Аннотация дисциплины «Физические основы измерений и эталоны»

Дисциплина предназначена для бакалавров по направлению подготовки 27.03.01 Стандартизация и метрология, профиль «Стандартизация и сертификация». (Б1.Б.20)

Трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа. Учебным планом предусмотрены лекционные занятия (18 часов), лабораторные занятия (36 часов) и самостоятельная работа студента (90 часов). Дисциплина реализуется на 3 курсе, в 6 семестре. Дисциплина реализуется на основе знаний, полученных в рамках реализации дисциплин «Основы технического регулирования», «Введение в стандартизацию и метрологию», «Метрология», «Стандартизация и сертификация».

Цель дисциплины: формирование компетенций в области фундаментальных физических понятий, явлений и закономерностей, используемых в метрологической практике и измерительной технике, методов оценок погрешностей результатов измерения.

Задачи дисциплины:

- Изучить современные методы оценки погрешности при различных видах измерений, приемов и навыков выбора методики выполнения измерений и измерение конкретных физических величин с минимально возможными погрешностями;
- Получить навыки по использованию основных физических закономерностей, наиболее часто привлекаемых для решения задач экспериментального физического исследования требуемой точности.

Для успешного изучения дисциплины «Физические основы измерений и эталоны» у обучающихся должны быть сформированы следующие предварительные компетенции:

- готовностью интегрироваться в научное, образовательное, экономическое, политическое и культурное пространство России и АТР (ОК-2);
- способностью и готовностью участвовать в организации работы по повышению научно-технических знаний, в развитии творческой инициативы, рационализаторской и изобретательской деятельности, во внедрении достижений отечественной и зарубежной науки, техники, в использовании передового опыта, обеспечивающих эффективную работу учреждения, предприятия (ОПК-2);
- способностью участвовать в разработке проектов стандартов, методических и нормативных материалов, технической документации и в практической реализации разработанных проектов и программ,

- осуществлять контроль за соблюдением установленных требований, действующих норм, правил и стандартов (ПК-1);
- способностью производить оценку уровня брака, анализировать его причины и разрабатывать предложения по его предупреждению и устранению (ПК-5);
- способностью участвовать в проведении сертификации продукции, технологических процессов, услуг, систем качества, производств и систем экологического управления предприятия (ПК-6);
- способностью осуществлять работы по подтверждению соответствия конкурентоспособности продукции, услуг и системы управления качеством (ПК-11).

В результате изучения данной дисциплины у обучающихся формируются следующие профессиональные компетенции:

Код и формулировка компетенции	Э	Этапы формирования компетенции
ПК-3 способностью выполнять	Знает	Теоретические основы метрологического
работы по метрологическому		обеспечения и технического контроля
обеспечению и техническому	Умеет	Применять методики выполнения измерений и
контролю, использовать		измерение конкретных физических величин с
современные методы измерений,		минимально возможными погрешностями
контроля, испытаний и управления	Владеет	Способностью измерять конкретные
качеством		физические величины с минимально
		возможными погрешностями
ПК-4 способностью определять	Знает	Нормы точности измерений
номенклатуру измеряемых и		
контролируемых параметров	Умеет	Способностью использовать нормы точности
продукции и технологических		измерений и рассчитывать достоверность
процессов, устанавливать		представленных данных
оптимальные нормы точности	Владеет	Способностью использовать основные
измерений и достоверности		физические закономерности, наиболее часто
контроля, выбирать средства		привлекаемых для решения задач
измерений и контроля,		экспериментального физического исследования
разрабатывать локальные		требуемой точности
поверочные схемы и проводить		
поверку, калибровку, юстировку и		
ремонт средств измерений		

Для формирования вышеуказанных компетенций в рамках дисциплины «Физические основы измерений и эталоны» применяются следующие методы активного обучения: лекция-конференция, лабораторные работы.