Аннотация к рабочей программе дисциплины «Теория гравитации»

Дисциплина «Теория гравитации» разработана для студентов 4 курса направления подготовки 03.03.02 «Физика», профиля «Фундаментальная физика» в соответствии с требованиями ФГОС ВО и ОС ВО ДВФУ по данному направлению.

Дисциплина «Теория гравитации» относится к разделу Б1.В.ДВ.03.01 дисциплин по выбору вариативной части учебного плана.

Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 часа. Учебным планом предусмотрены лекционные занятия (26 час.) и практические занятия (18 час.), самостоятельная работа (55 +45-контроль) час.). Дисциплина реализуется в 7 семестре 4 курса и завершается зачетом.

Для успешного усвоения дисциплины «Теория гравитации» необходимы устойчивые теоретические знания и практические навыки по всем разделам обязательного минимума содержания среднего (полного) образования по физике. Изучение данной дисциплины базируется на следующих дисциплинах: «Математический анализ», «Линейные нелинейные уравнения физики», «Электродинамика», «Теория поля». Для успешного изучения дисциплины «Теория гравитации» у обучающихся должны быть сформированы следующие предварительные компетенции: 1. способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей (ОПК-2).

2. способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач (ОПК-3).

Цель:

Основная цель курса состоит в изучении основных положений теории гравитации и ее приложений к решению задач астрофизики. Знакомство с теорией тяготения является необходимым элементом современного образования студента, специализирующегося в области теоретической и математической физики.

Задачи:

Изучение римановой геометрии пространства-времени, описание физических полей в искривленном пространстве-времени.

Формулировка уравнений гравитационного поля Эйнштейна, проблемы формулировки законов сохранения.

Простейшие решения уравнений Эйнштейна, описание движения частиц в поле Шварцшильда, представление о черных дырах и основах современной космологии.

Планируемые результаты обучения по данной дисциплине (знания, умения, владения), соотнесенные с планируемыми результатами освоения

образовательной программы, характеризуют этапы формирования следующих компетенций (общекультурные/ общепрофессиональные/ профессиональные компетенции (элементы компетенций)):

Код и формулировка компетенции	Этапы формирования компетенции	
ПК-1 Способность использовать специализированн ые знания в области физики для освоения профильных физических дисциплин	Знает	Математический аппарат общей теории относительности; Основные принципы теории гравитации; Основные уравнения теории;
	Умеет	Применять теорию к решению задач; Проводить численные расчеты соответствующих физических величин в общепринятых системах единиц;
	Владеет	Навыками самостоятельной работы с учебной и научной литературой; Точными и приближенными методами решения нелинейных уравнений теории тяготения; Методами тензорного исчисления;

Для формирования вышеуказанных компетенций в рамках дисциплины «Теория гравитации» применяются следующие методы интерактивного обучения: Коллективное обсуждение методов решения задачи во время практических занятий; Представление рефератов и их совместное обсуждение.