

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

Руководитель ОП Химия

«СОГЛАСОВАНО»

А.А. Капустина (подпись) (Ф.И.О. рук. ОП) «26» июня 2015г. «УТВЕРЖДАЮ»
Заведующая кафедрой общей, неорганической и элементоорганической химии А.А. Капустина (подпись) (Ф.И.О. зав. каф.) «26 » моня 2015 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Механизмы реакций и стереохимия

Направление 04.03.01 - Химия Фундаментальная химия Форма подготовки - очная

- · · · · · · ·	
курс <u>4</u> семестр <u>7</u>	
лекции <u>72</u> час.	
практические занятиячас.	
лабораторные работычас.	
в том числе с использованием МАО лек. 36 /	<u>пр/лаб</u> час.
в том числе в электронной форме лек/пр	р/лаб час.
всего часов аудиторной нагрузки72 час.	
в том числе с использованием МАО36 час.	
самостоятельная работа <u>72</u> час.	
в том числе на подготовку к экзамену час.	
курсовая работа / курсовой проект сем	естр
зачет <u>7</u> семестр	
экзамен семестр	

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ от 12.03.2015 № 210.

Рабочая программа обсуждена на заседании кафедры органической химии, протокол № 696 (13 /15) от $\ll 28$ » мая 2015 г.

Заведующая кафедрой: (Т.И. Акимова)

Составители, к.х.н., доцент: А.Н. Андин, д.х.н., проф.В.А.Каминский

Оборотная сторона титульного листа РПУД

І. Рабочая програ	амма перес	мотрена на заседании каф	едры:
Протокол от «		200 г. №	
		(подпись)	(Т.И. Акимова)
II. Рабочая прогр	рамма пере	смотрена на заседании ка	федры:
Протокол от «		200 г. №	
Заведующий кафе	сдрой		
		(подпись)	(Т.И. Акимова)

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «МЕХАНИЗМЫ РЕАКЦИЙ И СТЕРЕОХИМИЯ»

Дисциплина разработана для студентов направления 04.03.01- Химия в соответствии с ФГОС ВО по данному направлению.

Опирается на знания, умения и навыки, усвоенные при изучении таких как «Неорганическая химия», «Физическая дисциплин, химия», «Органическая химия», «Физические методы исследования». Знания, полученные в курсе «Механизмы реакций и стереохимия», могут быть использованы при изучении некоторых дисциплин, например, «Органический Дисциплина вариативную синтез». входит В часть обязательных дисциплин Б1.В.ОД.7. Дисциплина изучается в течение 7-го семестра, общая трудоемкость составляет 4 зачетных единиц (144 часа), включает в себя 72 часа лекций, 72 часа самостоятельной работы; по итогам обучения сдается зачет.

Дисциплина охватывает следующий круг вопросов:

Статическая стереохимия, общие сведения о типах хиральных молекул, стереохимической номенклатуре, способах определения конфигурации;

Конформационный анализ ациклических, циклических, гетероциклических соединений;

Динамическая стереохимия (стереохимия реакций);

Механизмы реакций нуклеофильного замещения;

Механизмы реакций присоединения и элиминирования;

Механизмы радикальных и перициклических реакций.

. . .

Цель: формирование у студентов знаний о реакционной способности органических соединений, механизмах основных типов органических реакций, о пространственном строении молекул.

Задачи:

- 1) Формирование знаний о реакционной способности органических соединений, регио- и стереонаправленности реакций;
- 2) Формирование знаний о влиянии внутренних и внешних факторов на механизмы реакций;
- 3) Формирование знаний об основах пространственного строения молекул, методах его экспериментального и теоретического изучения, взаимосвязи пространственного строения молекул и свойств химических веществ.

Планируемые результаты обучения по данной дисциплине (знания, умения, владения), соотнесенные с планируемыми результатами освоения

образовательной программы, характеризуют этапы формирования следующих общепрофессиональных и профессиональных компетенций:

Код и	Этапы формирования компетенции			
формулировка компетенции				
способность использовать	Знает	Взаимосвязь между пространственным строением молекул и их свойствами; Влияние внутренних и внешних факторов на механизм реакции.		
полученные знания теоретических основ фундаментальных разделов химии при решении	Умеет	На основе теоретических представлений объяснять экспериментальные результаты; Предсказать стереохимический результат основных типов химических реакций при решении профессиональных задач.		
профессиональных задач (ОПК-1);	Владеет	Методами экспериментального и теоретического изучения стереохимии соединений; Навыками подбора оптимальных условий проведения реакций с учетом их механизма при решении профессиональных задач.		
	Знает	Стереохимическую номенклатуру; Механизмы основных типов синтетических реакций.		
владение системой фундаментальных химических понятий (ПК-3).	Умеет	Определить виды стереоизомерии и симметрию молекул, изобразить конформации молекул; Предсказать механизм конкретной реакции.		
	Владеет	Навыками объяснения пространственных особенностей молекул разного типа. Навыками определения механизма конкретной реакции.		

Для формирования вышеуказанных компетенций в рамках дисциплины «Механизмы реакций и стереохимия» применяются следующие методы активного/ интерактивного обучения: лекция-беседа.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

ЧАСТЬ 1. МЕХАНИЗМЫ РЕАКЦИЙ (36 час).

МОДУЛЬ 1. Введение. Нуклеофильное замещение у насыщенного атома углерода.

Тема 1. Общие представления о механизмах органических реакций (2 часа), с использованием метода активного обучения — лекция-беседа (2 часа).

Понятие о механизме реакции как совокупности представлений об электронной динамике и переходных состояниях реакции. Значение понимания механизмов реакций в развитии теории и практики органической химии.

Влияние внутренних и внешних факторов на протекание реакции. Электронные эффекты. Количественные оценки электронного влияния; уравнения Гаммета и Тафта; альтернативные наборы σ-констант в уравнении Гаммета в зависимости от механизмов реакций. Пространственные эффекты; напряжение и стереоэлектронный фактор. Роль сольватации и влияние растворителя на протекание реакции.

Основные подходы к изучению механизмов реакций: строение конечных продуктов реакций, выделение и детектирование интермедиатов, кинетические исследования. Кинетический изотопный эффект.

Тема 2. Основные механизмы реакций нуклеофильного замещения при насыщенном атоме углерода (2 часа)

Мономолекулярный (асинхронный) и бимолекулярный (синхронный) механизмы. Роль ионных пар. Кинетические и стереохимические характеристики механизмов. «Смешанные» механизмы.

Тема 3. Влияние внешних и внутренних факторов на протекание реакций нуклеофильного замещения при насыщенном атоме углерода (6 часов), с использованием метода активного обучения — лекция-беседа (6 часов).

Влияние растворителей на протекание реакций; роль полярности и направленности сольватации. Уравнение Грюнвальда-Уинстейна. Влияние добавок солей; роль электрофильного катализа.

Влияние строения субстрата: А. Влияние строения групп, связанных с реакционным центром. Анхимерное содействие, его типы; неклассические катионы. Б. Влияние строения уходящей группы, способы превращения «плохих» уходящих групп в «хорошие».

Влияние природы нуклеофильного реагента; факторы, определяющие «нуклеофильную силу» реагента. Амбидентные анионы, регионаправленность реакций с их участием (с использованием концепции ЖМКО).

МОДУЛЬ 2. Реакции элиминирования. Перегруппировки. Нуклеофильные реакции кратных связей.

Тема 1. Реакции элиминирования (4 часа)

А. β-Элиминирование. Мономолекулярный (Е1) и бимолекулярный (Е2) механизмы β-элиминирования, их связь с моно- и бимолекулярным механизмами нуклеофильного замещения. Механизм Е1сВ, способы его дифференциации от механизма Е2. Конкурентные соотношения реакций Е и S_N. Влияние механизма элиминирования и строения субстрата на регионаправленность и стереонаправленность реакции; стереоэлектронный контроль реакций, идущих по механизму Е2. Реакции син-элиминирования (ионные и неионные), протекающие через циклические переходные состояния.

Б. *α-Элиминирование*. Образование карбенов и их аналогов; основные типы механизмов. Синглетные и триплетные карбены.

Тема 2. Перегруппировки (4 часа), с использованием метода активного обучения – лекция-беседа (4 часа).

Основные типы перегруппировок. Аллильные перегруппировки, их связь с реакциями нуклеофильного замещения.

Анионотропные (нуклеофильные) перегруппировки. Миграция анионоидных групп к секстетным атомам углерода, азота, кислорода. Внутри- и межмолекулярные миграции. Характер промежуточных структур перегруппировках; аренониевые неклассические при И катионы. Миграционная способность групп; электронные И пространственные факторы.

Наиболее важные катионотропные (электрофильные) и радикальные перегруппировки.

Тема 3. Нуклеофильные реакции кратных связей (6 часов), с использованием метода активного обучения – лекция-беседа (6 часов).

Реакции карбонильной группы с нуклеофильными реагентами.

Реакции, катализируемые кислотами. Общий и специфический кислотный катализ. Кислотно-катализируемые реакции карбоновых кислот и их производных. Реакции, катализируемые основаниями; взаимодействие с соедиениями, проявляющими свойствами СН-кислот.

Реакции карбонильных соединений, протекающие через циклические переходные состояния.

Влияние строения карбонильных соединений на их реакционную способность: электронные и пространственные факторы, влияние размера цикла на реакционную способность циклических кетонов. Специфика реакций дикарбонильных соединений.

Нуклеофильные реакции аналогов карбонильной группы. Реакции связей C=N, N=O. Нуклеофильные реакции активированной связи C=C. Нуклеофильное замещение в ароматическом ряду; альтернативные механизмы.

МОДУЛЬ 3. Электрофильные, радикальные и перициклические реакции.

Тема 1. Электрофильные реакции (6 часов)

Электрофильное замещение при насыщенном атоме углерода. Реакции металлорганических соединений с СН-кислотами; шкала СН-кислотности. Реакции металлорганических и других элементорганических соединений. Моно- и бимолекулярные механизмы замещения.

Электрофильное присоединение к связи C=C. Связь C=C как основание Льюиса. Би- и тримолекулярные механизмы присоединения. Основные типы интермедиатов, влияние на стереоселективность и стереонаправленность присоединения. Регионаправленность присоединения, ее зависимость от строения субстрата. Присоединение синглетных и триплетных карбенов; стереоселективность реакций.

Электрофильное замещение в ароматическом ядре. Правила ориентации как функция устойчивости обадукта. Факторы, определяющие степень региоселективности замещения. Сравнение бензоидных и гетероароматических систем.

Тема 2. Радикальные реакции (4 часа).

Способы генерирования радикалов, факторы способствующие их образованию. Влияние электронных и пространственных факторов на устойчивость радикалов. Стабильные (долгоживущие) радикалы. Основные типы реакций радикалов. Цепные реакции. Обнаружение радикалов.

Реакции радикального замещения алифатических и алциклических субстратов. Зависимость реакционной способности и селективности реакций от строения реагирующих соединений. Реакции радикального присоединения по кратным связям; радикальная полимеризация.

Тема 3. Перициклические реакции (2 часа)

Основные перициклических реакций (реакции типы циклоприсоединения, электроциклические реакции, сигматропные перегруппировки). Основные закономерности протекания реакций. Рассмотрение граничных оббиталей как путь к выбору между разрешенными и запрещенными процессами.

ЧАСТЬ 2. СТЕРЕОХИМИЯ (36 час).

МОДУЛЬ 1. Введение. Статическая стереохимия.

- Раздел I. Основные понятия стереохимии (2 час), с использованием метода активного обучения лекция-беседа (2 часа).
 - Тема 1. Предмет стереохимии. Краткий исторический экскурс. (1 час).
- **Тема 2.** Стереоизомерия. Геометрическая, оптическая и топологическая изомерия. Хиральность и оптическая активность. Способы изображения хиральных молекул: перспективные рисунки, проекции Хеуорса, Миллса, Ньюмена, Фишера. (1 час).

Раздел II. Стереохимическая номенклатура (4 час).

- **Тема 1.** Стереохимическое старшинство заместителей. Правило последовательности. R,S-номенклатура. (2 час).
- **Тема 2.** Диастереомеры. Эритро- и трео-изомеры. Мезо-формы. Номенклатура мостиковых и полициклических конденсированных систем. Стереохимическая номенклатура геометрических изомеров. Цис, транс-, Z,E-номенклатура. Син-анти-изомеры. (2 час).

Раздел III. Симметрия молекул (4 час), с использованием метода активного обучения – лекция-беседа (4 часа).

- **Тема 1.** Симметрия молекул. Основные элементы симметрии: ось симметрии (C_n) , плоскость симметрии (σ) , центр симметрии (i), зеркально-поворотная ось (S_n) . Разбор элементов симметрии для ряда несложных молекул. **(2 час).**
- **Тема 2.** Топность лигандов. Понятия гомотопность, энантиотопность, диастереотопность. Определение топности лигандов. Метод замещения. Исследование молекулярной симметрии методом ЯМР. **(2 час).**

Раздел IV. Оптическая изомерия (2 час), с использованием метода активного обучения – лекция-беседа (2 часа).

- **Тема 1.** Оптическая изомерия. Хиральность и оптическая активность. Условия хиральности (отсутствие зеркальных элементов симметрии: плоскости, центра, зеркально-поворотной оси 4 порядка). Разновидности элементов хиральности: хиральные центр, ось и плоскость; спиральность. (1 час).
- **Тема 2.** Конформация и конфигурация. Примеры ахиральных молекул, содержащих асимметрические атомы углерода. Стереоизомеры соединений с несколькими асимметрическими атомами углерода. Псевдоасимметрический атом углерода. (1 час).

Раздел V. Геометрическая и топологическая изомерия (2 час), с использованием метода активного обучения – лекция-беседа (2 часа).

Тема 1. Стереоизомерия. Геометрическая изомерия. Цис-транс-изомеры (для алкенов и циклических молекул), син-анти-изомеры (для оснований

Шиффа, оксимов и т.п.). Энергетические барьеры вращения в различных типах соединений с двойной связью. (1 час).

- **Тема 2.** Топологическая изомерия. Катенаны, ротаксаны, узлы, другие молекулы с необычной топологией (лента Мебиуса и др.). (1 час).
- Раздел VI. Свойства энантиомеров и рацематов (2 час), с использованием метода активного обучения лекция-беседа (2 часа).
- **Тема 1.** Оптическое вращение, его измерение. Поляриметрия. Знак и величина оптического вращения, зависимость их от растворителя, концентрации, температуры, длины волны. Оптическая чистота, ее определение с помощью поляриметра или ЯМР. (1 час).
- Тема 2. Рацематы, отличие их физических свойств от свойств Диаграммы Типы рацемических смесей. энантиомеров. плавления. Квазирацематы. Методы разделения рацематов на энантиомеры: механический отбор кристаллов разной формы, превращение в смесь диастереомеров с последующим разделением, адсорбционные методы, биохимический метод. Рацемизация. (1 час).
- Раздел VII. Определение конфигурации молекул (2 час), с использованием метода активного обучения лекция-беседа (2 часа).
- **Тема 1.** Методы установления относительной конфигурации молекул: метод разделения на энантиомеры; метод псевдоасимметрии; метод ПМР; химическая корреляция; метод циклизации. (1 час).
- **Тема 2.** Методы установления абсолютной конфигурации молекул: рентгеноструктурный анализ; метод химического перехода к веществу с известной конфигурацией; метод оптического сравнения; метод квазирацематов. (1 час).

МОДУЛЬ 2. Конформационный анализ.

- Раздел І. Конформационный анализ ациклических молекул (2 час).
- **Tema 1.** Основные типы внутримолекулярных движений. Отличие конформаций от обычных изомеров.

Конформации этана и бутана. Барьеры вращения. Энергетическая кривая конформационных превращений. (1 час).

- **Тема 2.** Экспериментальные методы определения величины конформационной энергии: спектральные методы (ИК, КР, УФ, ЯМР), диэлкометрия (определение дипольных моментов). (1 час).
- Раздел II. Конформационный анализ молекул, содержащих гетероатомы и кратные связи (2 час).
- **Tema 1.** Своеобразие закономерностей конформационного поведения молекул, содержащих связи углерод-гетероатом или кратную связь.

Скошенные и трансоидные конформации спиртов, аминов, гликолей. (1 час).

Тема 2. Конформации алкенов, карбонильных и α-галогенкарбонильных соединений, влияние величины заместителей на конформационное равновесие. (1 час).

Раздел III. Конформационный анализ карбоциклов (2 час).

- **Тема 1.** Конформации четырех- и пятичленных циклов. Конформации «конверт» и «полукресло» для циклопентана. (1 час).
- **Тема 2.** Циклогексан. Конформации «кресло», «ванна» и «твист», энергетическая кривая конформационных превращений. Инверсия кольца. Инверсия моно- и полизамещенных циклогексанов. Аксиальное и экваториальное положения. Конформационная энергия заместителя, ее зависимость от различных факторов. (1 час).

Раздел IV. Конформационный анализ конденсированных, мостиковых систем и гетероциклов (2 час).

Тема 1. Системы, содержащие конденсированные циклогексановые кольца. Цис- и транс-декалины. Конформационная подвижность цисизомера.

Пергидроантрацены. Норборнан. Бицикло[2.2.2]октан и бицикло[3.3.1]нонан. **(1 час).**

Тема 2. Стереохимия соединений азота. Инверсия атома азота. Закрепление конфигурации азота в некоторых малых циклах и жестких мостиковых системах.

Пиперидин. Инверсия кольца и атома азота. Пергидрохинолины. Хинолизидин. (1 час).

Раздел V. Конформационный анализ природных соединений (углеводы, белки) (2 час), с использованием метода активного обучения – лекция-беседа (2 часа).

- **Тема 1.** Моносахариды. Равновесие между α- и β-аномерами. Сравнение конформаций по энергии. Гликозиды. Аномерный эффект. (1 час).
- **Тема 2.** Белки. Первичная, вторичная и третичная структуры. Вторичная структура как конформация полипептидной цепи. Типы вторичной структуры: α-спираль, β-складчатая структура. Третичная структура как пространственная упаковка уже существующей конформации. Влияние внутренних и внешних факторов на формирование третичной структуры. (1 час).

МОДУЛЬ 3. Динамическая стереохимия (стереохимия реакций). Раздел I. Стереохимия основных типов реакций (замещение) (2 час). **Тема 1.** Понятия стереохимического результата, стереоселективности и стереоспецифичности реакций. Стереохимия реакций нуклеофильного замещения. Реакции третичных и бензильных субстратов. Механизм S_N1 (отсутствие стереоселективности, рацемизация энантиомера). Реакции первичных и вторичных субстратов. Механизм S_N2 (энантиоселективность, обращение конфигурации). Механизм S_Ni (стереоспецифичность, сохранение конфигурации). Механизм с анхимерным содействием (стереоспецифичность, сохранение конфигурации). (2 час).

Раздел II. Стереохимия основных типов реакций (присоединение, элиминирование) (2 час).

- **Тема 1.** Электрофильное присоединение к двойной связи C=C. Синприсоединение (окисление алкенов до гликолей $KMnO_4$, окисление надкислотами до эпоксидов, присоединение водорода на катализаторе, присоединение боранов). Диастереоселективность указанных процессов. Анти-присоединение (галогенирование, присоединение HClO). Диастереоселективность указанных процессов. (1 час).
- **Тема 2.** Реакции элиминирования. Реакции третичных и бензильных субстратов. Механизм Е1. Отсутствие стереоселективности. Реакции первичных субстратов. Механизм Е2. Анти-элиминирование. Стереоселективность. Реакции син-элиминирования (пиролиз ацетатов, Nоксидов аминов). Стереоселективность. (1 час).

Раздел III. Стереохимия анионотропных перегруппировок. Стереохимия согласованных реакций (2 час).

- 1. Основные типы анионотропных перегруппировок: пинаколиновая, перегруппировка Вагнера-Меервейна, Тиффено, Гофмана, Стереоспецифичность Бекмана др. большинства анионотропных перегруппировок. Анти-положение уходящей и мигрирующей групп. Зависимость стереохимии реакции от конформации молекулы (на примере перегруппировок). (1 час).
- **Тема 2.** Стереохимия согласованных реакций (на примере диенового синтеза). Реакция диенового синтеза ([4+2]-циклоприсоединение), стереохимические закономерности его протекания. (1 час).

Раздел IV. Асимметрический синтез (2 час), с использованием метода активного обучения – лекция-беседа (2 часа).

Тема 1. Асимметрический синтез и асимметрическая индукция. Правила Крама и Прелога. Частичный асимметрический синтез. Реакции с участием вспомогательных оптически активных веществ: субстратов, реагентов, катализаторов, растворителей. (1 час).

Тема 2. Проблема абсолютного асимметрического синтеза. Синтезы с участием физического фактора асимметрии: на оптически активном кварце, под действием циркулярно-поляризованного света. Роль оптической изомерии в возникновении жизни на Земле. (1 час).

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Не предусмотрены учебным планом

III. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Механизмы реакций и стереохимия» представлено в Приложении 1 и включает в себя:

план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;

характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;

требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА

$N_{\underline{0}}$	Контролируемые	Ко	ды и этапы	Оценочные средства	
п/п	разделы / темы	фој	рмирования	текущий	промежуточная
	дисциплины	ко	мпетенций	контроль	аттестация
1.	ЧАСТЬ 1. МЕХАНИЗМЫ РЕАКЦИЙ	ОПК-1	Знает	Групповой разбор задач (УО-4)	Вопросы к зачету 28-42
	МОДУЛЬ1.Введен ие. Нуклеофильное замещение у насыщенного атома углерода. МОДУЛЬ 2.		Умеет	Собеседование (УО-1) Тестирование (ПР-1) Контрольные работы (ПР-2)	Вопросы к зачету 28-42 Тестирование (ПР-1)
	Реакции элиминирования. Перегруппировки. Нуклеофильные реакции кратных связей. МОДУЛЬ 3.	THE 2	Владеет	Собеседование (УО-1) Тестирование (ПР-1) Контрольные работы (ПР-2)	Вопросы к зачету 28-42 Тестирование (ПР-1)
	Электрофильные, радикальные и	ПК-3	Знает	Групповой разбор задач (УО-4)	Вопросы к зачету 43-58 Тестирование

	перициклические				(ПP-1)
	реакции.		Умеет	Собеседование (УО-1) Тестирование (ПР-1)	Вопросы к зачету 43-58 Тестирование (ПР-1)
			Владеет	Собеседование (УО-1) Тестирование (ПР-1)	Вопросы к зачету 43-58 Тестирование (ПР-1)
2.	Часть 2.Модуль I. Раздел I. Основные понятия стереохимии. РазделII.Стереохим ическая номен-ра РазделIII. Симметрия молекул.Раздел IV. Оптическая изомерия.РазделV. Геометрическая и	ОПК-1	Знает	Групповой разбор задач (УО-4)	Вопросы к зачету: № 4, № 5,18,27 № 1,23, № 4,7 № 21, №11,14 № 6,8,17,№13-20 № 3,12, №16 № 10,22,24,26 №9, №8,19, №15 №25, №2
	топологическая и топологическая изомерия. Раздел VI.Свойства энантиомеров и рацематов.		Умеет	Собеседование (УО-1) Тестирование (ПР-1)	Вопросы к зачету: № 1-27; Тестирование (ПР-1)
	РазделVII.Определ ение конфигурации молекул. Модуль 2. РазделІ.Конформац ионный анализ		Владеет	Собеседование (УО-1) Тестирование (ПР-1)	Вопросы к зачету: № 1-27; Тестирование (ПР-1)
	ациклических молекул. Раздел II. Конформа ционный анализ	ПК-3	Знает	Групповой разбор задач (УО-4)	Вопросы к зачету: № 1-27; Тестирование (ПР-1)
	молекул,содержащ их гетероатомы и кратные связи. РазделIII.Конформа ционный анализ карбоциклов.		Умеет	Собеседование (УО-1) Тестирование (ПР-1) Контрольные работы (ПР-2)	Вопросы к зачету: № 1-27; Тестирование (ПР-1)
	РазделIV.Конформ ационный анализ конденсированных, мостиковых систем и гетероциклов. РазделV.Конформа ционный анализ природных соединений(углево ды, белки).		Владеет	Собеседование (УО-1) Тестирование (ПР-1) Контрольные работы (ПР-2)	Вопросы к зачету: № 1-27; Тестирование (ПР-1)

Модуль3.РазделІ.Ст		
ереохимия		
основных типов		
реакций(замещение		
). Раздел ІІ. Стереохим		
ия основных типов		
реакций(присоединен		
ие, элиминирование).		
РазделIII.Стереохи		
мия		
анионотропных		
перегруппировок.		
Стереохимия		
согласованных		
реакций.Раздел IV.		
Асимметрический		
синтез.		

Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Илиел, Э. Основы органической стереохимии / Э. Илиел, С. Вайлен, М. Дойл; пер. с англ. 2-е изд. М.: БИНОМ. Лаборатория знаний, 2014. -706 с. http://www.studentlibrary.ru/book/ISBN9785996323081.html
- 2. Тюкавкина, Н.А. Глава 7. Стереохимические основы строения молекул органических соединений. из книги «Биоорганическая химия» : учебник / Н. А. Тюкавкина, Ю. И. Бауков, С. Э. Зурабян. М. : ГЭОТАР-Медиа, 2015. 416 с. : ил.

http://www.studentlibrary.ru/doc/ISBN9785970431887-0007.html

3. Илиел, Э. Стереохимия алкенов. - из книги «Основы органической стереохимии» [Электронный ресурс] / Э. Илиел, С. Вайлен, М. Дойл; пер. с англ. - 2-е изд. (эл.). - Электрон. текстовые дан. (1 файл pdf: 706 с.).- М.: БИНОМ. Лаборатория знаний, 2014.-Систем. требования: Adobe Reader XI; экран 10".

http://www.studentlibrary.ru/doc/ISBN9785996323081-SCN0010.html

4. Тоуб, М. Стереохимические превращения. - из книги «Механизмы неорганических реакций» [Электронный ресурс] / М. Тоуб, Дж. Берджесс; пер. с англ. - Эл. изд. -М.: БИНОМ. Лаборатория знаний, 2012.-678 с.: ил. ISBN 978-5-9963-0975-7.

http://www.studentlibrary.ru/doc/ISBN9785996309757-SCN0006.html

5.Органическая химия: учебник для химико-технологических вузов и факультетов / А. А. Петров, Х. В. Бальян, А. Т. Трощенко; под ред. М. Д. Стадничука. Москва: Альянс, 2015.-622 с.

http://lib.dvfu.ru:8080/lib/item?id=chamo:777125&theme=FEFU (15 эκ)

Дополнительная литература

- 1. Дж. Марч. Органическая химия, 4т.т., М., «Мир», 1987-1988) http://lib.dvfu.ru:8080/lib/item?id=chamo:54587&theme=FEFU
- 2. Потапов, В.М. Стереохимия / В.М.Потапов. Москва: Химия, 1988.-460 с. http://lib.dvfu.ru:8080/lib/item?id=chamo:246579&theme=FEFU
- 3. Реутов, О.А. Глава 8. Стереохимия соединений углерода. из книги «Органическая химия» [Электронный ресурс] : в 4 ч. Ч. 2 / О. А. Реутов, А. Л. Курц, К. П. Бутин. 6-е изд. (эл.). Электрон. текстовые дан. (1 файл pdf: 626 с.). М.: БИНОМ. Лаборатория знаний, 2014. Систем. требования: Adobe Reader XI; экран 10".

http://www.studentlibrary.ru/doc/ISBN9785996324255-SCN0000.html

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. http://e.lanbook.com/
- 2. http://www.studentlibrary.ru/
- 3. http://znanium.com/
- 4. http://www.nelbook.ru

5. Илиел, Э. Основы органической стереохимии. / Э.Илиел, С. Вайлен, М.Дойл. – Москва: Бином, 2006. – 700 с.

http://files.lbz.ru/pdf/cC2308-1-ch.pdf

Перечень информационных технологий и программного обеспечения

Для раздела курса «Стереохимия» создан ЭУК в интегрированной платформе электронного обучения Blackboard ДВФУ, идентификатор курса FU50715-020102.62-S-01.

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Содержание методических указаний включает:

рекомендации по планированию и организации времени, отведенного на изучение дисциплины; описание последовательности действий обучающихся, или алгоритм изучения дисциплины; рекомендации по работе с литературой.

Рекомендации по планированию и организации времени, отведенного на изучение дисциплины

Время, отведённое на самостоятельную работу, должно быть использовано обучающимся планомерно в течение семестра.

Планирование — важнейшая черта человеческой деятельности. Для организации учебной деятельности эффективным вариантом является использование средств, напоминающих о стоящих перед вами задачах, и их последовательности выполнения. В роли таких средств могут быть ІТтехнологии (смартфоны, планшеты, компьютеры и т.п.), имеющие приложения/программы по организации распорядка дня/месяца/года и сигнализирующих о важных событиях, например, о выполнении заданий по дисциплине «Механизмы реакций и стереохимия».

Регулярность — первое условие поисков более эффективных способов работы. Рекомендуется выбрать день/дни недели для регулярной подготовки по дисциплине «Механизмы реакций и стереохимия», это позволит морально настроиться на выполнение поставленных задач, подготовиться к ним и выработать правила выполнения для них, например, сначала проработка материала лекций, чтение первоисточников, затем выделение и фиксирование основных идей. Рекомендуемое среднее время два часа на одно занятие.

Описание последовательности действий, обучающихся при изучении дисциплины

В соответствии с целями и задачами дисциплины студент изучает на занятиях и дома разделы лекционного курса, готовится к практическим занятиям, проходит контрольные точки текущей аттестации, включающие разные формы проверки усвоения материала (собеседование, тестирование и др.).

Освоение дисциплины включает несколько составных элементов учебной деятельности:

- 1. Внимательное чтение рабочей программы учебной дисциплины (помогает целостно увидеть структуру изучаемых вопросов). В ней содержится перечень контрольных испытаний для всех разделов и тем, включая экзамен; указаны сроки сдачи заданий, предусмотренных учебной программой курса дисциплины «Механизмы реакций и стереохимия».
- 2. Неотъемлемой составной частью освоения курса является посещение лекций и их конспектирование. Глубокому освоению лекционного материала способствует предварительная подготовка, включающая чтение предыдущей лекции, работу с учебниками.
- 3. Регулярная подготовка к практическим занятиям и активная работа на них, включающая:
 - повторение материала лекции по теме;
- знакомство с планом занятия и списком основной и дополнительной литературы, с рекомендациями по подготовке к занятию;
- изучение научных сведений по данной теме в разных учебных пособиях;
 - чтение первоисточников и предлагаемой дополнительной литературы;
- посещение консультаций с целью выяснения возникших сложных вопросов при подготовке к практическим занятиям.
- 4. Подготовка к экзамену (в течение семестра), повторение материала всего курса дисциплины.

Рекомендации по работе с литературой

Изучение дисциплины следует начинать с проработки тематического плана лекций, уделяя особое внимание структуре и содержанию темы и основных понятий. Изучение «сложных» тем следует начинать с составления логической схемы основных понятий, категорий, связей между ними. Целесообразно прибегнуть к классификации материала, в частности при изучении тем, в которых присутствует большое количество незнакомых понятий, категорий, теорий, концепций, либо насыщенных информацией типологического характера.

При работе с литературой обязательно выписывать все выходные данные по каждому источнику. Можно выписывать кратко основные идеи автора и иногда приводить наиболее яркие и показательные цитаты (с указанием страниц). Ищите аргументы «за» или «против» идеи автора.

Чтение научного текста является частью познавательной деятельности. Ее цель – извлечение из текста необходимой информации. От того на сколько осознанна читающим собственная внутренняя установка (найти нужные сведения, усвоить информацию полностью или частично, критически проанализировать материал и т.п.) во многом зависит эффективность осуществляемого действия.

Используйте основные установки при чтении научного текста:

- 1. информационно-поисковая (задача найти, выделить искомую информацию);
- 2. усваивающая (усилия читателя направлены на то, чтобы как можно полнее осознать и запомнить как сами сведения излагаемые автором, так и всю логику его рассуждений);
- 3. аналитико-критическая (читатель стремится критически осмыслить материал, проанализировав его, определив свое отношение к нему);
- 4. творческая (создает у читателя готовность в том или ином виде как отправной пункт для своих рассуждений, как образ для действия по аналогии и т.п. использовать суждения автора, ход его мыслей, результат наблюдения, разработанную методику, дополнить их, подвергнуть новой проверке).

Для работы с научными текстами применяйте следующие виды чтения:

- 1. библиографическое просматривание карточек каталога, рекомендательных списков, сводных списков журналов и статей за год и т.п.;
- 2. просмотровое используется для поиска материалов, содержащих нужную информацию, обычно к нему прибегают сразу после работы со списками литературы и каталогами, в результате такого просмотра читатель устанавливает, какие из источников будут использованы в дальнейшей работе;
- 3. ознакомительное подразумевает сплошное, достаточно подробное прочтение отобранных статей, глав, отдельных страниц, цель познакомиться с характером информации, узнать, какие вопросы вынесены автором на рассмотрение, провести сортировку материала;
- 4. изучающее предполагает доскональное освоение материала; в ходе такого чтения проявляется доверие читателя к автору, готовность принять

изложенную информацию, реализуется установка на предельно полное понимание материала;

5. аналитико-критическое и творческое чтение — два вида чтения близкие между собой тем, что участвуют в решении исследовательских задач. Первый из них предполагает направленный критический анализ, как самой информации, так и способов ее получения и подачи автором; второе — поиск тех суждений, фактов, по которым или в связи с которыми, читатель считает нужным высказать собственные мысли.

Основным для студента является изучающее чтение — именно оно позволяет в работе с учебной литературой накапливать знания в профессиональной области.

При работе с литературой можно использовать основные виды систематизированной записи прочитанного:

- 1. Аннотирование предельно краткое связное описание просмотренной или прочитанной книги (статьи), ее содержания, источников, характера и назначения.
- 2. Планирование краткая логическая организация текста, раскрывающая содержание и структуру изучаемого материала.
- 3. Тезирование лаконичное воспроизведение основных утверждений автора без привлечения фактического материала.
- 4. Цитирование дословное выписывание из текста выдержек, извлечений, наиболее существенно отражающих ту или иную мысль автора.
- 5. Конспектирование краткое и последовательное изложение содержания прочитанного.

Подготовка к зачету

В процессе подготовки к зачету, следует ликвидировать имеющиеся пробелы в знаниях, углубить, систематизировать и упорядочить знания. Особое внимание следует уделить организации подготовки к зачету. Для этого важны следующие моменты - соблюдение режима дня: сон не менее 8 часов в сутки; занятия заканчивать не позднее, чем за 2-3 часа до сна; прогулки на свежем воздухе, неутомительные занятия спортом во время перерывов между занятиями. Наличие полных собственных конспектов лекций является необходимым условием успешной сдачи зачета. Если пропущена какая- либо лекция, необходимо ее восстановить, обдумать, устранить возникшие вопросы, чтобы запоминание материала было осознанным. Следует помнить, что при подготовке к зачетам вначале надо просмотреть материал по всем вопросам сдаваемой дисциплины, далее

отметить для себя наиболее трудные вопросы и обязательно в них разобраться. В заключение еще раз целесообразно повторить основные положения.

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Лекционная аудитория (мультимедийный проектор, настенный экран, ноутбук), учебно-наглядные пособия (шаро-стержневые модели молекул).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК ДВФУ

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

по дисциплине «Механизмы реакций и стереохимия» Направление 04.03.01 - Химия Фундаментальная химия Форма подготовки - очная

Владивосток

2015

План-график выполнения самостоятельной работы по дисциплине

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1.	1-9 нед.	Решение задач №№ 1- 19 (1 модуль)	36 час	Опрос перед началом занятия; контрольная работа
2.	10-14 нед.	Решение задач №№ 20- 30 (2 модуль)	20 час	Опрос перед началом занятия; контрольная работа
3.	15-18 нед.	Решение задач №№ 31- 38 (3 модуль)	16 час	Опрос перед началом занятия; контрольная работа

Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению.

Задания для самостоятельной работы студентов представляют собой вопросы и задачи по основным разделам стереохимии. Целью указанных заданий является систематизация и обобщение теоретических знаний по каждому модулю дисциплины.

Методические рекомендации:

Рекомендуемое время, затрачиваемое на решение 1 задачи -1 час (работа с лекционным материалом и литературой -30 мин, обдумывание и изложение решения -30 мин).

Для решения задачи № 1 целесообразно обратиться к модулю 1, разделу 3, теме 1 лекционного курса.

Для решения задач № 2,3 целесообразно обратиться к модулю 1, разделу 3, теме 2 лекционного курса.

Для решения задач № 4-6, 12-14 целесообразно обратиться к модулю 1, разделу 1, теме 2 лекционного курса.

Для решения задач № 7-10 целесообразно обратиться к модулю 1, разделу 2, теме 1 лекционного курса.

Для решения задачи № 11 целесообразно обратиться к модулю 1, разделу 6, теме 1 лекционного курса.

Для решения задач № 15-18 целесообразно обратиться к модулю 1, разделу 7, теме 1 лекционного курса.

Для решения задачи № 19 целесообразно обратиться к модулю 1, разделу 7, теме 2 лекционного курса.

Для решения задачи № 20 целесообразно обратиться к модулю 2, разделу 1, теме 1 лекционного курса.

Для решения задач № 21-24 целесообразно обратиться к модулю 2, разделу 2, темам 1, 2 лекционного курса.

Для решения задач № 25-28 целесообразно обратиться к модулю 2, разделу 3, теме 2 лекционного курса.

Для решения задач № 29, 30 целесообразно обратиться к модулю 2, разделу 4, теме 1 лекционного курса.

Для решения задач № 31-35 целесообразно обратиться к модулю 3, разделу 1, теме 1 лекционного курса.

Для решения задачи № 36 целесообразно обратиться к модулю 3, разделу 2, теме 2 лекционного курса.

Для решения задачи № 37 целесообразно обратиться к модулю 3, разделу 2, теме 1 лекционного курса.

Для решения задачи № 38 целесообразно обратиться к модулю 3, разделу 3, теме 2 лекционного курса.

Рекомендации по использованию литературы. Необходимая информация для решения задач содержится в учебнике «Стереохимия», автор В.М.Потапов. - Москва: Химия, 1988. - 460 с.

К задачам 2,3 - глава 1, раздел 1.8.

К задачам № 4-6, 12-14 - глава 1, раздел 1.3.

К задачам № 7-10 - глава 1, раздел 1.7.

К задаче N 11 - глава 3, раздел 3.4, подраздел 3.4.3.

К задачам № 15-18 - глава 3, раздел 3.2.

К задаче № 19 - глава 3, раздел 3.4, подраздел 3.4.4.

К задачам № 21-24 - глава 4, раздел 4.1, подразделы 4.1.2-4.1.4.

К задачам № 25-28 - глава 5, разделы 5.2 и 5.3, подразделы 5.2.2 и 5.3.2.

К задачам № 29, 30 - глава 5, раздел 5.6, подразделы 5.6.2 и 5.6.3.

К задачам № 31-35 - глава 4, раздел 4.2, подраздел 4.2.1.

К задаче № 37 - глава 6, раздел 6.1, подраздел 6.1.4.

К задаче № 38 - глава 6, раздел 6.2, подраздел 6.2.1.

Требования к представлению и оформлению результатов самостоятельной работы.

Все самостоятельные внеаудиторные работы представляются на бумажных носителях и сохраняются в рабочей папке студента. После выполнения работы производится ее защита студентом.

Критерии оценки выполнения самостоятельной работы.

- 1) уровень освоения студентом учебного материала;
- 2) умение использовать теоретические знания при выполнении конкретной практической задачи;
 - 3) обоснованность и четкость изложения ответа;
 - 4) оформление материала в соответствии с требованиями;
 - 5) уровень самостоятельности студента при выполнении СР.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК ДВФУ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Механизмы реакций и стереохимия» Направление 04.03.01 - Химия Фундаментальная химия Форма подготовки - очная

Владивосток

2015

Паспорт фонда оценочных средств

по дисциплине «Механизмы реакций и стереохимия»

Код и формулировка	Этапы формирования компетенции			
компетенции				
способность использовать	Знает	Взаимосвязь между пространственным строением молекул и их свойствами; Влияние внутренних и внешних факторов на механизм реакции.		
полученные знания теоретических основ фундаментальных разделов химии при решении профессиональных	Умеет	На основе теоретических представлений о механизмах реакций объяснять экспериментальные результаты; Предсказать стереохимический результат основных типов химических реакций при решении профессиональных задач.		
задач (ОПК-1);	Владеет	Методами экспериментального и теоретического изучения стереохимии соединений; Навыками подбора оптимальных условий проведения реакций с учетом их механизма при решении профессиональных задач.		
	Знает	Стереохимическую номенклатуру; Механизмы основных типов синтетических реакций.		
владение системой фундаментальных химических понятий (ПК-3).	Умеет	Определить виды стереоизомерии и симметрию молекул, изобразить конформации молекул; Предсказать механизм конкретной реакции.		
(111x-3).	Владеет	Навыками объяснения пространственных особенностей молекул разного типа. Навыками определения механизма конкретной реакции.		

$N_{\underline{0}}$	Контролируемые	Ко	ды и этапы	Оценочн	ые средства
Π/Π	разделы / темы	фој	рмирования	текущий	промежуточная
	дисциплины	ко	мпетенций	контроль	аттестация
1.	ЧАСТЬ 1.	ОПК-1	Знает	Групповой	Вопросы к
	МЕХАНИЗМЫ			разбор задач	зачету 28-42
	РЕАКЦИЙ МОДУЛЬ 1.		**	(УО-4)	7
	Введение.		Умеет	Собеседование	Вопросы к
	Нуклеофильное			(УО-1)	зачету 28-42
	замещение у насыщенного атома			Тестирование (ПР-1)	Тестирование (ПР-1)
	углерода.			Контрольные	
	МОДУЛЬ 2.			работы (ПР-2)	
	Реакции		Владеет	Собеседование	Вопросы к
	элиминирования. Перегруппировки.			(УО-1)	зачету 28-42
	Нуклеофильные реакции кратных связей.			Тестирование (ПР-1)	Тестирование (ПР-1)
	МОДУЛЬ 3. Электрофильные,			Контрольные работы (ПР-2)	
	радикальные и	ПК-3	Знает	Групповой	Вопросы к
	перициклические			разбор задач	зачету 43-58
	реакции.			(YO-4)	Тестирование (ПР-1)
			Умеет	Собеседование	Вопросы к
				(YO-1)	зачету 43-58
				Тестирование (ПР-1)	Тестирование (ПР-1)
				Контрольные	
				работы (ПР-2)	
			Владеет	Собеседование (УО-1)	Вопросы к зачету 43-58
				Тестирование (ПР-1)	Тестирование (ПР-1)
				Контрольные работы (ПР-2)	
2.	Часть 2.Модуль I.	ОПК-1	Знает	Групповой	Вопросы к
	Раздел I. Основные			разбор задач	зачету:
	ПОНЯТИЯ			(УО-4)	№ 4
	стереохимии. Раздел II.				№ 5,18,27
	Стереохимическая				№ 1,23 № 4.7
	номенклатура				№ 4,7 № 21
	Раздел III.				Nº 11,14
	Симметрия молекул.				№ 6,8,17
	l	l	l	L	2:

		T	1	
Раздел IV.				№13-20
Оптическая				№ 3,12
изомерия.				№ 16
Раздел V.				№ 10,22,24,26
Геометрическая и				№9
топологическая				№8,19
изомерия.				№15
Раздел VI.				№25
Свойства				№2
		Умеет	Собеседование	Вопросы к
энантиомеров и			(YO-1)	зачету:
рацематов.			Тестирование	№ 1-27;
Раздел VII.			(IIP-1)	Тестирование
Определение				(ПP-1)
конфигурации		Владеет	Собеседование	Вопросы к
молекул.			(УО-1)	зачету:
Модуль 2.			Тестирование	№ 1-27;
Раздел I.			(IIP-1)	Тестирование
Конформационный				(IIP-1)
анализ	ПК-3	Знает	Групповой	Вопросы к
ациклических			разбор задач	зачету: № 1-27;
молекул.			(YO-4)	Тестирование (ПР-1)
Раздел II.		Умеет	Собеседование	Вопросы к
Конформационный		J MCC1	(УО-1)	зачету: № 1-27;
1 1			Тестирование	Тестирование
анализ молекул,			(ПР-1)	(ПР-1)
содержащих			Контрольные	(111 1)
гетероатомы и			работы (ПР-2)	
кратные связи.		Владеет	Собеседование	Вопросы к
Раздел III.		Бладсет	(УО-1)	зачету: № 1-27;
Конформационный			Тестирование	Тестирование
анализ			(ПР-1)	(IIP-1)
карбоциклов.			Контрольные	
Раздел IV.			работы (ПР-2)	
Конформационный			раооты (тт -2)	
анализ				
конденсированных,				
мостиковых систем				
и гетероциклов.				
Раздел V.				
Конформационный				
анализ природных				
соединений				
(углеводы, белки).				
Модуль 3.				
Раздел I.				

	1	Ι	1
Стереохимия			
основных типов			
реакций			
(замещение).			
Раздел II.			
Стереохимия			
основных типов			
реакций			
(присоединение,			
элиминирование).			
Раздел III.			
Стереохимия			
анионотропных			
перегруппировок.			
Стереохимия			
согласованных			
реакций.			
Раздел IV.			
Асимметрический			
синтез.			

Шкала оценивания уровня сформированности компетенций по дисциплине «Механизмы реакций и стереохимия»

Код и формули-	Этапы фо	ормирования шии	критерии	показатели
ровка компетенции		,		
способностью использовать полученные знания теоретически х основ фундаменталь ных разделов химии при решении профессионал ьных задач (ОПК-1)	знает (порого- вый уровень)	Взаимосвязь между пространственн ым строением молекул и их свойствами; Влияние внутренних и внешних факторов на механизм реакции.	Знание закономерности, связывающие структуру соединения с его стереохимическ ими особенностями, его поведением в конкретных реакциях.	Знание принципиальных положений в области механизмов органических реакций и стереохимии органических соединений.

	умеет (продви ну-тый уровень)	На основе теоретических представлений о механизмах реакций объяснять экспериментальные результаты; Предсказать стереохимический результат основных типов химических реакций при решении профессиональных задач.	Умение на основе теоретических представлений объяснять экспериментальные результаты;	Умение предсказать структурный и стереохимический результат заданной реакции при решении профессиональных задач.
	владеет (высоки й уровень)	Методами эксперименталь ного и теоретического изучения механизмов реакций истереохимии соединений; Навыками подбора оптимальных условий проведения реакций с учетом их механизма при решении профессиональных задач.	Владеет навыками подбора оптимальных условий проведения реакций с учетом их механизма.	Способность определять корреляции между строением, в том числе пространственным и поведением органических соединений при решении профессиональных задач
владением системой фундаменталь ных химических понятий (ПК3)	знает (порого- вый уровень)	Стереохимическ ую номенклатуру; Механизмы основных типов синтетических реакций.	Знание стереохимическо й номенклатуры; Основные закономерносьти протекания химических реакций	Знание механизмов основных типов синтетических реакций. Регио- и стереоселективность наиболее важных типов органических реакций

		Определить	Умение	Умение в рамках
		виды	предсказать	поставленной задачи
	умеет (продви ну-тый	стереоизомерии	механизм	подобрать условия
		и симметрию	конкретной	протекания реакции
		молекул,	реакции и ее	для достижения
		изобразить	стереохимическ	нужного
		конформации	ий результат	структурного и
,	уровень)	молекул;		стерохимического
		Предсказать		результата.
		механизм		
		конкретной		
		реакции.		
		Навыками	Владеет	Способность
		объяснения	навыками	использования
	владеет (высоки й уровень)	пространственн	использования	знаний о механизмах
		ых особенностей	знаний	реакций и
		молекул разного	химического	стереохимии
		типа.	поведения	молекул для
		Навыками	соединений для	решения задач
		определения	оптимизации	синтетического
		механизма	проведения	характера.
		конкретной	реакций.	
		реакции.		

Методические рекомендации, определяющие процедуры оценивания результатов освоения дисциплины

І. Промежуточная аттестация студентов. Промежуточная аттестация студентов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Примерный перечень оценочных средств (ОС)

І. Устный опрос

1. Зачет (средство промежуточного контроля) – Вопросы к зачету.

Вопросы к зачету.

- 1. Элементы симметрии молекул, точечные группы.
- 2. Асимметрическая индукция.
- 3. Конформационный анализ соединений со связью углерод гетероатом.
 - 4. Оптическая изомерия. Хиральность. Типы хиральности.
 - 5. Стереохимическая номенклатура соединений с хиральной осью.
- 6. Методы установления относительной конфигурации в диастереомерах.

- 7. Оптическая изомерия алленов и других соединений с молекулярной асимметрией.
 - 8. Использование ЯМР для установления конфигурации.
 - 9 Конформационный анализ моносахаридов. Аномерный эффект.
 - 10. Стереохимия пергидроантрацена.
 - 11. Методы определения оптической чистоты хиральных соединений.
 - 12. Конформационный анализ соединений с кратными связями.
 - 13. Конформационный анализ ациклических молекул.
 - 14. Свойства рацематов.
 - 15. Стереохимия реакций отщепления.
 - 16. Конформационный анализ циклогексана и его производных.
 - 17. Методы установления абсолютной конфигурации.
- 18. Стереохимическая номенклатура соединений с хиральной плоскостью.
 - 19. Стереохимия реакций замещения и присоединения.
 - 20. Методы изучения конформационного равновесия.
 - 21. Z,Е-номенклатура.
 - 22. Конформационный анализ конденсированных систем.
 - 23. Топность лигандов.
 - 24. Стереохимия пергидрофенантрена.
 - 25. Стереохимия согласованных реакций и перегруппировок.
 - 26. Конформационный анализ соединений азота.
 - 27. R,S-номенклатура.
- 28. Уравнение Гаммета; альтернативные наборы σ-констант в зависимости от механизмов реакций.
 - 29. Кинетический изотопный эффект.
- 30. Кинетические и стереохимические характеристики механизмов нуклеофильного замещения у насыщенного атома углерода .
- 31. Влияние растворителей на протекание реакций нуклеофильного замещения у насыщенного атома углерода.
- 32. Влияние строения субстрата протекание реакций нуклеофильного замещения у насыщенного атома углерода.
 - 33. Анхимерное содействие при замещении.
- 34. Влияние строения уходящей группы, способы превращения «плохих» уходящих групп в «хорошие».
 - 35. Амбидентные анионы, регионаправленность реакций с их участием.
- 36. Мономолекулярный (E1) и бимолекулярный (E2) механизмы β -элиминирования.

- 37. Конкурентные соотношения реакций β-элиминирования и нуклео фильного замещения.
 - 38. а-Элиминирование. Образование карбенов и их аналогов
 - 39. Аллильные перегруппировки.
- 40. Перегруппировки. Миграция анионоидных групп к секстетным атомам углерода, азота, кислорода.
 - 41. Характер промежуточных структур при перегруппировках.
 - 42. Наиболее важные катионотропные перегруппировки.
- 43. Реакции карбонильной группы с нуклеофильными реагентами, не требующие катализа.
- 44. Реакции карбонильной группы с нуклеофильными реагентами с кислотным катализом.
- 45. Реакции карбонильных соединений, протекающие через циклические переходные состояния.
- 46. Влияние строения карбонильных соединений на их реакционную способность
 - 47. Нуклеофильные реакции аналогов карбонильной группы.
 - 48. Нуклеофильные реакции активированной связи С=С.
 - 49. Нуклеофильное замещение в ароматическом ряду.
- 50. Электрофильное присоединение к связи С=С. Основные типы интермедиатов.
- 51. Регио- и стереонаправленность реакций электрофильнго присоединения
- 52. Электрофильное замещение в ароматическом ядре. Факторы парциальных скоростей.
 - 53. Способы генерирования радикалов.
- 54. Влияние электронных и пространственных факторов на устойчивость радикалов.
 - 55. Реакции радикального замещения.
 - 56. Реакции радикального присоединения.
 - 57. Основные типы перициклических реакций
- 58. Основные закономерности протекания перициклических реакций. Рассмотрение граничных оббиталей.

П. Письменные работы

1. Тестирование(ПР-1). Примеры тестовых заданий

Тесты (примеры)

1. РЕАКЦИЯ ПЕРВИЧНОГО СУБСТРАТА С СИЛЬНЫМ НУКЛЕОФИЛОМ ИМЕЕТ

ПОРЯДОК

- первый
- второй
- 3) третий
- **2.** ПРОДУКТ РЕАКЦИИ ПО МЕХАНИЗМУ $S_N 1$ СУБСТРАТА, ИМЕЮШЕГО S-КОНФИГУРАЦИЮ
 - 1) имеет R-конфигурацию
 - 2) имеет S-конфигурацию
 - 3) является рацематом
- 3. ПРИ ЗАМЕНЕ РАСТВОРИТЕЛЯ ЭТАНОЛА НА ДИМЕТИЛФОРМАМИД РЕАКЦИЯ ПЕРВИЧНОГО СУБСТРАТА С СИЛЬНЫМ НУКЛЕОФИЛОМ
 - 1) сильно замедляется
 - 2) замедляется
 - 3) ускоряется
 - 4) сильно ускоряется
- **4**. УРАВНЕНИЕ ГРЮНВАЛЬДА-УИНСТЕЙНА КОЛИЧЕСТВЕННО ОЦЕНИВАЕТ
 - 1) растворяющую способность растворителей
 - 2) ионизирующую способность растворителей
 - 3) электронное влияние заместителей
 - 4) пространственное влияние заместителей
- **5**. РЕАКЦИЯ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ С АНХИМЕРНЫМ СОДЕЙСТВИЕМ ПРИВОДИТ
 - 1) к сохранению конфигурации
 - 2) к рацемизации
 - 3) к обращению конфигурации
- - 1) кислотного катализа
 - 2) основного катализа
 - 3) электрофильного катализа

- 4) межфазного катализа
- 7. СТЕРЕОЭЛЕКТРОННЫЙ КОНТРОЛЬ ХАРАКТЕРЕН ДЛЯ МЕХАНИЗМА
 - 1) E1 2) E2 3) E1C_B
- 8. ПРОТЕКАНИЮ β-ЭЛИМИНИРОВАНИЯ ФРАГМЕНТА НХ ПО МЕХАНИЗМУ Е1сВ БЛАГОПРИЯТСТВУЕТ
 - 1. образование устойчивого карбокатионного интермедиата
 - 2. образование устойчивого карбанионного интермедиата
 - 3. использование слабого основания
 - 4. протонный полярный растворитель
- 9. ПРОТЕКАНИЮ β -ЭЛИМИНИРОВАНИЯ ФРАГМЕНТА НХ ПО МЕХАНИЗМУ Е1 БЛАГОПРИЯТСТВУЕТ
 - 1. образование устойчивого карбокатионного интермедиата
 - 2. образование устойчивого карбанионного интермедиата
 - 3. использование сильного основания
 - 4. апротонный растворитель
- **10**. ПРИ β-ЭЛИМИНИРОВАНИИ ФРАГМЕНТА НХ КИНЕТИЧЕСКИЙ ИЗОТОПНЫЙ ЭФФЕКТ НЕ НАБЛЮДАЕТСЯ
 - 1) Для механизма Е1
 - 2) Для механизма Е2
 - 3) Для механизма Е1сВ
- **11.** ПРИ АНИОНОТРОПНОЙ ПЕРЕГРУППИРОВКЕ ПУТЕМ 1.2-СДВИГА В СЛУЧАЕ МИГРАЦИИ ХИРАЛЬНОЙ МИГРИРУЮШЕЙ ГРУППЫ НАБЛЮДАЕТСЯ
 - 1) обращение конфигурации мигрирующей группы
 - 2) сохранение конфигурации мигрирующей группы
 - 1) рацемизация
- **12**. ПРЕВРАЩЕНИЕ БОЛЕЕ УСТОЙЧИВОГО КАРБОКАТИОНА В МЕНЕЕ УСТОЙЧИВЫЙ ПРОИСХОДИТ В ПРОЦЕССЕ ПЕРЕГРУППИРОВКИ
 - 1) пинаколиновой
 - 2) Вагнера-Меервейна

3) Диенон-фенольной4) Гофмана
 13. В ХОДЕ СОПРОВОЖДАЮЩЕГОСЯ ПЕРЕГРУППИРОВКОЙ АЦЕТОЛИЗА ТОЗИЛАТА 2-МЕТИЛ-2-(α-НАФТИЛ)ПЕНТАНОЛА-1 МИГРИРУЕТ 1) метильная группа 2) пропильная группа 3) нафтильная группа
14 . В РЕАКЦИИ МИХАЭЛЯ В КАЧЕСТВЕ ДОНОРА ИСПОЛЬЗУЕТСЯ 1) циклогексилбромид 2) циклогексен 3) циклогексанон 4) циклогексен-2-он-1
15 . В РЕАКЦИИ МИХАЭЛЯ В КАЧЕСТВЕ АКЦЕПТОРА
ИСПОЛЬЗУЕТСЯ 1) циклогексилбромид 2) циклогексен 3) циклогексанон 4) циклогексен-2-он-1
16. 2-АМИНОНАФТАЛИН МОЖНО В ОДНУ СТАДИЮ ПОЛУЧИТЬ 1) из 1-метилнафталина 2) из 1-бромнафталина 3) из 1-нитронафталина 4) из 1-нафтола
17. ПРИСОЕДИНЕНИЕ НВ К <i>цис-</i> 2,3-ДИФЕНИЛБУТЕНУ-2 ДАЕТ СМЕСЬ <i>трео-</i> И <i>эритро-</i> ИЗОМЕРОВ ПРОДУКТОВ РЕАКЦИИ; СЛЕДОВАТЕЛЬНО ИНТЕРМЕДИАТ ПРЕДСТАВЛЯЕТ СОБОЙ
 18. УВЕЛИЧЕНИЕ РЕАКЦИОННОЙ СПОСОБНОСТИ ПО ОТНОШЕНИЮ К НУКЛЕОФИЛАМ
19. УВЕЛИЧЕНИЕ СКОРОСТИ ЗАМЕЩЕНИЯ ГАЛОГЕНА НА ГИДРОКСИЛ мета-нитробромбензол

II. Текущая аттестация студентов. Текущая аттестация студентов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Примерный перечень оценочных средств (ОС)

І. Устный опрос

1. Групповая дискуссия (УО-4) (Групповая дискуссия — рассмотрение и анализ различных возможных путей решения поставленной задачи). - Вопросы и задачи для самостоятельной работы, обсуждаемые на занятии.

2. Собеседование (УО-1) с разбором домашних заданий. Примеры домашних заданий.

Групповая дискуссия

Перечень вопросов и задач для групповой дискуссии

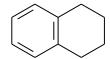
1. Определите элементы симметрии следующих молекул:

хлороформ, фторхлорметан, этилен, транс-1,2-дихлорциклопропан, симм.-октагидроакридин, бензол, диацетилен, оксид углерода (IV), силан, адамантан, циклогексан, аллен.

2. Укажите, являются ли подчеркнутые атомы или группы гомотопными, энантиотопными или диастереотопными.

$$\overset{\text{CH}_2(\text{COOH})_2}{=\!=\!=} \overset{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3}{=\!=\!=}$$

$$CH_3CH(OCH_2CH_3)_2 \qquad HN(CH_2CH_3)_2$$


- 3. Являются ли атомы хлора в тионилхлориде и хлористом сульфуриле гомотопными или энантиотопными ?
- 4. Молекула вида CX_2YZ ахиральна, т.к. содержит два одинаковых лиганда. Будут ли хиральными спираны, если соединить лиганды попарно одинаковыми мостиками (два варианта) ?
- 5. Докажите, что поворот фишеровской проекции на 90 $^{\circ}$ изменяет конфигурацию, а поворот на 180 $^{\circ}$ нет.
- 6. Нарисуйте проекционные формулы Фишера изотактического, синдиотактического и атактического полипропилена.
 - 7. Назовите по R,S-системе следующие соединения:

- 8. Напишите формулы следующих соединений: а) трео-бутандиол-2,3; б) монометиловый эфир L-эритро-бутандиола-2,3; в) 3(S)-бром-2(S)-метоксибутан; г) R,R-циклогександиол-1,3; д) D-глицериновая кислота.
 - 9. Назовите по R,S-системе α-D-глюкозу.

10. В нижеприведенные углеродные скелеты введите заместитель так, чтобы получилось хиральное соединение с R-конфигурацией.

- 11. Может ли быть величина удельного вращения больше 360 °?
- 12. Известно, что транс-циклооктен можно разделить на энантиомеры, а для транс-циклодецена это сделать не удается. Объясните этот факт.
- 13. Приведите пример соединения, содержащего псевдоасим-метрический атом углерода.
- 14. Напишите фишеровские проекции всех стереоизомеров следующих соединений:
- а) 1,2,3,4-тетрахлорбутан; б) 2,3-дибромпропионовая кислота; в) гександиол-2,3; г) пентанпентаол-1,2,3,4,5.
- 15. Предложите химический способ определения конфигурации диастереомерных дигидробензоинов.
- 16. Различаются ли спектральные характеристики цис- и трансстильбена?
- 17. Укажите различия в спектрах ПМР диметиловых эфиров фумаровой и малеиновой кислот.
- 18. Предложите метод определения относительной конфигурации для изомеров 2,6-диоксициклогексанонов.
- 19. Определите конфигурацию (+)-аспарагиновой кислоты, зная, что эта кислота в смеси с R-(+)-яблочной кислотой дает диаграмму плавкости по типу истинного рацемата.
- 20. Приведите примеры конформеров, возникающих без вращения вокруг простых связей.
- 21. Как влияет агрегатное состояние вещества на конформационную подвижность и на конформационное равновесие его молекул?
- 22. Изобразите и назовите все конформеры пропана, метанола, этиламина, 2,3-диметилбутана.
- 23. Изобразите и назовите наиболее выгодные конформеры для следующих молекул: а) этиленхлоргидрин; б) 2-фторэтанол; в) янтарная кислота; г) моноаминоэтанол; д) дигидробензоин.
- 24. Для дихлорэтана экспериментально было найдено значение дипольного момента 0,75 Д. Зная, что дипольный момент связи С–С1 равен 1,7 Д, вычислите содержание преобладающих конформеров в процентах.

- 25. Нарисуйте кривую изменения потенциальной энергии для конформационных переходов в бутане и циклогексане.
- 26. Используя табличные значения конформационных энергий заместителей, рассчитайте наиболее выгодную конформацию для цис- и транс-изомеров следующих соединений:

$$C_2$$
 C_3 C_2 C_3 C_2 C_3

- 27. Почему транс-2,5-ди-трет-бутилциклогександиол-1,4 существует в основном в твист-конформации? Изобразите эту конформацию и соответствующую ей кресловидную.
- 28. Вычислите разницу в энергиях двух основных конформеров 1(r), 3(c), 4(t)-триметилциклогексана.
- 29. Почему цис- и транс-декалины обладают разной внутренней энергией? Оцените эту разность.
 - 30. Определите число стереоизомеров для следующих соединений.

31. По какому механизму протекает следующая реакция:

32. Осуществите следующее превращение:

$$\begin{array}{c|c}
Me \\
H \longrightarrow & H \longrightarrow$$

- 33. Предскажите стереохимический результат следующих реакций:
- а) S-3-метилгексанол-3 с HBr; б) D- α -броммасляная кислота с AgOH.
- 34. Напишите механизм реакции:

$$\begin{array}{c|cccc} COOH & COOH \\ H & Cl & NaOH & H & OH \\ \hline C_2H_5 & C_2H_5 & C_2H_5 \end{array}$$

35. Напишите продукт реакции:

$$\begin{array}{ccc}
MeO & & \\
\hline
MeO & & \\
\end{array}$$

36. Предскажите стереохимию продукта:

$$\begin{array}{c}
Me \\
H \longrightarrow Br \\
Br \longrightarrow H \\
Me
\end{array}$$

- 37. Какой стереоизомер преимущественно образуется при бромировании: а) цис-стильбена; б) транс-стильбена?
 - 38. Напишите продукты следующих реакций:

39.

$$Z \xrightarrow{CH_3} \xrightarrow{EtOH} Z \xrightarrow{CH_3} \xrightarrow{CH-OE}$$

Укажите знаки р-констант для реакций A и Б. В каком случае (и почему) больше абсолютная величина r-константы?

40.

Вг
$$HOH - àщетон$$
 OH $(CH_2) mX$ $(CH_2) mX$ $(CH_2) mX$ $(CH_3) mX$ $(CH_$

В каких случаях реакция будет проходить быстрее, чем при X=H? При каких значениях n это ускорение будет наибольшим? Расположите группы X в порядке увеличения скорости при одинаковом значении n.

41. Ниже приведены две первых стадии синтеза витамина B_6 (к которому относятся пиридоксин, пиридоксаль и пиридоксамин):

$$CH_3OCH_2\text{-}COOCH_3 + CH_3COCH_3 \xrightarrow{CH_3ONa} A \xrightarrow{NC\text{-}CH_2\text{-}CONH_2} \xrightarrow{CH_3OCH_2} \xrightarrow{NH} NC \xrightarrow{NH} NC$$

Напишите структуру соединения А, механизмы приведенных реакций и обоснуйте хемо- и регионаправленность второй стадии.

42. Какие превращения могут происходить при действии оснований на трикетон (1)?

- 43. Получите 2-гидроксициклобутанон из янтарного ангидрида и этилена. Напишите механизмы всех стадий превращения
- 44. Из двух стереоизомерных 1,2-дивинилциклобутанов один достаточно устойчив, а другой даже при невысоких температурах подвергается перегруппировке; для аналогичной перегруппировки ациклических соединений, содержащих подобную систему связей, требуется температура выше 150 °C.

Какой из стереоизомеров подвергается перегруппировке и почему именно он? Напишите уравнение и механизм перегруппировки. Почему для ее протекания здесь достаточно невысокой температуры?

Вопросы для собеседования

ЧАСТЬ 1. МЕХАНИЗМЫ РЕАКЦИЙ

- 1. Как влияют внутренние и внешние факторы на протекание реакций нуклеофильного замещения в алифатическом ряду?
- 2. Уравнение Гаммета; альтернативные наборы σ-констант в зависимости от механизмов реакций.
- 3. Конкурентные соотношения реакций β-элиминирования и нуклеофильного замещения.
- 4. Радикальные и перициклические реакции.
- 5. Электрофильное присоединение к связи С=С. Основные типы интермедиатов.
- 6. Регио- и стереонаправленность реакций электрофильнго присоединения
- 7. Электрофильное замещение в ароматическом ядре. Факторы парциальных скоростей.
- 8. Способы генерирования радикалов.
- 9. Влияние электронных и пространственных факторов на устойчивость радикалов.
- 10. Реакции радикального замещения.
- 11. Реакции радикального присоединения.

ЧАСТЬ 2. СТЕРЕОХИМИЯ

- 1. Перечислите основные элементы хиральности молекул, приведите по несколько примеров соединений каждого типа.
- 2. Какие методы определения относительной и абсолютной конфигурации молекул вы знаете? Приведите примеры.
- 3. Что такое топность лигандов?
- 4. В чем особенность конформационного анализа соединений азота ? Приведите примеры.
- 5. Что такое конформационная энергия заместителя? Приведите примеры конформаций карбоциклических соединений.
- 6. Способы разделения рацематов на энантиомеры.

Домашние задания (примеры)

- **1**. Расположите соединения в порядке <u>увеличения</u> константы равновесия при их взаимодействии с гидроксид-анионом:
- 1. 1,1-Динитропропан; 2. Пропан; 3. 2-Метоксипропан;

- 4. 2-Цианопропан; 5. Диметилизопропиламин; 6. 1-Нитропропан.
- **2.** Напишите резонансные (граничные) структуры следующих соединений: а. 4-Диметиламино-3-цианобутен-3-она-2;
- б. катиона Cl-CH=CH-CH+-CO-CH3.

Расположите структуры в порядке уменьшения их вклада в резонансный гибрид.

- **3.** Расположите в порядке возрастания (от наиболее отрицательной до наиболее положительной) σ-константы следующих заместителей, находящихся в пара-положении к реакционному центру:
- 1. -CH2CN; 2. -S⁻; 3. -CN; 4. -C(CH3)3; 5. -HgEt; 6. -CH3;
- 7. -N+(CH3)3.
- 4. Для каких из приведенных ниже соединений характерен гомолитический разрыв связей?
- 1. N,N-дитрет.бутилгидроксиламин; 2. Триметиламин; 3. 1,4-Диоксан;
- 4. 1,2-Диоксан; 5. 2,6-Дитретбутилфенол; 6. Тетрафенилгидразин. Написать структуры продуктов гомолиза для случаев легко протекающих реакций.
- **5.** Расположите в порядке увеличения скорости сольволиза (ацетолиза) следующие тозилаты:

6.

$$Z$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_0
 $CH_$

Укажите знаки р-констант для реакций A и Б. В каком случае (и почему) больше абсолютная величина r-константы?

- 7. Оптически чистый 1-метил-2-хлорциклопентан вводят в реакцию
- а). с AgNO2 в смеси вода-ацетон;
- б). с NaNO2 в ДМФА.

Сделайте выводы о структуре продуктов реакции и их оптической активности в случаях а) и б).

8. Гидролиз оптически активного 3-бром-3-метилгексана идет с потерей оптической активности на 70%. Объясните этот результат.

9.

i.
$$C_7H_{15}J \xrightarrow{AgNO_2} I + II$$

Реакцию ведут: а) в эфире; б). в ацетонитриле.

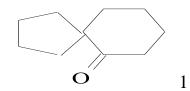
Каковы структуры соединений I и II? Как будет меняться их соотношение при переходе от а) к б)?

10. Расположите в ряд по возрастающей скорости сольволиза в 80% этаноле субстраты Ia-e:

a) t, $X=NO_2$; б) c, $X=NO_2$; в) c, X=OMe; Γ)t, X=OMe;

д) c,
$$X = Me$$
; e) t, $X = Me$

(t- транс-изомер; с - цис-изомер)


Определите знак р-константы Гаммета для с- и t-изомеров.

11.

$$Z \xrightarrow{CH - CH_2 - OTs} \xrightarrow{NH_2} \xrightarrow{C = CH_2}$$

Пусть R= a) H; б) CH3; в)CF3; г) ОСН3. Каков знак р-константы данных реакций? Расположите приведенные соединения в порядке увеличения абсолютного значения р-константы.

12. Получите соединение 1 из доступного соединения. Напишите механизм последней стадии синтеза.

- **13.** Получите 1-метил-1(пара-диметиламинофенил)-2-фенилэтилен из тозилата 2-(пара-диметиламинофенил)-2-фенил-1-пропанола. Обратите внимание на условия проведения реакции.
- **14**. Получите изопропилуксусную кислоту исходя из малонового эфира и соответствующего галогенида. Напишите механизмы реакций (механизм гидролиза сложного эфира можно и не приводить).
- 15. Расположите субстраты в порядке увеличения реакционной способности:
- a. $CH_3COOC_2H_5$ $6CH_3OCH_2COOC_2H_5$ B. $CF_3COOC_2H_5$
- г. $CH_3CON(CH_3)_2$ д. $(CH_3)_2CHCONH_2$
- 16. Довольно характерной особенностью 1,5-дикетонов является ретрореакция Михаэля, т.е. реакция, обратная реакции Михаэля; она происходит при нагревании дикетонов до высокой температуры, а также при масс-спектрометрической фрагментации. Что может образоваться при такой реакции из дикетона 1?

$$CH_3O$$
 $CO-CH_2$ CH_2 CH_3O

17. При действии орто-фенилендиамина на дикарбонильное соединение образуется соединение 1.

¹Укажите какое карбонильное соединение вводилось в реакцию и напишите ее механизм.

18. При взаимодействии 1-(о-карбоксифенил)-3-фенилпропен-2-она-1 с циклогексаноном в присутствии КОН (с последующим подкислением) было получено соединение, в ИК спектре которого (в СНС13) имеется поглощение при 1775 и 3600 см-1, а также полосы, характеристические для ароматических структур и групп СН2. Предложите структуру данного соединения и механизм его образования.

19. Дикетон 1 при конденсации с бензальдегидом образует соединение 2 брутто-формулы С19Н22О2. В ИК спектре этого соединения имеется полоса поглощения одного карбонила при

1740 см-1 (циклопентаноновый и связи С=С. В спектре ЯМР 13С имеются сигналы одного четвертичного и одного третичного

 ${
m sp}^3$ -атомов углерода. В спектре ПМР отсутствуют сигналы винильных протонов.

Установите строение

соединения 2 и напишите механизм его образования.

20. Ниже представлена заключительная стадия синтеза синтетического антибиотика *норфлоксацина*:

$$\begin{array}{c|c} F \\ \hline \\ CI \\ \hline \\ Et \\ \end{array} \begin{array}{c} O \\ \hline \\ HN \\ \end{array} \begin{array}{c} O \\ \hline \\ F \\ \hline \\ HN \\ \end{array} \begin{array}{c} O \\ \hline \\ F \\ \hline \\ Et \\ \end{array} \begin{array}{c} O \\ \hline \\ COOH \\ \hline \\ Et \\ \end{array}$$

Напишите механизм этой реакции и объясните, почему замещается атом хлора, а не атом фтора.

21. При взаимодействии 2-[(2-оксоциклогексил)метил]циклогексанона с синильной кислотой образуется соединение А состава $C_{14}H_{21}NO$. В его ИК спектре (снятом в растворе) не содержится полос поглощения в области 2200-2300 и 3500-3600 см⁻¹, имеются полосы поглощения при 1690 и 3400 см⁻¹. В спектре ЯМР ¹³С наблюдаются, в частности, сигналы при 173 и 105 м.д. Какое строение имеет соединение А и каков механизм его образования? Можно ли гарантировать аналогичный результат для вза- имодействия НСN с 2-[(2-оксоциклопентил)метил]циклогексаноном?

22. Ниже приведена цепочка реакций; ее конечный продукт – лекарственный препарат *метионин* (используют при лечении

MeSH +
$$CH_2$$
= CH - CH = $O \longrightarrow A \xrightarrow{NH_3, HCN} B \xrightarrow{H_2O(OH)} C$

поражений печени):

Восстановите цепь и приведите механизмы всех реакций.

23. Реакция:

$$Z$$
 — CH=CH $_2$ + HBr — CH-CH $_3$ Вr идет: а) в эфире; б) в

ацетоне; в) в ССІ4. Каков знак р-константы?

Как будет меняться ее абсолютная величина в зависимости от растворителя? Объясните свой выбор.

24. Получите метиламид бензойной кислоты из этилбензола, не используя дополнительных органических реагентов. Напишите механизмы всех стадий синтеза.

25.

26. Получите 3-фенилбутен-2-аль из уксусного альдегида и анилина. Напишите механизмы по крайней мере двух стадий синтеза.

27.

B r

B r

$$\uparrow$$
 \uparrow
 \uparrow
 \uparrow
 \uparrow
 \uparrow

Укажите стереохимию продукта реакции.

28.

OMe +
$$CH_3CH_2CH_2Br \xrightarrow{AlBr_3} A \xrightarrow{O_2} B$$

Напишите механизмы реакций. При определении строения продуктов А и В учтите, что переход от А к В идет очень легко.

29.

$$\stackrel{\Delta}{\longrightarrow} ?$$

цис- или транс-?

30. При взаимодействии 4,4-диметилциклопентена с N-бромсукцинимидом (NBS) образуются два продукта. Какие и как?

II. Письменные работы

- 1. Тестирование(ПР-1). Примеры тестовых заданий
- 2. Контрольная работа (ПР-2) (Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу) Комплект контрольных заданий по вариантам.

Тесты (примеры)

1. РЕАКЦИЯ ПЕРВИЧНОГО СУБСТРАТА С СИЛЬНЫМ НУКЛЕОФИЛОМ ИМЕЕТ

ПОРЯДОК

- первый
- 5) второй
- б) третий
- **2.** ПРОДУКТ РЕАКЦИИ ПО МЕХАНИЗМУ $S_N 1$ СУБСТРАТА, ИМЕЮШЕГО S-КОНФИГУРАЦИЮ
 - 4) имеет R-конфигурацию
 - 5) имеет S-конфигурацию
 - б) является рацематом
- 3. ПРИ ЗАМЕНЕ РАСТВОРИТЕЛЯ ЭТАНОЛА НА ДИМЕТИЛФОРМАМИД РЕАКЦИЯ ПЕРВИЧНОГО СУБСТРАТА С СИЛЬНЫМ НУКЛЕОФИЛОМ
 - 5) сильно замедляется
 - б) замедляется
 - 7) ускоряется
 - 8) сильно ускоряется
- **4**. УРАВНЕНИЕ ГРЮНВАЛЬДА-УИНСТЕЙНА КОЛИЧЕСТВЕННО ОЦЕНИВАЕТ
 - 5) растворяющую способность растворителей
 - 6) ионизирующую способность растворителей
 - 7) электронное влияние заместителей
 - 8) пространственное влияние заместителей

5. РЕАКЦИЯ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ С АНХИМЕРНЫМ СОДЕЙСТВИЕМ ПРИВОДИТ

- 4) к сохранению конфигурации
- 5) к рацемизации
- 6) к обращению конфигурации
- **6**. ТЕТРАБУТИЛАММОНИЙБРОМИД $(C_4H_9)_4N^+$ Br ИСПОЛЬЗУЕТСЯ ДЛЯ
 - 5) кислотного катализа
 - б) основного катализа
 - 7) электрофильного катализа
 - 8) межфазного катализа
- 7. СТЕРЕОЭЛЕКТРОННЫЙ КОНТРОЛЬ ХАРАКТЕРЕН ДЛЯ МЕХАНИЗМА
 - 1) E1 2) E2 3) E1CB
- 8. ПРОТЕКАНИЮ β-ЭЛИМИНИРОВАНИЯ ФРАГМЕНТА НХ ПО МЕХАНИЗМУ Е1сВ БЛАГОПРИЯТСТВУЕТ
 - 5. образование устойчивого карбокатионного интермедиата
 - 6. образование устойчивого карбанионного интермедиата
 - 7. использование слабого основания
 - 8. протонный полярный растворитель
- 9. ПРОТЕКАНИЮ β -ЭЛИМИНИРОВАНИЯ ФРАГМЕНТА НХ ПО МЕХАНИЗМУ Е1 БЛАГОПРИЯТСТВУЕТ
 - 3. образование устойчивого карбокатионного интермедиата
 - 4. образование устойчивого карбанионного интермедиата
 - 5. использование сильного основания
 - 6. апротонный растворитель
- **10**. ПРИ β-ЭЛИМИНИРОВАНИИ ФРАГМЕНТА НХ КИНЕТИЧЕСКИЙ ИЗОТОПНЫЙ ЭФФЕКТ НЕ НАБЛЮДАЕТСЯ
 - 4) Для механизма Е1
 - 5) Для механизма Е2
 - 6) Для механизма Е1сВ

- **11.** ПРИ АНИОНОТРОПНОЙ ПЕРЕГРУППИРОВКЕ ПУТЕМ 1.2-СДВИГА В СЛУЧАЕ МИГРАЦИИ ХИРАЛЬНОЙ МИГРИРУЮШЕЙ ГРУППЫ НАБЛЮДАЕТСЯ
 - 1) обращение конфигурации мигрирующей группы
 - 2) сохранение конфигурации мигрирующей группы
 - 2) рацемизация
- 12. ПРЕВРАЩЕНИЕ БОЛЕЕ УСТОЙЧИВОГО КАРБОКАТИОНА В МЕНЕЕ УСТОЙЧИВЫЙ ПРОИСХОДИТ В ПРОЦЕССЕ ПЕРЕГРУППИРОВКИ
 - 5) пинаколиновой
 - 6) Вагнера-Меервейна
 - 7) Диенон-фенольной
 - 8) Гофмана
- 13. В ХОДЕ СОПРОВОЖДАЮЩЕГОСЯ ПЕРЕГРУППИРОВКОЙ АЦЕТОЛИЗА ТОЗИЛАТА 2-МЕТИЛ-2-(α-НАФТИЛ)ПЕНТАНОЛА-1 МИГРИРУЕТ
 - 4) метильная группа
 - 5) пропильная группа
 - 6) нафтильная группа
 - 14. В РЕАКЦИИ МИХАЭЛЯ В КАЧЕСТВЕ ДОНОРА ИСПОЛЬЗУЕТСЯ
- 2) циклогексилбромид 2) циклогексен 3) циклогексанон 4) циклогексен-2-он-1
- **15**. В РЕАКЦИИ МИХАЭЛЯ В КАЧЕСТВЕ АКЦЕПТОРА ИСПОЛЬЗУЕТСЯ
- 1) циклогексилбромид 2) циклогексен 3) циклогексанон 4) циклогексен-2-он-1
 - 16. 2-АМИНОНАФТАЛИН МОЖНО В ОДНУ СТАДИЮ ПОЛУЧИТЬ
- 1) из 1-метилнафталина 2) из 1-бромнафталина 3) из 1-нитронафталина 4) из 1-нафтола
- **17**. ПРИСОЕДИНЕНИЕ HBr К uuc-2,3-ДИФЕНИЛБУТЕНУ-2 ДАЕТ СМЕСЬ mpeo- И эpumpo- ИЗОМЕРОВ ПРОДУКТОВ РЕАКЦИИ; СЛЕДОВАТЕЛЬНО ИНТЕРМЕДИАТ ПРЕДСТАВЛЯЕТ СОБОЙ

18.	УВЕЛИЧЕНИЕ	РЕАКЦИО	ИОННС	СПОСОБІ	НОСТИ	ПО
ОТНОЦ	ІЕНИЮ К НУКЛЕО	Э ФИЛАМ				
	диизопропилкет	ОН				
	трихлоруксусный альдегид					
	диэтилкетон.					
	пропионовый ал	пьдегид				
19.	УВЕЛИЧЕНИЕ	СКОРОСТИ	ЗАМЕЩІ	АЛ КИНЭ	ЛОГЕНА	НА
ГИДРОІ	КСИЛ					
	<i>мета</i> -нитробромбензол					
	пара-нитрохлорбензол					
	бромбензол					
	<i>пара-</i> бромтолус	л				
20.	20. УВЕЛИЧЕНИЕ СКОРОСТИ ПРИСОЕДИНЕНИЯ БРОМА					
	стирол					
	пара-метоксист	ирол				
	пара-нитростир	ОЛ				
	пара-метилстир	ОЛ				
21.	21 . σ-КОНСТАНТЫ ГАММЕТА ЗАМЕСТИТЕЛИ					
A) <i>i</i>	napa-OCH ₃					
Б) .	мета- NO_2					
3)	3) Положительные В) пара-трет-бутил					
4)	4) Отрицательные Γ) <i>мета</i> -OCH ₃					
Д) л	$napa$ - NO_2					
E) <i>i</i>	napa-COOCH ₃					
OT	ВЕТЫ: 1	; 2		•		
22.	ОБРАЗОВАНИЕ И	НТЕРМЕДИ <i>А</i>	ТОВ ИСХ	ОДНЫЕ С	УБСТРАТІ	Ы
A) <i>i</i>	<i>трет-</i> Бутилгидропе	ероксид	Б),	Диазоуксус	ный эфир	
5) K	Сатионы		В) 2,6-ди	і <i>трет-</i> бути	лфенол	
6) A	Анионы	Г) 2-Й	од-2-фенил	пропан		
7) P	адикалы		Д) Три	нитрометан	Ŧ	
8) K	Сарбены		· · · · · · · · · · · · · · · · · · ·	інилметило		
			Ж. Ац	етилциклог	ентандион	1-1,3
OT	ВЕТЫ: 1; 2	; 3_	; ∠	ļ		

Примеры контрольных работ:

Контрольная работа № 1 Вариант 1

- 1. Определить все элементы симметрии молекулы.
 - а) пропен б) хлорацетилен
- 2. Определить топность подчеркнутых протонов.

$$CH_3-O-\underline{CH_2}-CH_3 \qquad CH_3-\underline{CH}-\underline{CH_2}-CH_3$$

3. Назвать стереоизомеры.

- 4. Написать формулы указанных соединений.
- а) R-1-фенилэтанол; б) трео-2,3-дихлорянтарная кислота; в) 3(S)-метилоктан
 - 5. Ввести заместитель в структуру так, чтобы получился R-изомер.

6. Изобразить и назвать все стереоизомеры.

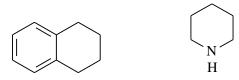
пентадиен-2,3

7. Хирально ли изображенное соединение? Изобразить все стереоизомеры.

8. Изобразить разными способами указанный стереоизомер.

53

9. Указать способ(ы) определения конфигурации возможных стереоизомеров.


Контрольная работа № 1 Вариант 2

- 1.Определить все элементы симметрии молекулы.
- а) метан б) 1,3-дихлорбензол
- 2. Определить топность подчеркнутых протонов.

$$\begin{array}{c|c} NC & CN \\ \hline H & N & H \\ \hline \hline & & O \\ \end{array}$$

3. Назвать стереоизомеры.

- 4. Написать формулы указанных соединений.
- а) R,R-винная кислота; б) мезо-1,3-диметилциклопентан;
- в) транс-син-транс-пергидроантрацен
- 5. Ввести заместитель в структуру так, чтобы получился R-изомер.

6. Изобразить и назвать все стереоизомеры.

гексатриен-1,3,5

7. Хирально ли изображенное соединение ? Изобразить все стереоизомеры.

8. Изобразить разными способами указанный стереоизомер.

9. Указать способ(ы) определения конфигурации возможных стереоизомеров.

$$\begin{matrix} CH_3 - S - CH_2 - S - CH_3 \\ II & II \\ O & O \end{matrix}$$

Контрольная работа № 1 Вариант 3

- 1. Определить все элементы симметрии молекулы.
- а) пропен б) транс-1,2-дихлорциклопропан
- 2. Определить топность подчеркнутых протонов.

$$\begin{array}{c|c}
\underline{H} & OCH_3 \\
\hline
H & OC_2H_5
\end{array}$$

3. Назвать стереоизомеры.

COOH
$$H \longrightarrow OCH_3$$
 $H \longrightarrow CH_3$ $H \longrightarrow CH_3$ $H \longrightarrow CH_2OH$ $H_3C \longrightarrow H$

4. Написать формулы указанных соединений.

- а) (Z)-пентен-2; б) эритро-2,2'-метиленбисциклогексанон;
- в) цис-син-цис-пергидроакридин
- 5. Ввести заместитель в структуру так, чтобы получился R-изомер.

- 6. Изобразить и назвать все стереоизомеры.
- 2,3,4-трихлорпентан
- 7. Хирально ли изображенное соединение? Изобразить все стереоизомеры.

8. Изобразить разными способами указанный стереоизомер.

9. Указать способ(ы) определения конфигурации возможных стереоизомеров.

Контрольная работа № 2 Вариант 1

- 1. Изобразить возможные конформации. Оценить их энергии.
- а) ацетон; б) н-пентан

2. Изобразить и назвать конформации всех стереоизомеров. Рассчитать разность энергий конформаций, переходящих друг в друга в результате инверсии цикла.

- 3. Изобразить наиболее выгодные конформации указанных стереоизомеров.
 - а) транс-1-хлор-3-фенилциклогексан; б) цис-цис-2-фенилдекалин
- 4. Выбрать любой стереоизомер и изобразить его конформации различными способами.

- 5. Дипольный момент мезо-дихлорстильбена (Ph-CHCl-CHCl-Ph) равен 1,27 Д, рацемического 2,75 Д. Объясните этот факт.
- 6. Являются ли приведенные структуры конформационно жесткими или подвижными? Изобразить соответствующие конформации.

7. Изобразить наиболее устойчивую конформацию.

Контрольная работа № 2 Вариант 2

1. Изобразить возможные конформации. Оценить их энергии.

- а) пропан; б) этиленгликоль
- 2. Изобразить и назвать конформации всех стереоизомеров. Рассчитать разность энергий конформаций, переходящих друг в друга в результате инверсии цикла.

- 3. Изобразить наиболее выгодные конформации указанных стереоизомеров.
- а) транс-1,3-циклогександикарбоновая кислота; б) эритро-2,3-дихлорбутан
- 4. Выбрать любой стереоизомер и изобразить его конформации различными способами.

- 5. Как влияет агрегатное состояние вещества на конформационное равновесие?
- 6. Являются ли приведенные структуры конформационно жесткими или подвижными? Изобразить соответствующие конформации.

7. Изобразить наиболее устойчивую конформацию.

Контрольная работа № 2 Вариант 3

- 1. Изобразить возможные конформации. Оценить их энергии.
- а) пропен; б) диметиламин
- 2. Изобразить и назвать конформации всех стереоизомеров. Рассчитать разность энергий конформаций, переходящих друг в друга в результате инверсии цикла.

- 3. Изобразить наиболее выгодные конформации указанных стереоизомеров.
- а) транс-5-метил-2-хлорциклогексанон; б) транс-син-транс-пергидроантрацен
- 4. Выбрать любой стереоизомер и изобразить его конформации различными способами.

- 5. Почему экваториальное положение заместителя предпочтительнее аксиального?
- 6. Являются ли приведенные структуры конформационно жесткими или подвижными? Изобразить соответствующие конформации.

7. Изобразить наиболее устойчивую конформацию.

Контрольная работа № 3

Вариант 1

4. (транс, транс-)

Контрольная работа № 3

Вариант 2

$$Ph$$
 O
 O
 O
 O

Контрольная работа № 3 Вариант 3

$$CH_3$$
 D_2O
 D^+

4.

цис-

$$\begin{array}{c|c}
O \\
O \\
O \\
O \\
O \\
O \\
\end{array}$$

Критерии оценки знаний умений и навыков при текущей проверке

I. Оценка устных ответов:

Отметка "Отлично"

4.

Дан полный, правильный и самостоятельный ответ на основе изученных теорий.

Отметка "Хорошо"

Дан достаточно полный ответ, однако допущены несущественные ошибки в изложении материала.

Отметка "Удовлетворительно"

Материал изложен неполно, при этом допущены 1-2 существенные ошибки.

Отметка "Неудовлетворительно"

Незнание и непонимание большей части учебного материала.

II. Оценка умения решать задачи:

Отметка "Отлично"

Решение рациональное, в объяснении нет ошибок.

Отметка "Хорошо"

Допущены 1-2 несущественные ошибки или неполное объяснение.

Отметка "Удовлетворительно"

Допущена существенная ошибка, записи неполные.

Отметка "Неудовлетворительно"

Решение неверно, содержит множество ошибок.

III. Оценка письменных работ:

Критерии те же.

Примеры тестов для проверки сформированности компетенций:

ОПК-1

- 1. ЧИСЛО СТЕРЕОИЗОМЕРОВ ДЛЯ 2,3,4-ТРИХЛОРПЕНТАНА РАВНО:
- 1) 3
- 2) 4

- 3) 6
- 4) 8
- **2.** ДЛЯ УСТАНОВЛЕНИЯ АБСОЛЮТНОЙ КОНФИГУРАЦИИ МОЖНО ИСПОЛЬЗОВАТЬ:
- 1) метод квазирацематов;
- метод ЯМР;
- 3) метод циклизации;
- 4) метод псевдоасимметрии.
- **3.** ИЗ КОНФОРМАЦИЙ 1-МЕТИЛ-2-МЕТОКСИЦИКЛОГЕКСАНА НАИБОЛЕЕ НИЗКОЙ ЭНЕРГИЕЙ ОБЛАДАЕТ:
- 1) (aa)
- 2) (ee)
- 3) (ea)
- 4) (ae)
- **4.** РЕЗУЛЬТАТОМ ВЗАИМОДЕЙСТВИЯ (R)-1-ФЕНИЛЭТАНОЛА С КОНЦЕНТРИРОВАННОЙ НВг ЯВЛЯЕТСЯ:
- 1) рацемизация;
- 2) (S)-изомер продукта;
- 3) сохранение конфигурации;
- 4) реакция не идет.

ПК-3

- **1.** СРЕДИ ПЕРЕЧИСЛЕННЫХ УСЛОВИЙ ХИРАЛЬНОСТИ МОЛЕКУЛ ЛИШНИМ ЯВЛЯЕТСЯ:
- 1) отсутствие плоскости симметрии;
- 2) отсутствие оси симметрии;
- 3) отсутствие центра симметрии;
- 4) отсутствие зеркально-поворотной оси четвертого порядка.
- **2.** Протоны группы CH_2 в молекуле бутанола-2 являются:
- 1) гомотопными;
- 2) энантиотопными;
- 3) диастереотопными;
- 4) энантиофасными.
- 3. ТРАНС-ЦИКЛООКТЕН ИМЕЕТ ЭЛЕМЕНТ ХИРАЛЬНОСТИ:
- 1) хиральный центр;
- 2) хиральную ось;
- 3) хиральную плоскость;
- 4) спиральность.
- **4.** ДЛЯ ОБОЗНАЧЕНИЯ КОНФИГУРАЦИИ ОКСИМОВ И ГИДРАЗОНОВ ИСПОЛЬЗУЮТСЯ ПРИСТАВКИ:
- 1) цис, транс;
- 2) трео, эритро;
- 3) R, S;
- 4) син, анти.