных квантов, доплеровского смещения аннигиляционной гамма-линии?
- 13. Каковы основы метода измерения времени жизни позитронов и позитрония?
- 14.Особенности аннигиляций позитрония в жидкостях («пузырьковая» модель), в твердых телах (модель «свободного объема», модель «ловушек»).
- 15. Сформулируйте принцип получения резонансного сигнала на ядре.
- 16. Расщепление сигналов в постоянном магнитном поле на ядрах углерода, фосфора, кремния.
- 17. Рентгенофазовый и рентгеноструктурный анализ. Как происходит дифракция монохроматического рентгеновского излучения на монокристаллах и поликристаллитах?
- 18.Как описать набор плоскостей, используя параметры элементарной ячейки?
- 19. Как интенсивность отражения связана с содержанием ячейки?

- 20.Покажите использование формулы Лауэ для расчета размера частиц и межпакетного расстояния в аморфных веществах.
- 21. Уравнение Брэгга-Вульфа. Расчет межслоевых расстояний в кристаллических веществах.
- 22. Сформулируйте общие положения фотоэлектронной спектроскопии. Отнесение полос в РФЭ-спектрах.

Раздел 2. Рефрактометрия

- 23. Описать электрические и оптические свойства молекул.
- 24.Суть и область применения метода рефрактометрии. Рефрактометрические константы как критерий чистоты вещества и средство идентификации.

Раздел 3. Хроматография

- 25.Определение молекулярной массы мономера и полимера.
- 26. Молекулярно-массовое распределение в полимере. Основы гелевой хроматографии полимеров.
- 27. Уравнение динамики сорбции. Определение нулевого объема, рабочего объема колонки.

Раздел 4. Методы исследования поверхности твердых тел

- 28. Какие способы модификации поверхности твердых тел вам известны?
- 29. Как провести расчет степени модификации поверхности.
- 30.Сформулируйте физические основы метода Оже-электронной спектроскопии.
- 31. Аппаратура и методика измерений Оже-спектра, методика подготовки образцов.
- 32. Качественный и количественный анализ методом ЭОС.
- 33.Основы сканирующей туннельной микроскопии и спектроскопии. Схема сканирующего туннельного микроскопа.
- 34.Измерительные методики СТМ. Топографический режим. Токовый режим. Туннельная спектроскопия.

Примеры тестов для коллоквиума:

- 1. Ион, адсорбирующийся на поверхности ядра и определяющий заряд коллоидной частицы (гранулы), называется...
 - 1. потенциоопределяющим;
 - 2. адсорбционным;
 - 3. поверхностным;
 - 4. коагулирующим
- 2. Физическая адсорбция от химической отличается...
 - 1. высоким тепловым эффектом и необратимостью;
 - 2. высоким тепловым эффектом и обратимостью;
 - 3. невысоким тепловым эффектом и необратимостью;
 - 4. невысоким тепловым эффектом и обратимостью;
- 3. Наиболее удобным источником перевода вещества в атомарное состояние является...
 - 1. механическое воздействие;
 - 2. радиочастота;
 - 3. пламя;
 - 4. свет

 4. Различная способность веществ к адсорбции используется в 1. полярографии; 2. томографии; 3. рентгенографии; 4. хроматографии
5. Атомно-эмиссионные методы анализа основаны на способности
возбужденных атомов вещества электромагнитное излучение
1. преломлять;
2. поглощать;
3. отклонять;
4. испускать
6. Вещество, на поверхности которого происходит разделение и
концентрирование анализируемых веществ в методе хроматографии,
называется
1. сорбат;
2. сорбтив;
3. сорбент;
4. элюент 7. Уроматография основана на опособности рочностр
7. Хроматография основана на способности веществ 1. адсорбироваться;
2. пропускать свет;
3. преломлять свет;
4. преобразовывать частоту потенциала вещества.
Дополните выражения: 1. Спектроскопические методы анализа
5. Физические процессы в основе оптических методов атомной
спектроскопии
6. Источник возбуждения в атомно-эмиссионной
7. Осмори и тини отомисстворо
7. Основные типы атомизаторов
8. Роль атомизаторов
9. Основные типы источников излучения
11.Требования к фотометрическим реагентам
12.Классификация методов люминисцентной
спектроскопии
13.Правило Каши
14.Закон Вавилова
13.Правило Стокса-ломмеля
16.Правило зеркальной симметрии
17.Источник излучения при люминисценции
18. Характеристики люминисценции
19.Происхождение аналитического сигнала

20.Основные требования к индикаторному электроду
21. Характерные особенности ячейки
22.Суть инверсионной вольтамперометрии
23.Основные хроматографические параметры
24. Источники погрешностей при анализе
25.Роль полярности подвижной фазы при хроматографии
26. Что такое электрофоретическая подвижность
27.Перспективные хроматографически методы

Темы групповых творческих проектов

по дисциплине «Методы исследования веществ и материалов»

- 1. Выдается неизвестное вещество под определенным номером. Расшифровка спектра этого вещества, определение строения.
- 2. Расшифровка данных ПАС веществ, полученных при проведении научной работы.
- 3. Расшифровка ЯМР спектра неизвестного вещества, определение строения.
- 4. Проведение определения молярной рефракции вещества, степени его чистоты и идентификация.
- 5. Получение хроматографических спектров веществ, определение погрешностей при измерении параметров удерживания, влияющие на точность идентификации.
- 6. Рассчитать концентрацию элементов на поверхности образца с помощью градуировочной характеристики и по коэффициентам выхода.

Темы рефератов, докладов, сообщений по дисциплине «Методы исследования веществ и материалов»

- 1. Особенности ФХМА и области их применения
- 2. Рефрактометрический метод анализа. Показатель преломления. Поляризация и рефракция. Методы определения. Области применения рефрактометрического метода
- 3. Поляриметрический метод анализа. Угол поворота оптически активных веществ. Методы определения. Области применения поляриметрического метода
- 4. Фотометрические методы анализа. Молярный коэффициент абсорбции. Методы определения. Области применения фотометрического метода
- 5. Кондуктометрический метод анализа. Эквивалентная и удельная электропроводности раствора. Методы определения. Области применения кондуктометрического метода
- 6. Потенциометрический метод анализа. ЭДС раствора. pH раствора. Методы определения. Области применения потенциометрического метода
- 7. Электрогравиметрический и кулонометрический методы анализа. Электролиз. Схема проведения электролиза. Выход по току. Методы определения.
- 8. Области применения электрогравиметрического и кулонометрического методов анализа.
- 9. История возникновения и развития хроматографии.

- 10. Практическое применение хроматографии.
- 11. Области применения оптических методов анализа.
- 12. Области применения электрохимических методов анализа.
- 13. Области применения хроматографических методов анализа.
- 14. Определение макроколичеств железа в растворе методом сравнения.
- 15.Определение меди в растворе методом фотоколориметрического титрования.
- 16. История развития физико-химических методов анализа.
- 17.Оптические методы в определении группового углеводородного состава стандартных фракций.
- 18. Хроматографические методы определения группового состава углеводородных смесей жидкостей нефти.
- 19.Потенциометрическое титрование в исследовании состава нефти.

Критерии оценки знаний умений и навыков при текущей проверке

I. Оценка устных ответов:

Отметка "Отлично"

- 1. Дан полный и правильный ответ на основе изученных теорий.
- 2. Материал понят и изучен.
- 3. Материал изложен в определенной логической последовательности, литературным языком.
 - 4. Ответ самостоятельный.

Отметка "Хорошо"

- 1, 2, 3, 4 аналогично отметке "Отлично".
- 5. Допущены 2-3 несущественные ошибки, исправленные по требованию учителя, наблюдалась "шероховатость" в изложении материала.

Отметка "Удовлетворительно"

- 1. Учебный материал, в основном, изложен полно, но при этом допущены 1-2 существенные ошибки (например, неумение применять законы и теории к объяснению новых фактов).
- 2. Ответ неполный, хотя и соответствует требуемой глубине, построен несвязно.

Отметка "Неудовлетворительно"

- 1. Незнание или непонимание большей или наиболее существенной части учебного материала.
- 2. Допущены существенные ошибки, которые не исправляются после уточняющих вопросов, материал изложен несвязно.