Аннотация

Рабочая программа дисциплины «Системы искусственного интеллекта» разработана для студентов 4-го курса по направлению 02.03.01 «Математика и компьютерные науки» (профиль «Сквозные цифровые технологии») в соответствие с требованиями ОС ВО ДВФУ по данному направлению и положением об учебно-методических комплексах дисциплин образовательных программ высшего профессионального образования (утверждено приказом и.о. ректора ДВФУ от 07.07.15 № 12-13-1282)

Дисциплина входит в вариативную часть блока Б1 учебного плана (Б1.В.02.03)

Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа. Учебным планом предусмотрены лекционные занятия (26 часов), лабораторные работы (38 часов), самостоятельная работа студента (80 часа). Дисциплина реализуется на 4 курсе в 8 семестре.

Цель

В результате освоения данной дисциплины студент приобретает знания, умения и навыки, обеспечивающие достижение целей основной образовательной программы.

Задачи:

- Получение предметных знаний и выработка навыков решения прикладных математических задач;
- Разработка алгоритмов и реализации их в виде программ;
- Анализ текстов с описанием алгоритмов и документации к программным системам и утилитам;
- Изучение базовых принципов работы алгоритмов кластерного и факторного анализа больших данных;
- Формирование умения практического применения изученных схем, конструированию на их основе модифицированных алгоритмов и проверке их надежности;
- Выработка навыков самостоятельной работы при решении теоретических и практических задач.

Для успешного изучения дисциплины «Системы искусственного интеллекта» у обучающихся должны быть сформированы следующие предварительные компетенции:

• (ОПК - 2) способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных

- технологий и с учетом основных требований информационной безопасности
- (ОПК 3) способность к самостоятельной научно-исследовательской работе
- (ОКП 4)способностью находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем

В результате изучения данной дисциплины у обучающихся формируются следующие общепрофессиональные/профессиональные компетенции (элементы компетенций):

Код и формулировка компетенции	Этапы формирования компетенции		
ПК-6 — способностью использовать методы математического и алгоритмического моделирования при решении теоретических и прикладных задач	Знает	концептуальные и теоретические модели решаемых научных проблем и задач	
	Умеет	разрабатывать и анализировать концептуальные и теоретические модели решаемых научных проблем и задач	
	Владее	навыками использования основных законов естественнонаучных дисциплин и современными информационно-коммуникационными технологиями в профессиональной деятельности	
ПК-5 — способностью к анализу рынка новых решений в области наукоемких технологий и пакетов программ для решения прикладных задач	Знает	принципы работы и программирования в глобальных компьютерных сетях; синтаксис и семантику алгоритмических конструкций языков программирования высокого уровня и СУБД; базовые структуры данных и основные численные алгоритмы;	
	Умеет	разрабатывать математические и информационные модели и алгоритмы для решения прикладных	

	задач;
	использовать дополнительные
	библиотеки при программировании;
	навыками работы с системным и
	прикладным обеспечением для
	решения задач в своей предметной
	области, а также современным
	программным обеспечением,
	средствами тестирования,
	верификации и навыками
Владее	применения стандартных
T	программных средств на базе
	математических моделей в
	конкретных предметных областях;
	навыками низкоуровнего
	программирования элементов
	компьютерной графики, а также
	навыками разработки,
	проектирования и тестирования

Для формирования вышеуказанных компетенций в рамках дисциплины «Системы искусственного интеллекта» применяются следующие методы активного/ интерактивного обучения:

- мини-лекции с актуализацией изучаемого содержания,
- презентации с использованием доски, книг, видео, слайдов, компьютеров и т.п., с последующим обсуждением материалов,
- обратная связь с формированием общего представления об уровне владения знаниями студентов, актуальными для занятия,
- разминка с вопросами, ориентированными на выстраивание логической цепочки из полученных знаний (конструирование нового знания),
- коллективные решения творческих задач, которые требуют от студентов не простого воспроизводства информации, а творчества, поскольку задания содержат больший или меньший элемент неизвестности и имеют, как правило, несколько подходов,
- работа в малых группах (дает всем студентам возможность участвовать в работе, практиковать навыки сотрудничества, межличностного общения);
- выполнение лабораторных работ с использованием программного обеспечения.