

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

«СОГЛАСОВАНО» «УТВЕРЖДАЮ» В Заведующий кафедрой органической химии Руководитель ОП М. С. Васильева РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Химия гетероциклических соединений Направление подготовки 04.04.01 Химия магистерская программа «Органическая, элементоорганическая и биоорганическая химия» Форма подготовки очная Курс 1 семестр 2 лекции 4 час. семинары 6 час. лабораторные работы 36 час. в том числе с использованием МАО лек._4_/пр.___/лаб. час. всего часов аудиторной нагрузки 46 час. в том числе с использованием МАО 4 час. самостоятельная работа 98 час. в том числе на подготовку к экзамену -час. контрольные работы (количество) курсовая работа / курсовой проект _____ семестр зачет 2 семестр экзамен не предусмотрен Рабочая программа составлена в соответствии с требованиями образовательного стандарта, самостоятельно устанавливаемого ДВФУ, утвержденного приказом ректора ДВФУ № 12-13-592 от 04.04.2016. Рабочая программа обсуждена на заседании кафедры органической химии, протокол № 724(13/17) от «_15 _» сентября 2017г. Заведующий кафедрой органической химии Жидков М.Е.

Составитель, к.х.н., доцент:

А.Н. Андин

Оборотная сторона титульного листа РПУД

I. Рабочая п	рограмма п	ересмотрена на засед	ании кафедры:
Протокол от «	»	20 г. №	
Врио зав. кафедро	ой		
		(подпись)	(М.Е. Жидков)
W D 6			
п. Рабочая	программа	пересмотрена на засед	цании кафедры:
Протокол от «	»	20 г. №	2
Врио зав. кафедр	ой		
		(подпись)	(М.Е. Жидков)

ABSTRACT

Master of Science in Chemistry degree in 04.04.01 - Chemistry.

Study profile: Organic, elementoorganic and bioorganic chemistry.

Course title: Chemistry of heterocyclic compounds.

Variable part of Block, 4 credits.

Instructor: Andin A.N.

At the beginning of the course a student should be able to:

- ability to use basic knowledge of organic chemistry previously acquired;
- the presence of simple data about the spatial structure of the heterocyclic molecules and mechanisms of reactions.

Learning outcomes:

-the ability to use the knowledge of theoretical bases of the fundamental topics of chemistry in solving professional tasks;

-learning of the system of fundamental chemical concepts.

Course description:

Classification of methods of synthesis of various types of heterocycles;

Retrosynthetic analysis;

Nomenclature of heterocycles;

Five-membered aromatic heterocycles with one and two heteroatoms;

Six-membered aromatic heterocycles with one and two heteroatoms;

Stereochemistry of reactions;

The basic concepts of reaction's mechanisms.

Main course literature:

1. Joule, J. Chemistry of heterocyclic compounds / J. Joule, K. Mills. – M.: Mir, $2004.-728\ p.$

http://www.twirpx.com/file/267167/

- 2. Mironovich, L. M. Heterocyclic compounds with three and more heteroatoms / L. M. Mironovich. Publishing house "LAN", 2017. 208 p. https://e.lanbook.com/book/96859#book_name
- 3. Lee, J.J. Name Reactions. Mechanisms of organic Reactions / J. J. Lee. M.: Binom, 2006. 456 p.

http://lib.dvfu.ru:8080/lib/item?id=chamo:277649&theme=FEFU

- 4. Gilchrist, T. Chemistry of heterocyclic compounds, Vol gilcrist. M.: Mir, 1996. 464 p.
- 5. Rakhimov, A. I. Heterocyclic compounds. Part I. Nitrogen-containing six-membered aromatic compounds with one nitrogen atom in a cycle: proc. manual/A. I. Rakhimov, A. V. Nalesnaya. VSTU.- Volgograd, 2009. 76 p. http://dump.vstu.ru/files/storage/Kafiedry/OKh/uchiebno-mietodichieskiie_razrabotki_po_orghanichieskoi_khimii/shiestichliennyie_azotsod_ierzhashchiie_ghietierotsikly.pdf

Form of final knowledge control: test.

Аннотация к рабочей программе дисциплины «Химия гетероциклических соединений»

Рабочая программа учебной дисциплины «Химия гетероциклических соединений» разработана для магистров 1 курса, обучающихся по направлению 04.04.01 «Органическая, элементоорганическая и биоорганическая химия».

Опирается на знания, умения и навыки, усвоенные при изучении таких дисциплин, как «Органическая химия», «Физические методы исследования», «Механизмы реакций и стереохимия», «Органический синтез». Дисциплина изучается в течение 2-го семестра, общая трудоемкость составляет 4 зачетных единицы (144 часа), включает в себя 4 часа лекций, 6 часов семнинарских занятий, 36 часов лабораторных работ, 98 часов самостоятельной работы.

Цель: формирование у магистрантов знаний о номенклатуре, методах получения и основных типах реакций гетероциклических соединений.

Задачи:

- 1) освоить основные принципы синтонного подхода при планировании синтеза гетероциклического соединения;
- 2) углубить знания о классических и современных методах постановки синтетического эксперимента;
- 3) овладеть способностью проводитьосновные типы синтетических реакций с участием гетероциклов.

Для успешного изучения дисциплины «Химия гетероциклических соединений» у обучающихся должны быть сформированы следующие предварительные компетенции:

- способность использовать полученные знания теоретических основ фундаментальных разделов химии при решении профессиональных задач;
 - владение системой фундаментальных химических понятий.
- В результате изучения данной дисциплины у магистрантов формируются следующие компетенции:

Код и формулировка компетенции		Этапы формирования компетенции
способность проводить научные исследования по сформули-	Знает	• Взаимосвязь между особенностями строения молекул гетероциклических соединений и их свойствами.
рованной тематике, самостоятельно составлять план иссле-	Умеет	• В новой ситуации использовать знания по химии гетероциклических соединений.
дования и получать новые научные и прикладные результаты (ПК-1).	Владеет	• Пространственным мышлением, умением спланировать синтез заданной гетероциклической системы.
	Знает	 Номенклатуру гетероциклических соединений.
владение теорией и навыками практичес-кой работы в избранной области химии	Умеет	 Механизмы основных типов синтетических реакций, приводящих к гетероциклам. Предсказать результат конкретной реакции с участием гетероциклических соединений
(ПК-2).	Владеет	 Умением проводить ретросинтетический анализ гетероциклических систем. На основе теоретических представлений объяснять экспериментальные результаты.
готовность исполь-	Знает	• Закономерности протекания реакций с участием гетероциклических соединений.
зовать современную аппаратуру при про-	Умеет	 Составлять план исследования в области химии гетероциклических соединений.
ведении научных исследований (ПК-3).	Владеет	 Методами экспериментального и теоретического изучения химии гетероциклов.
	Знает	• Теоретические и практические основы ХГС.
владение навыками интерпретации результатов физико-	Умеет	• Применять на практике теоретические знания по химии гетероциклических соединений.
химических методов исследования вещества (ПК-5).	Владеет	• Физическими методами исследования гетероциклических соединений и их производных.

Для формирования вышеуказанных компетенций в рамках дисциплины «Химия гетероциклических соединений» применяются следующие методы активного обучения: проблемная лекция, лекция-визуализация.

- I. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА Лекции (4 час).
- МОДУЛЬ 1. Введение в химию гетероциклов. Пятичленные ароматические гетероциклы с одним и двумя гетероатомами (2,5 час). МАО проблемная лекция (2, 5 час)
- **Тема 1.** Введение в химию гетероциклов. Классификация способов синтеза различных типов гетероциклов (0,5 час). Введение. Многообразие и классификация гетероциклических соединений. Основные типы реакций гетероциклизации. Структурные блоки, наиболее часто использующиеся в синтезе гетероциклов.
- **Тема 2. Пятичленные ароматические гетероциклы с одним гетероатомом (пиррол, фуран, тиофен) (0,5 час).** Пиррол и его производные. Способы получения и химические свойства. Фуран и тиофен, их производные. Способы получения и химические свойства
- **Тема 3. Конденсированные пятичленные гетероциклы с одним гетероатомом (индол) (0,5 час).** Способы синтеза индольной системы. Химические свойства индола.
- **Тема 4.** Конденсированные пятичленные гетероциклы с одним гетероатомом (продолжение) (0,5 час).

Бензофуран и бензотиофен. Способы получения и химические свойства. Изоиндол и индолизин. Способы получения и химические свойства.

- **Тема 5. Пятичленные ароматические гетероциклы с двумя гетероатомами (0,5 час).** 1,2-Азолы. Способы получения и химические свойства. 1,3-Азолы. Способы получения и химические свойства.
- МОДУЛЬ 2. Шестичленные ароматические гетероциклы с одним гетероатомом (моноядерные и конденсированные). Шестичленные ароматические гетероциклы с двумя гетероатомами (1,5 час). МАОлекция-визуализация (1,5 час)

- **Тема 1. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридин, соли пирилия) (0,5 час).** Пиридин и его производные. Способы получения и химические свойства. Соли пирилия. Способы получения и химические свойства.
- **Тема 2. Конденсированные шестичленные гетероциклы с одним гетероатомом (хинолин и изохинолин) (0,5 час).** Хинолин. Способы получения и химические свойства. Изохинолин. Способы получения и химические свойства.
- **Тема 3. Шестичленные ароматические гетероциклы с двумя гетероатомами (диазины) (0,5 час).** Пиримидин и его производные. Способы получения и химические свойства. Пиридазин и пиразин. Способы получения и химические свойства.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА Проведение научных семинаров (6 час).

Темы научных семинаров

- 1. Пятичленные ароматические гетероциклы с одним гетероатомом (пирролы, фураны, тиофены). (1 час).
- 2. Конденсированные пятичленные гетероциклы с одним гетероатомом (индолы, бензофураны, бензотиофены, индолизины). (1 час).
- 3. Пятичленные ароматические гетероциклы с двумя гетероатомами (азолы). (1 час).
- 4. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридин). (1 час).
- 5. Конденсированные шестичленные гетероциклы с одним гетероатомом (хинолин и изохинолин). Шестичленные ароматические гетероциклы с двумя гетероатомами (азины). (1 час).
- 6. Номенклатура гетероциклических соединений. (1 час).

Лабораторные работы (36 час).

Лабораторная работа № 1. Получение пирослизевой кислоты (6 час).

Лабораторная работа № 2. Получение 3,5-диметилпиразола (6 час).

Лабораторная работа № 3. Получение 2,6-диметил-3,5-дикарбэтокси-4-(м-нитрофенил)-1,4-дигидропиридина (6 час).

Лабораторная работа № 4. Получение 2,4,6-трифенилпиридина (12 час).

Лабораторная работа № 5. Получение 1,2,3,4-тетрагидрокарбазола (6 час).

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Химия гетероциклических соединений» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

№	Контролируемые	Ко	ды и этапы	Оценочн	ые средства
п/п	разделы / темы дисциплины	формирования компетенций		текущий контроль	промежуточная аттестация
1	Модуль I. Тема 1. Введение в химию гетероциклов. Классификация способов синтеза различных типов гетероциклов.	ПК-1 Способ- ность прово- дить научные исследо- вания по	знает: Взаимосвязь между особенностями строения молекул гетероциклически х соединений и их свойствами.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
		сформул ирован- ной те-	умеет: В новой ситуации использовать	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3

	1.50=	D.V.O.V.V.G ===	I	1
	матике, самостоя	знания по химии		
	тельно	гетероциклически х соединений.		
	состав-	и соединении.		
	ЛЯТЬ	рпопаат	Группорой	Вопрости
	план	владеет:	Групповой	Вопросы к
	иссле-	Пространствен-	разбор задач	зачету № 1-3
	дования	ным мышлением, умением	(УО-4)	
	и полу-	спланировать		
	чать но-	синтез заданной		
	вые	гетероцикличес-		
	научные	кой системы.		
	и при-			
	кладные резуль-			
	таты			
	ПК-2	знает:	Групповой	Вопросы к
	владение	Номенклатуру	разбор задач	зачету № 1-3
	теорией	гетероциклически	уО-4)	3a 101 y 312 1-3
	и навы-	х соединений.	(y O-4)	
	ками		F	D . —
!	практи-	умеет:	Групповой	Вопросы к
!	ческой	Представить механизмы	разбор задач	зачету № 1-3
!	работы в	основных типов	(УО-4)	
	избран-	синтетических		
	ной об-	реакций,		
	ласти химии	приводящих к гетероциклам.		
	АИМИИ	тегероциклим.		
		Предсказать		
		результат		
		конкретной реакции с		
		участием		
		гетероцикличес-		
		ких соединений.		
		владеет:	Групповой	Вопросы к
		Умением прово-		зачету № 1-3
		дить	1 *	saucty Nº 1-3
		ретросинтетичес-	(УО-4)	
		кий анализ гете-		
		роциклических систем.		
		На основе		
		теоретических		
		представлений		
		объяснять эксперименталь-		
		ные результаты.		
	ПК-3	знает:	Групповой	Вопросы к
	11K-3	Silaci.		
	11 К- 3 готов-	Закономерности		зачету № 1-3
	готов- ность		разбор задач	зачету № 1-3
	готов- ность исполь-	Закономерности		зачету № 1-3
	готов- ность исполь- зовать	Закономерности протекания	разбор задач	зачету № 1-3
	готов- ность исполь-	Закономерности протекания реакций с	разбор задач	зачету № 1-3

		туру при проведе- нии научных исследо- ваний	умеет: Составлять план исследования в области химии гетероцикличес- ких соединений.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
			владеет: Методами экспериментального и теоретического изучения химии гетероциклов.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
		ПК-5 владение навыка- ми ин- терпрета ции	знает: Теоретические и практические основы ХГС.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
		результа тов физико- химичес ких методов исследо- вания веще-	умеет: Применять на практике теоретические знания по химии гетероцикличес- ких соединений.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
		ства	владеет: Физическими методами исследования гетероциклических соединений и их производных.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
2	Тема 2. Пятичленные ароматические гетероциклы с одним гетероатомом (пиррол, фуран, тиофен).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопросы к зачету № 4-6

4	Тема 3. Конденсированные пятичленные гетероциклы с одним гетероатомом (индол). Тема 4. Конденсированные пятичленные гетероциклы с одним гетероатомом (продолжение).	ПК-1, ПК-2, ПК-3, ПК-5 ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же Компетенции те же	Групповой разбор задач (УО-4) Групповой разбор задач (УО-4)	Вопросы к зачету № 7-9 Вопрос к зачету № 10
5	Тема 5. Пятичленные ароматические гетероциклы с двумя гетероатомами (0,5 час).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопрос к зачету № 11
6	Модуль 2. Тема 1. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридин, соли пирилия).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопрос к зачету № 12
7	Тема 2. Конденсированные шестичленные гетероциклы с одним гетероатомом (хинолин и изохинолин).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопрос к зачету № 13
8	Тема 3. Шестичленные ароматические гетероциклы с двумя гетероатомами (диазины).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопросы к зачету № 14- 15

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Джоуль, Дж. Химия гетероциклических соединений / Дж. Джоуль, К. Миллс. М.: Мир, 2004. 728 с. http://www.twirpx.com/file/267167/
- 2. Миронович, Л.М. Гетероциклические соединения с тремя и более гетероатомами / Л.М. Миронович. Изд-во "Лань", 2017. 208 с. https://e.lanbook.com/book/96859#book_name
- 3. Ли, Дж. Дж. Именные реакции. Механизмы органических реакций / Дж. Дж. Ли. М.: Бином, 2006.-456 с.

http://lib.dvfu.ru:8080/lib/item?id=chamo:277649&theme=FEFU

- 4. Джилкрист, Т. Химия гетероциклических соединений / Т. Джилкрист. М.: Мир, 1996. 464 с.
- 5. Рахимов, А.И. Гетероциклические соединения. Часть І. Азотсодержащие шестичленные ароматические соединения с одним атомом азота в цикле: учеб. пособие/ А.И. Рахимов, А.В. Налесная. ВолгГТУ.- Волгоград, 2009. 76 с.

http://dump.vstu.ru/files/storage/Kafiedry/OKh/uchiebnomietodichieskiie_razrabotki_po_orghanichieskoi_khimii/shiestichliennyie_azotsod ierzhashchiie_ghietierotsikly.pdf

Дополнительная литература

- 1. Андин, А.Н. Химия гетероциклических соединений / А.Н. Андин. Владивосток: Изд-во Дальневост. ун-та, 2008. 144 с.
- 2. Андин, А.Н. Синтезы гетероциклических соединений / А.Н. Андин. Владивосток: Изд-во Дальневост. фед. ун-та, 2012. 20 с.
- 3. Сборник контрольных заданий по органической химии: учеб. пособие.
- Ч. 3: Ароматические и гетероциклические соединения / В.Я. Денисов, Д.Л. Мурышкин, Т.Б. Ткаченко, Т.В. Чуйкова. Изд-во КемГУ, 2009. 86 с. https://e.lanbook.com/book/30112#book_name

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

1. Eicher, T. The Chemistry of Heterocycles. Structure, Reactions, and Applications / T. Eicher, S. Hauptmann. – Wiley, 2003.

http://www.twirpx.com/files/chidnustry/organic/hetero/

2. Тимощенко, Л.В. Γ етероциклические соединения / Л.В. Тимощенко, Т.А. Сарычева. — Томск, 2013.

http://portal.tpu.ru/SHARED/e/EAK/Education/Tab4/Het_posobie.pdf

3. Юровская, М.А. Химия ароматических гетероциклических соединений [Электронный ресурс] / М.А. Юровская. - М.: БИНОМ, 2015. - (Учебник для высшей школы).

 $\underline{http://www.studentlibrary.ru/book/ISBN 9785996327836.html}$

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Содержание методических указаний включает:

рекомендации по планированию и организации времени, отведенного на изучение дисциплины;

описание последовательности действий обучающихся, или алгоритм изучения дисциплины;

рекомендации по работе с литературой.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для осуществления образовательного процесса по дисциплине «Химия гетероциклических соединений» используется необходимое лабораторное оборудование, а также компьютеры и мультимедийные проекторы.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК ДВФУ

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Химия гетероциклических соединений» Направление 04.04.01 - Химия Органическая, элементоорганическая и биоорганическая химия Форма подготовки - очная

Владивосток 2017

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1.	15.04.	Решение задач № 1-27 (1 модуль)	65 час	Опрос перед началом занятия; самостоятельная работа
2.	25.05.	Решение задач № 28-43 (2 модуль)	33 час	Опрос перед началом занятия; самостоятельная работа

Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению.

Задания для самостоятельной работы студентов представляют собой вопросы и задачи по основным разделам ХГС. Целью указанных заданий является систематизация и обобщение теоретических знаний по каждому модулю дисциплины.

Методические рекомендации:

Рекомендуемое время, затрачиваемое на решение 1 задачи -2 часа (работа с лекционным материалом и литературой -1 час, обдумывание и изложение решения -1 час).

Для решения задач № 1-4 целесообразно обратиться к модулю 1, теме 1 лекционного курса.

Для решения задач № 5-8 целесообразно обратиться к модулю 1, теме 2 лекционного курса.

Для решения задач № 9-14 целесообразно обратиться к модулю 1, теме 2 лекционного курса.

Для решения задач № 15-19 целесообразно обратиться к модулю 1, теме 3 лекционного курса.

Для решения задач № 20-23 целесообразно обратиться к модулю 1, теме 4 лекционного курса.

Для решения задач № 24-26 целесообразно обратиться к модулю 1, теме 5 лекционного курса.

Для решения задач № 27-30 целесообразно обратиться к модулю 2, теме 1 лекционного курса.

Для решения задач № 31-38 целесообразно обратиться к модулю 2, теме 2 лекционного курса.

Для решения задач № 39-43 целесообразно обратиться к модулю 2, теме 3 лекционного курса.

Рекомендации по использованию литературы. Необходимая информация для решения задач содержится в учебнике «Химия гетероциклических соединений», автор Т.Джилкрист. – М.: Мир, 1996.- 464 с.

К задачам № 1,2 - глава 4, разделы 4.2 и 4.3.

К задачам № 3,5,6 - глава 6, раздел 6.1.

К задачам № 4,7,8, 26, 31-33, 38-39 - глава 6, раздел 6.2, 6.3, 6.4.

К задаче № 9 - глава 6, раздел 6.6.

К задаче № 10 - глава 6, раздел 6.6.

К задачам № 12-14, 37, 40 - глава 8, раздел 8.2, 8.3, 8.5.

К задачам № 15-18 - глава 5, раздел 5.2.

К задачам № 19-22 - глава 5, раздел 5.3, 5.5.

К задачам № 23-25, 29 - глава 7, раздел 7.3, 7.5.

К задачам № 27, 28, 35-36 - глава 5, раздел 5.2, 5.3.

К задачам № 41-43 - глава 5, раздел 5.2, 5.3.

Требования к представлению и оформлению результатов самостоятельной работы.

Все самостоятельные внеаудиторные работы представляются на бумажных носителях и сохраняются в рабочей папке студента. После выполнения работы производится ее защита студентом.

Критерии оценки выполнения самостоятельной работы.

- 1) уровень освоения студентом учебного материала;
- 2) умение использовать теоретические знания при выполнении конкретной практической задачи;
- 3) обоснованность и четкость изложения ответа;
- 4) оформление материала в соответствии с требованиями;
- 5) уровень самостоятельности студента при выполнении СР.

Задания для самостоятельной работы

1. Перечислите структурные блоки и реагенты, наиболее часто используемые в синтезе гетероциклов.

- 2. В чем основное отличие реакций замыкания цикла от циклоприсоединения?
- 3. Какие структурные фрагменты обусловливают принадлежность той или иной гетероциклической системы к π -избыточной или π -дефицитной?
- 4. Сравните реакционную способность и ароматичность пиррола, фурана, тиофена. Какие факторы здесь нужно учитывать?
- 5. Чем обусловлена ацидофобность пятичленных ароматических гетероциклов с одним гетероатомом?
- 6. Почему производные фурана легко вступают в реакцию Дильса-Альдера, а производные пиррола – нет ?
- 7. Сравните реакционную способность и ацидофобность пиррола и индола.
- 8. Объясните различную регионаправленность электрофильного замещения в пирроле и в индоле.
- 9. Сравните химические свойства бензофурана и бензотиофена. Чем обусловлено существенное различие в поведении гетероциклического ядра данных систем в некоторых реакциях?
- 10. Обозначьте основные подходы к построению системы индолизина.
- 11. Чем обусловлена малая устойчивость и высокая реакционная способность незамещенных по положениям 1 и 3 изоиндолов?
- 12. Сравните реакционную способность бензола, пиррола и пиразола. Чем обусловлена π-амфотерность пиразола ?
- 13. Синтез какой гетероциклической системы можно осуществить реакцией Дильса-Альдера с участием производных оксазола? Приведите пример.
- 14. Приведите пример реакции рециклизации в ряду пятичленных гетероциклов с двумя гетероатомами.
- 15. Какие положения пиридинового ядра предпочтительно атакует электрофильная и нуклеофильная частицы?
- 16. Сравните скорость нуклеофильного замещения в 2-, 3- и 4-хлорпиридинах.

- 17. Напишите реакции N-оксида пиридина: а) нитрования; б) с реактивом Гриньяра.
- 18. Какие соединения более активно взаимодействуют с нуклеофилами пиридины или пиридиниевые соли?
- 19. Напишите два примера реакции рециклизации пирилиевой соли.
- 20. Объясните предпочтительность электрофильной атаки в изохинолине по положениям 5 и 8.
- 21. Приведите механизмы аномального нитрования и галогенирования хинолина в гетероциклическое ядро.
- 22. Какое ядро в молекуле хинолина легче окисляется бензольное или гетероциклическое и почему?
- 23. Сравните реакционную способность пиридина и пиримидина в реакциях с нуклеофилами.
- 24. Обозначьте основные подходы к синтезу пуриновой системы.
- 25. Объясните различную регионаправленность окисления аденина и гуанина надкислотами.
- 26. Напишите механизм нитрования 2-метилпиррола ацетилнитратом.
- 27. Напишите механизм нитрования 3,5-диэтилхинолина азотной кислотой.
- 28. Напишите реакции 2-этилпиридина:
- 1) с бензальдегидом; 2) с метилиодидом;
- 3) с амидом калия; 4) с КМпО₄ в кислой среде; 5) С натрием в этаноле.
- 29. Напишите уравнение и механизм реакции бензопиразина с амидом натрия.
- 30. Получите антибактериальный препарат фурацилин (семикарбазон 5нитрофурфурола), исходя из ксилозы и семикарбазида H_2N -CO-NH-N H_2 .
- 31. Получите 5-бром-3-метилиндол из индола.
- 32. Получите 4-бром-2-метилтиофен из тиофена.
- 33. Получите 2,4-диметилпиррол из ацетоуксусного эфира.

- 34. Предложите синтез гидрохлорида 2-бензилбензимидазола (лекарственного препарата дибазола) из орто-нитроанилина и толуола.
- 35. Получите алкалоид кониин (2-пропилпиперидин) из α-пиколина
- 36. Получите хинолин-6-карбоновую кислоту из толуола и глицерина
- 37. Получите антипирин (противовоспалительный препарат) из доступных реагентов.

38.
$$\xrightarrow{\text{EtMgBr}} A \xrightarrow{\text{EtBr}} B \xrightarrow{\text{Na}} C \xrightarrow{\text{MeI}} D \xrightarrow{\text{CH}_2=O} C \xrightarrow{\text{CH}_3 \ge NH} E$$

39.

42.

40.
$$CH_3COCH_2NH_2 \xrightarrow{CH_3COCl} A \xrightarrow{H_2SO_4} B \xrightarrow{HNO_3} C$$

$$\begin{array}{ccc} & & & \downarrow 2. \ \text{H}_2\text{O} \\ & & & & \text{NaCH(COOEt)}_2 & & \text{PCl}_5 \\ & & & & & \text{F} & & & \text{E} \end{array}$$

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК ДВФУ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Химия гетероциклических соединений» Направление 04.04.01 - Химия Органическая, элементоорганическая и биоорганическая химия Форма подготовки - очная

Владивосток 2017

Паспорт

фонда оценочных средств

по дисциплине «Химия гетероциклических соединений»

Код и формулировка компетенции		Этапы формирования компетенции
способность проводить научные исследования по сформули-	Знает	 Взаимосвязь между особенностями строения молекул гетероциклических соединений и их свойствами.
рованной тематике, самостоятельно сос-	Умеет	 В новой ситуации использовать знания по химии гетероциклических соединений.
тавлять план исследования и получать новые научные и прикладные результаты (ПК-1).	Владеет	• Пространственным мышлением, умением спланировать синтез заданной гетероциклической системы.
	Знает	• Номенклатуру гетероциклических соединений.
владение теорией и навыками практичес-кой работы в избранной области химии	Умеет	 Механизмы основных типов синтетических реакций, приводящих к гетероциклам. Предсказать результат конкретной реакции с участием гетероциклических соединений.
(ПК-2).	Владеет	 Умением проводить ретросинтетический анализ гетероциклических систем. На основе теоретических представлений объяснять экспериментальные результаты.
готовность исполь-	Знает	 Закономерности протекания реакций с участием гетероциклических соединений.
зовать современную аппаратуру при про-	Умеет	 Составлять план исследования в области химии гетероциклических соединений.
ведении научных исследований (ПК-3).	Владеет	 Методами экспериментального и теоретического изучения химии гетероциклов.
владение навыками	Знает	• Теоретические и практические основы ХГС.
интерпретации результатов физико-	Умеет	 Применять на практике теоретические знания по химии гетероциклических соединений.
химических методов исследования вещества (ПК-5).	Владеет	• Физическими методами исследования гетероциклических соединений и их производных.

№	Контролируемые	Коды и этапы	Оценочн	ые средства
Π/Π	разделы / темы	формирования	текущий	промежуточная
	дисциплины	компетенций	контроль	аттестация

1	M T	ПІС 1		F	D	
1	Модуль I. Тема 1. Введение в химию гетероциклов. Классификация способов синтеза различных типов гетероциклов.	ПК-1 Способ- ность прово- дить научные исследо- вания по сформул	знает: Взаимосвязь между особенностями строения молекул гетероциклически х соединений и их свойствами.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3	
		ирован- ной те- матике, самостоя тельно состав- лять	умеет: В новой ситуации использовать знания по химии гетероциклически х соединений.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3	
		план иссле- дования и полу- чать но- вые научные и при- кладные резуль- таты	владеет: Пространственным мышлением, умением спланировать синтез заданной гетероциклической системы.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3	
		ПК-2 владение теорией и навы-	знает: Номенклатуру гетероциклически х соединений.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3	
		ками практи- ческой работы в избран- ной об- ласти химии	ческой работы в избран- ной об- ласти	умеет: Представить механизмы основных типов синтетических реакций, приводящих к гетероциклам. Предсказать результат конкретной	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
			реакции с участием гетероцикличес- ких соединений.	F	D	
			владеет: Умением проводить ретросинтетический анализ гетероциклических систем. На основе	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3	

	ПК-3 готов- ность исполь- зовать совреме нную аппара- туру при проведе- нии научных исследо- ваний	теоретических представлений объяснять экспериментальные результаты. Знает: Закономерности протекания реакций с участием гетероциклически х соединений. Умеет: Составлять план исследования в области химии гетероциклических соединений.	Групповой разбор задач (УО-4) Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
		владеет: Методами экспериментального и теоретического изучения химии гетероциклов.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
	ПК-5 владение навыка- ми ин- терпрета ции результа тов физико- химичес ких методов исследо- вания веще- ства	знает: Теоретические и практические основы ХГС.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
		умеет: Применять на практике теоретические знания по химии гетероциклических соединений.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3
		владеет: Физическими методами иссле- дования гетеро- циклических соединений и их производных.	Групповой разбор задач (УО-4)	Вопросы к зачету № 1-3

2	Тема 2. Пятичленные ароматические гетероциклы с одним гетероатомом (пиррол, фуран, тиофен).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопросы к зачету № 4-6
3	Тема 3. Конденсированные пятичленные гетероциклы с одним гетероатомом (индол).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопросы к зачету № 7-9
4	Тема 4. Конденсированные пятичленные гетероциклы с одним гетероатомом (продолжение).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопрос к зачету № 12
5	Тема 5. Пятичленные ароматические гетероциклы с двумя гетероатомами (0,5 час).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопрос к зачету № 13
6	Модуль 2. Тема 1. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридин, соли пирилия).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопрос к зачету № 14
7	Тема 2. Конденсированные шестичленные гетероциклы с одним гетероатомом (хинолин и изохинолин).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопрос к зачету № 10
8	Тема 3. Шестичленные ароматические гетероциклы с двумя гетероатомами (диазины).	ПК-1, ПК-2, ПК-3, ПК-5	Компетенции те же	Групповой разбор задач (УО-4)	Вопросы к зачету № 14- 15

Шкала оценивания уровня сформированности компетенций по дисциплине «Химия гетероциклических соединений»

Код и формули- ровка компетенции	Этапы формирования компетенции		критерии	показатели	балл ы
способность проводить научные иссле- дования по сформули- рованной тематике, самостоя- тельно сос- тавлять план исследова- ния и полу- чать новые	знает (порого- вый уровень)	Взаимосвязь между особен- ностями строения молекул гетероцикличес- ких соединений и их свойствами.	Закономерности, связывающие структуру гетероциклического соединения с особенностями его химических свойств.	Основные положения в области механизмов реакций гетероциклических соединений, связь структура-свойства.	61-75
научные и прикладные результаты (ПК-1).	умеет (продвину -тый уровень)	В новой ситуации использовать знания по химии гетероциклических соединений.	На основе теоретических представлений объяснять экспериментальные результаты.	Ориентироваться в нестандартных задачах, охватывающих гетероциклические соединения.	76-85
	владеет (высокий уровень)	Пространственным мышлением, умением спланировать синтез заданной гетероциклической системы.	Навыками использования знаний химического поведения соединений для оптимизации проведения реакций.	Навыки планирования и осуществления синтеза гетероциклических соединений.	86- 100

владение теорией и навыками практической работы в избранной области химии (ПК-2).	знает (порого- вый уровень)	Номенклатуру гетероцикличес-ких соединений.	Номенклатура основных типов гетероциклических соединений.	Номенклатура моно- и полициклических гетероциклов.	61-75
	умеет (продвину -тый уровень)	Механизмы основных типов синтетических реакций, приводящих к гетероциклам.	Предсказать результат реакции гетероциклического соединения на основе механизма.	Предсказать результат конкретной реакции с участием гетероциклических соединений.	76-85
	владеет (высокий уровень)	Умением проводить ретро- синтетический анализ гетероциклических систем. На основе теоретических представлений объяснять экспериментальные результаты.	Навыки использования знаний химического поведения соединений для оптимизации проведения реакций.	Навыки использования знаний по получению и химическим свойствам ХГС для решения задач синтетического характера.	86- 100
готовность исполь- зовать современную аппаратуру при проведении научных исследований (ПК-3).	знает (порого- вый уровень)	Закономерности протекания реакций с участием гетероциклическ их соединений.	Основы синтетического эксперимента на базе гетероциклических соединений.	Использование необходимого оборудования для решения задач прикладного характера.	61-75

	умеет (продвину -тый уровень)	Составлять план исследования в области химии гетероциклическ их соединений.	Выбор необходимых экспериментальных условий на основе теоретических закономерностей протекания реакций.	Выбор оптимального аппаратурного оформления синтеза.	76-85
	владеет (высокий уровень)	Методами эксперимен- тального и теоретического изучения химии гетероциклов.	Навыки подбора оптимальных условий проведения реакций с учетом их механизма.	Навыками определения корреляции между структурой вещества, особенностями экспериментальных условий и аппаратурой для синтеза.	86- 100
владение навыками интерпретации результатов физико-химических методов исследования вещества (ПК-5).	знает (порого- вый уровень)	Теоретические и практические основы ХГС.	Знание основных физико-химических методов определения строения органических соединений.	Интерпретация несложных спектров гетероциклических соединений.	61-75
	умеет (продвину -тый уровень)	Применять на практике теоретические знания по химии гетероциклических соединений.	Применение на практике теоретических знаний по спектроскопии.	Знание основных видов спектроскопии, использующихся для установления строения.	76-85
	владеет (высокий уровень)	Физическими методами исследования гетероциклических соединений и их производных.	Владение современными инструментальными методами анализа органического вещества.	Интерпретация достаточно сложных спектров гетероциклических соединений.	86- 100

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

Критерии оценки знаний, умений и навыков при текущей проверке и промежуточной аттестации

I. Оценка устных ответов:

Отметка "Отлично"

Дан полный, правильный и самостоятельный ответ на основе изученного теоретического материала.

Отметка "Хорошо"

Дан достаточно полный ответ, однако допущены несущественные ошибки в изложении материала.

Отметка "Удовлетворительно"

Материал изложен неполно, при этом допущены 1-2 существенные ошибки.

Отметка "Неудовлетворительно"

Незнание и непонимание большей части учебного материала.

II. Оценка умения решать задачи:

Отметка "Отлично"

Решение рациональное, в объяснении нет ошибок.

Отметка "Хорошо"

Допущены 1-2 несущественные ошибки или неполное объяснение.

Отметка "Удовлетворительно"

Допущена существенная ошибка, записи хода решения неполные.

Отметка "Неудовлетворительно"

Решение неверно, содержит множество ошибок.

III. Оценка письменных работ:

Критерии те же.

Оценочные средства для промежуточной аттестации Вопросы к зачету.

- 1. Классификация способов синтеза различных типов гетероциклов.
- 2. Ретросинтетический анализ гетероциклических систем.
- 3. Номенклатура гетероциклических соединений.
- 4. Пятичленные ароматические гетероциклы с одним гетероатомом (пирролы).
- 5. Пятичленные ароматические гетероциклы с одним гетероатомом (фураны).
- 6. Пятичленные ароматические гетероциклы с одним гетероатомом (тиофены).
- 7. Конденсированные пятичленные ароматические гетероциклы с одним гетероатомом (индолы).
- 8. Конденсированные пятичленные ароматические гетероциклы с одним гетероатомом (бензофураны, бензотиофены, изоиндолы, индолизины).
- 9. Пятичленные ароматические гетероциклы с двумя гетероатомами (пиразолы, имидазолы).
- 10. Пятичленные ароматические гетероциклы с двумя гетероатомами (оксазолы, изоксазолы, тиазолы, изотиазолы).
- 11. Пятичленные ароматические гетероциклы с двумя гетероатомами (бензоконденсированные аналоги).
- 12. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридины, соли пирилия).
- 13. Шестичленные ароматические гетероциклы с одним гетероатомом (хинолины, изохинолины).
- 14. Шестичленные ароматические гетероциклы с двумя гетероатомами (диазины).
- 15. Шестичленные ароматические гетероциклы с двумя гетероатомами (бензоконденсированные аналоги).

Оценочные средства для текущей аттестации

Задания к научным семинарам.

Семинар 1. Пятичленные ароматические гетероциклы с одним гетероатомом (пирролы, фураны, тиофены).

Задания к семинару 1:

- 1. Сравните реакционную способность и ароматичность пиррола, фурана, тиофена. Какие факторы здесь нужно учитывать?
- 2. Почему производные фурана легко вступают в реакцию Дильса-Альдера, а производные пиррола – нет ?
- 3. Приведите примеры реакций нуклеофильного замещения в ряду тиофена.
- 4. Чем обусловлена ацидофобность пятичленных ароматических гетероциклов с одним гетероатомом?
- 5. Какие приемы используются для изменения регионаправленности электрофильного замещения в пирроле?
- б. Предскажите направление электрофильной атаки: а) в 2-метилпирроле;б) в пиррол-2-карбальдегиде.
- 7. Получите 4-бром-2-метилтиофен из тиофена.

Семинар 2. Конденсированные пятичленные гетероциклы с одним гетероатомом (индолы, бензофураны, бензотиофены, индолизины).

Задания к семинару 2:

1. Сравните реакционную способность и ацидофобность пиррола и индола.

- 2. Объясните различную регионаправленность электрофильного замещения в пирроле и в индоле.
- 3. Сравните химические свойства бензофурана и бензотиофена. Чем обусловлено существенное различие в поведении гетероциклического ядра данных систем в некоторых реакциях ?
- 4. Обозначьте основные подходы к построению системы индолизина.
- 5. Напишите реакции бензофурана и бензотиофена, которые: а) протекают сходно; б) протекают по-разному.
- 6. Получите 1-метил-2-фенилиндолизин из 2-этилпиридина.

Семинар 3. Пятичленные ароматические гетероциклы с двумя гетероатомами (азолы).

Задания к семинару 3:

- Сравните реакционную способность бензола, пиррола и пиразола.
 Чем обусловлена π-амфотерность пиразола?
- 2. Синтез какой гетероциклической системы можно осуществить реакцией Дильса-Альдера с участием производных оксазола ? Приведите пример.
- 3. Приведите пример реакции рециклизации в ряду пятичленных гетероциклов с двумя гетероатомами.
- 4. Предложите синтез гидрохлорида 2-бензилбензимидазола (лекарственного препарата дибазола) из орто-нитроанилина и толуола.
- 5. Получите антипирин (противовоспалительный препарат) из доступных реагентов.

Семинар 4. Шестичленные ароматические гетероциклы с одним гетероатомом (пиридин).

Задания к семинару 4:

- 1. Какие положения пиридинового ядра предпочтительно атакует электрофильная и нуклеофильная частицы?
- 2. Сравните скорость нуклеофильного замещения в 2-, 3- и 4-хлорпиридинах.
- 3. Напишите реакции N-оксида пиридина: а) нитрования; б) с реактивом Гриньяра.
- 4. Какие соединения более активно взаимодействуют с нуклеофилами пиридины или пиридиниевые соли? Почему?
- 5. Напишите реакции 2-этилпиридина:
 - 1) с бензальдегидом; 2) с метилиодидом;
 - 3) с амидом калия; 4) с КМпО₄ в кислой среде; 5) С натрием в этаноле.
- 6. Получите алкалоид кониин (2-пропилпиперидин) из α-пиколина.

7.
$$\xrightarrow{\text{KOH}} A \xrightarrow{\text{PCl}_5} B \xrightarrow{\text{MeONa}} C \xrightarrow{\text{Br}_2} D + E$$

Семинар 5. Конденсированные шестичленные гетероциклы с одним гетероатомом (хинолин и изохинолин). Шестичленные ароматические гетероциклы с двумя гетероатомами (азины).

Задания к семинару 5:

- 1. Объясните предпочтительность электрофильной атаки в изохинолине по положениям 5 и 8.
- 2. Приведите механизмы аномального нитрования и галогенирования хинолина в гетероциклическое ядро.
- 3. Сравните реакционную способность пиридина и пиримидина в реакциях с нуклеофилами.
- 4. Напишите уравнение и механизм реакции бензопиразина с амидом натрия.

5. Получите хинолин-6-карбоновую кислоту из толуола и глицерина.

PhCOOOH
$$A \xrightarrow{\text{HNO}_3} B \xrightarrow{\text{PCl}_3} C \xrightarrow{\text{H}_2/\text{Ni}} D$$

$$\downarrow 1. \text{ NaNO}_2/\text{HCl}$$

$$\downarrow 2. \text{ H}_2\text{O}$$

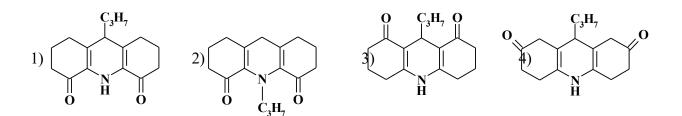
$$G \xrightarrow{\text{NaCH(COOEt)}_2} F \xrightarrow{\text{PCl}_5} E$$

Семинар 6. Номенклатура гетероциклических соединений.

Задания к семинару 6:

- 1. Назовите следующие соединения, имеющие тривиальные названия, пользуясь правилами, принятыми для гетерополициклов:
- 1) индол; 2) акридин; 3) индазол; 4) фенантридин; 5) 4H-хромен; 6) циннолин; 7) пурин; 8) индолизин
- 2. Приведите примеры моноциклических систем с разным размером цикла, числом гетероатомов и степенью ненасыщенности и назовите их, используя номенклатуру Ганча-Видмана.
- 3. Приведите примеры конденсированных систем (не менее 10), содержащих различное число циклов и гетероатомов в циклах, и назовите их, пользуясь правилами, принятыми для гетерополициклов.

Тестовые задания


- 1. π-Амфотерным гетероциклом является
- 1) тиофен 2) имидазол 3) индол 4) пиридин
- 2. 1,3-Диполярное циклоприсоединение можно использовать для синтеза производных
- 1) пиразола 2) пиррола 3) хинолина 4) пиридина
- 3. Реакция Манниха не характерна для
- 1) тиофена 2) индола 3) пиррола 4) индолизина

4. Наиболее ацидофобен
1) тиофен 2) фуран 3) пиррол 4) индол
5. Можно использовать в реакции диенового синтеза производные
1) изоксазола 2) имидазола 3) оксазола 4) индола
6. Синтез Бишлера используют для синтеза производных
1) бензофурана 2) индола 3) индолизина 4) хинолина
7. Наиболее трудно реагирует с нуклеофилами
1) 2-хлорпиридин 2) 3-хлорпиридин 3) 4-хлорпиридин
8. Наиболее трудно идет электрофильное замещение в
1) пиридине 2) хинолине 3) индоле 4) пиримидине
9. При электрофильном замещении в тиофен-2-карбальдегиде
электрофильная частица преимущественно атакует положение
1) 3 2) 4 3) 5
10. Для получения производных пиррола используют взаимодействие
первичных аминов с дикарбонильными соединениями
1) 1,2- 2) 1,3- 3) 1,4- 4) 1,5-
11. Для получения производных пиридина используют взаимодействие
аммиака с дикарбонильными соединениями
1) 1,2- 2) 1,3- 3) 1,4- 4) 1,5-

12. Для синтеза производного пиррола по Кнорру проводят взаимодействие

2-аминопентанона-3 с гептандионом

- 1) 2,3- 2) 2,4- 3) 2,5- 4) 2,6-
- 13. Для синтеза производных бензимидазола о-фенилендиамин вводят в реакцию
- 1) со спиртами 2) с альдегидами 3) с простыми эфирами 4) с нитросоединениями
- 14. Фурфурол образуется при нагревании с водными растворами минеральных кислот
- 1) альдопентоз 2) кетопентоз 3) альдогексоз 4) кетогексоз
- 15. Для получения 5-метокси-2-фенилиндола по Фишеру исходят из
- 1) фенилгидразона мета-метоксиацетофенона
- 2) фенилгидразона пара-метоксиацетофенона
- 3) мета-метоксифенилгидразона ацетофенона
- 1) пара-метоксифенилгидразона ацетофенона
- 16. При взаимодействии анилина с бутаналем по Дебнеру-Миллеру образуется
- 1) 3-пропил-2-этилхинолин
- 2) 2-пропил-3-этилхинолин
- 3) 2-пропил-4-этилхинолин
- 4) 4-пропил-2-этилхинолин
- 17. При взаимодействии бутаналя, циклогександиона-1,3 и аммиака образуется

- 18. 2-Фуриллитий образуется при действии на фуран
- 1) хлорида лития 2) гидроксида лития 3) бутилата лития 4) бутиллития
- 19. При действии бензоилхлорида на пиррил-калий преимущественно образуется
- 1) 1-бензоилпиррол 2) 2-бензоилпиррол 3) 3-бензоилпиррол 4) 2-хлорпиррол
- 20. Реакции электрофильного замещения в пиразоле идут
- 1) легче, чем в пирроле
- 2) труднее, чем в пирроле, но легче чем в бензоле
- 3) труднее, чем в пирроле и бензоле, но легче, чем в пиридине
- 4) труднее, чем в пирроле, бензоле и пиридине
- 21. При взаимодействии 2-метилпиридина с азотной кислотой в жестких условиях преимущественно образуется
- 1) 2-метил-4-нитропиридин 2) 2-метил-5-нитропиридин
- 3) 2-метил-6-нитропиридин 4) 2-нитрометилпиридин
- 22. При взаимодействии 2-метилпиридина с амидом натрия образуется
- 1) 2-аминометилпиридин 2) 3-амино-2-метилпиридин
- 3) 5-амино-2-метилпиридин 4) 6-амино-2-метилпиридин
- 23. При взаимодействии 2,3-диметилпиридина с бензальдегидом образуется

24. Цианид-ион легко присоединяется к:

1)
$$\begin{array}{c} & & & & \\ &$$

25. В растворе 4-гидрокси-2-аминопиридина доминирует форма

- 26. При нитровании 5-метилхинолина преимущественно образуется
- 1) 5-метил-2-нитрохинолин
- 2) 5-метил-3-нитрохинолин
- 3) 5-метил-7-нитрохинолин
- 4) 5-метил-8-нитрохинолин
- 27. При действии бензилбромида на изохинолин образуется

28. При действии анилина на перхлорат 2,4,6-триметилпирилия образуется

29. При действии надуксусной кислоты на пиримидин образуется

HO N OH
$$3$$
 N 4 N $+$ $+$ N $+$ N

- 30. При действии метилата натрия на 2,4-дихлорпиримидин образуется
- 1) 2-метокси-4-хлорпиримидин 2) 4-метокси-2-хлорпиримидин
- 3) 2,4-диметоксипиримидин 4) 6-метокси-2,4-дихлорпиримидин